CHAPTER 15 – Wave Motion



1.	The speed of the wave is

		v = fl = l/T = (9.0 m)/(4.0 s) =       2.3 m/s.



2.	For AM we find the wavelengths from

		lAMhigher = v/fAMlower = (3.00 ´ 108 m/s)/(550 ´ 103 Hz) =       545 m;

		lAMlower = v/fAMhigher = (3.00 ´ 108 m/s)/(1600 ´ 103 Hz) =       188 m.

	For FM we have

		lFMhigher = v/fFMlower = (3.00 ´ 108 m/s)/(88 ´ 106 Hz) =       3.4 m;

		lFMlower = v/fFMhigher = (3.00 ´ 108 m/s)/(108 ´ 106 Hz) =       2.78 m.



3.	We find the wavelength from

		v = fl;

		330 m/s = (262 Hz)l, which gives l =       1.26 m.



4.	We find the speed of the longitudinal (compression) wave from

		v = (B/r)1/2 for fluids and v = (E/r)1/2 for solids.

	(a)	 For water we have

			v = (B/r)1/2 = [(2.0 ´ 109 N/m2)/(1.00 ´ 103 kg/m3)]1/2 =      1.4 ´ 103 m/s.

	(b)	 For granite we have

			v = (E/r)1/2 = [(45 ´ 109 N/m2)/(2.7 ´ 103 kg/m3)]1/2 =      4.1 ´ 103 m/s.



5.	The speed of the longitudinal (compression) wave is

		v = (E/r)1/2, 

	so the wavelength is

		l = v/f = (E/r)1/2/f = [(100 ´ 109 N/m2)/(7.8 ´ 103 kg/m3)]1/2/(5000 Hz) =       0.72 m.



6.	We find the speed of the wave from

		v = [FT/(m/L)]1/2 = {(120 N)/[(0.65 kg)/(30 m)]}1/2 = 74.4 m/s.

	We find the time from

		t = L/v = (30 m)/(74.4 m/s) =       0.40 s.

	

7.	We find the tension from the speed of the wave:

		v = [FT/(m/L)]1/2;

		(4.8 m)/(0.85 s) = {FT/[(0.40 kg)/(4.8 m)]}1/2 , which gives FT =       2.7 N.



8.	The speed of the longitudinal wave is

		v = (B/r)1/2, 

	so the distance down and back that the wave traveled is

		2D = vt = (B/r)1/2t;

		2D = [(2.0 ´ 109 N/m2)/(1.00 ´ 103 kg/m3)]1/2(3.5 s), which gives D = 2.5 ´ 103 m =       2.5 km.



9.	(a)	Because the pulse travels up and back, the speed is

			v = 2L/t = 2(600 m)/(16 s) =       75 m/s.

	(b)	The mass density of the cable is

			m = m/L = rAL/L = rA.

		We find the tension from

			v = (FT/m)1/2 = (FT/rA)1/2;

			75 m/s = [FT/(7.8 ´ 103 kg/m3)p(0.75 ´ 10–2 m)2]1/2 , which gives FT =       7.8 ´ 103 N.
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10.	(a)	 The shape is maintained 

		and moves 1.80 m in 1.00 s.

















	(b)	 At the instant shown, point A is moving down.  We use the slope of the string to estimate the 

		vertical speed.  In the time to move vertically from 1 cm to – 1 cm, we estimate the string moves 

		30 cm, so the time is

			?t = (0.30 m)/(1.80 m/s) = 0.17 s.

		The vertical velocity is – (2 cm)/(0.17 s) =     – 0.1 m/s (down).



11.	(a)	Because both waves travel the same distance, we have

			?t = (d/vS) – (d/vP) = d[(1/vS) – (1/vP)];

			94 s = d{[1/(5.5 km/s)] – [1/(9.0 km/s)]}, which gives d =       1.3 ´ 103 km.

	(b)	The direction of the waves is not known, thus the position of the epicenter     cannot be determined.

		Because two circles have two intersections, it would take at least two more stations.



12.	Because the speed, frequency, and medium are the same for the two waves, the intensity depends on the amplitude only:

		I µ DM2.

	For the ratio of intensities we have

		I2/I1 = (DM2/DM1)2 ;

		2 = (DM2/DM1)2 , which gives DM2/DM1 =        1.41.



13.	We assume that the wave spreads out uniformly in all directions. 

	(a)	The intensity will decrease as 1/r2, so the ratio of intensities is

			I2/I1 = (r1/r2)2 = [(10 km)/(20 km)]2 =       0.25.

	(b)	Because the intensity depends on DM2, the amplitude will decrease as 1/r, so the ratio of 

		amplitudes is

			DM2/DM1 = r1/r2 = (10 km)/(20 km) =       0.50.



14.	We assume that the wave spreads out uniformly in all directions. 

	(a)	The intensity will decrease as 1/r2, so the ratio of intensities is

			I2/I1 = (r1/r2)2;

			I2/(2.2 ´ 106 W/m2) = [(100 km)/(4.0 km)]2 , which gives I2 =       1.4 ´ 109 W/m2.

	(b)	We can take the intensity to be constant over the small area, so we have

			P2 = I2S = (1.38 ´ 109 W/m2)(5.0 m2) =       6.9 ´ 109 W.



15.	If we consider two concentric circles around the spot where the waves are generated, the same energy must go past each circle in the same time.  The intensity of a wave depends on DM2, so for the energy passing through a circle of radius r, we have 

		E = I(2pr) = kDM22pr = a constant.

	Thus DM must vary with r; in particular, we have DM µ 1/vr.













16.	(a)	We consider a wave traveling through an area A at speed v.  After a time t, the energy that 

		will have passed through A is contained in a volume Avt, so we have

			E = IAt = rAvt,  or  I = rv.

	(b)	If we assume all of the energy is radiated, we have

			I = P/A = rv;

			(100 W)/4p(2.0 m)2 = r(3.00 ´ 108 m/s), which gives r =      6.6 ´ 10–9 J/m3.

		Actually some of the energy will be transferred by conduction and convection, so the energy density 

		will be less than this.



17.	(a)	The speed of the wave is

			v 	= (FT/m)1/2 = (FT/rA)1/2 

				= [(4.5 N)/(7.8 ´ 103 kg/m3)p(0.50 ´ 10–3 m)2]1/2 = 27.1 m/s.

		The power output is

			�	= 2p2rAvf 2DM2 

				= 2p2(7.8 ´ 103 kg/m3)p(0.50 ´ 10–3 m)2(27.1 m/s)(60 Hz)2(0.50 ´ 10–2 m)2 =      0.30 W.

	(b)	If we form the ratio for the two conditions, we have

			�2/�1 = f22DM22/f12DM12;

			1 = (2)2(DM2/0.50 cm)2, which gives DM2 =      0.25 cm.



18.	(a)	The linear mass density is

			m = m/L = rAL/L = rA.

		The average power is

			� = 2p2rAvf 2DM2 = 2p2mvf 2DM2.

	(b)	The speed of the wave is

			v 	= (FT/m)1/2 = (FT/rA)1/2 

				= [(100 N)/(0.10 kg/m)]1/2 = 31.6 m/s.

		The power output is

			�	= 2p2mvf 2DM2 

				= 2p2(0.10 kg/m)(31.6 m/s)(120 Hz)2(2.0 ´ 10–2 m)2 =      3.6 ´ 102 W.



19.	To represent a wave traveling to the left, we replace x by x + vt:

		D = DM sin (2px/l + f) = DM sin [(2p/l)(x + vt) + f] =       DM sin [2p(x/l + t/T) + f].



20.	The traveling wave is

		D = (0.48 m) sin [(5.6 m–1)x + (84 s–1)t]. 

	(a)	We find the wavelength from the coefficient of x:

			(5.6 m–1)x = 2px/l, which gives l =       1.12 m.

	(b)	We find the frequency from the coefficient of t:

			(84 s–1)t = 2pft, which gives f =       13 Hz.

	(c)	From the positive sign between the x and t terms, the wave is traveling in the – x direction, with 

		speed

			v = fl = (13.4 Hz)(1.12 m) =      15 m/s (toward negative x).

	(d)	The amplitude is the coefficient of the sine function:

			DM =       0.48 m.

	(e)	The speed of a particle is

			u = ?D/?t = (0.48 m)(84 s–1) cos [(5.6 m–1)x + (84 s–1)t] = (40 m/s) cos [(5.6 m–1)x + (84 s–1)t].

		Thus we have

			umax = (40 m/s)(1) =      40 m/s;

			umin = (40 m/s)(0) =      0.











21.	The traveling wave is

		D = (0.026 m) sin [(45 m–1)x – (1570 s–1)t + 0.66], with w = 1570 s–1.

	(a)	Each point has simple harmonic motion, so the maximum velocity is

			umax = DMw = (0.026 m)(1570 s–1) =      41 m/s.

	(b)	The maximum acceleration is

			amax = DMw2 = (0.026 m)(1570 s–1)2 =      6.4 ´ 104 m/s2.

	(c)	For any point on the string we have

			u = ?D/?t = – DMw cos [(45 m–1)x – (1570 s–1)t + 0.66];

			a = ?2D/?t2 = – DMw2 sin [(45 m–1)x – (1570 s–1)t + 0.66].

		For the given point and time we get

			u = – (41 m/s) cos [(45 m–1)(1.00 m) – (1570 s–1)(2.0 s) + 0.66] =      41 m/s;

			a = – (6.4 ´ 104 m/s2) sin [(45 m–1)(1.00 m) – (1570 s–1)(2.0 s) + 0.66] =      8.2 ´ 103 m/s2.



22.	If we represent the transverse wave by

		D = DM sin (kx – wt),

	the transverse speed of a particle is

		u = ?D/?t = – DMw cos (kx – wt).

	The slope is 

		slope = ?D/?x = DMk cos (kx – wt) = – uk/w = – u/v.
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23.	(a)	At t = 0 the traveling wave is

			D = (0.45 m) cos [(3.0 m–1)x + 1.2], 

		with l = 2p/(3.0 m–1) = 2.09 m.

	(b)	For a wave traveling to the right (+ x), 

		we replace x with x – vt:

			D 	= (0.45 m) cos [(3.0 m–1)(x – vt) + 1.2]

				= (0.45 m) cos {(3.0 m–1)[x – (2.0 m/s)t] + 1.2}

				=     (0.45 m) cos [(3.0 m–1)x – (6.0 s–1)t + 1.2].

	(d)	For a wave traveling to the left (– x), 

		we replace x with x + vt:

			D 	= (0.45 m) cos [(3.0 m–1)(x + vt) + 1.2]

				= (0.45 m) cos {(3.0 m–1)[x + (2.0 m/s)t] + 1.2}

				=     (0.45 m) cos [(3.0 m–1)x + (6.0 s–1)t + 1.2].



24.	(a)	We find the wavelength from

			l = v/f = (345 m/s)/(440 Hz) =       0.784 m.

	(b)	The phase change is produced by a time interval:

			?f = 2pf ?t;

			(90°)(p/180°) = 2p(440 Hz) ?t, which gives ?t =       5.68 ´ 10–4 s.

	(c)	The phase change for a change in x is

			?f 	= 2p ?x/l;

				= [2p(4.4 ´ 10–2 m)/(0.784 m)](180°/p) =       20°.



25.	For the general expression for a wave traveling to the right, we have

		D = DM sin [2p(x/l – t/T) + f].

	We find the phase angle from the initial conditions:

		– 0.020 cm = (0.020 cm) sin (0 – 0 + f), which gives sin f = –1, f = – p/2.

	Thus we can write the expression as

		D = DM sin [2p(x/l – t/T) – p/2] = – DM cos (2px/l – 2pft).

	Using the data from Problem 24, we have

		D = – DM cos [2p(x/l – ft)]

			= – (0.020 cm) cos {2p[x/(0.784 m) – 2p(440 Hz)t]} 

			=        – (0.020 cm) cos [(8.01 m–1)x – (2.76 ´ 103 s–1)t] .
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26.												(a)

	(b)	For the general expression for a wave traveling in 

		the – x direction, we have

			D = DM sin [kx + wt + f].

		We find the phase angle from the initial conditions:

			0.80 cm = (1.00 cm) sin (0 – 0 + f), 

		which gives sin f = 0.80, f = 53°, 127°.

		The speed of a particle is

			u = ?D/?t = wDM cos (kx + wt + f).

		Because u(0, 0) is positive, we choose the phase 

		with a positive value for the cosine function:

			f = 53° = 0.927 rad.

		Characteristics of the wave are

			k = 2p/l = 2p/(3.00 cm) = 2.09 cm–1;

			w = 2pf = 2p(200 Hz) = 1.26 ´ 103 s–1.

		Thus the function is

			D = (1.00 cm) sin [(2.09 cm–1)x + (1.26 ´ 103 s–1)t + 0.927].



27.	We find the various derivatives for the given function:

		D = DM sin kx cos wt;

		?D/?x = kDM cos kx cos wt;

		?2D/?x2 = – k2DM sin kx cos wt;

		?D/?t = – wDM sin kx sin wt;

		?2D/?t2 = – w2DM sin kx cos wt.

	From v = fl = (w/2p)(2p/k), we see that k = w/v.  If we use this in ?2D/?x2, we get

		?2D/?x2 = – k2DM sin kx cos wt = – (w2/v2)DM sin kx cos wt = (1/v2) ?2D/?t2,

	which is the wave equation.       Thus the function is a solution.



28.	(a)	We find the various derivatives for the given function:

			D = DM ln (x + vt);

			?D/?x = DM/(x + vt);

			?2D/?x2 = – DM /(x + vt)2;

			?D/?t = vDM/(x + vt);

			?2D/?t2 = – v2DM /(x + vt)2.

		Thus we have

			?2D/?x2 = (1/v2) ?2D/?t2,

		which is the wave equation. 

	(b)	We find the various derivatives for the given function:

			D = (x – vt)4;

			?D/?x = 4(x – vt)3;

			?2D/?x2 = 12(x – vt)2;

			?D/?t = 4(– v)(x – vt)3;

			?2D/?t2 = 12(– v)2(x – vt)3 = 12v2(x – vt)2.

		Thus we have

			?2D/?x2 = (1/v2) ?2D/?t2,

		which is the wave equation. 



















29.	We find the various derivatives for the function from Eq. 15–13:

		D = DM sin (kx + wt);

		?D/?x = kDM cos (kx + wt);

		?2D/?x2 = – k2DM sin (kx + wt);

		?D/?t = wDM cos (kx + wt);

		?2D/?t2 = – w2DM sin (kx + wt).

	From v = fl = (w/2p)(2p/k), we see that k = w/v.  If we use this in ?2D/?x2, we get

		?2D/?x2 = – k2DM sin (kx + wt) = – (w2/v2) DM sin (kx + wt) = (1/v2) ?2D/?t2,

	which is the wave equation. 

	We find the various derivatives for the function from Eq. 15–15:

		D = D(x + vt);

		?D/?x = [dD/d(x + vt)][?(x + vt)/?x] = dD/d(x + vt);

		?2D/?x2 = [d2D/d2(x + vt)][?(x + vt)/?x] = d2D/d2(x + vt);

		?D/?t = [dD/d(x + vt)][?(x + vt)/?t] = v dD/d(x + vt);

		?2D/?t2 = v [d2D/d2(x + vt)][?(x + vt)/?t] = v2 d2D/d2(x + vt).

	Thus we have

		?2D/?x2 = (1/v2) ?2D/?t2,

	which is the wave equation. 



30.	We find the various derivatives for the linear combination:

		D = C1D1 + C2D2 ;

		?D/?x = C1 ?D1/?x + C2 ?D2/?x;

		?2D/?x2 = C1 ?2D1/?x2 + C2 ?2D2/?x2;

		?D/?t = C1 ?D1/?t + C2 ?D2/?t;

		?2D/?t2 = C1 ?2D1/?t2 + C2 ?2D2/?t2;

	Because both D1 and D2 satisfy the wave equation, we have

		?2D/?x2 	= C1 ?2D1/?x2 + C2 ?2D2/?x2 = (1/v2)C1 ?2D1/?t2 + (1/v2)C2 ?2D2/?t2 

					= (1/v2)(C1 ?2D1/?t2 + C2 ?2D2/?t2 ) = (1/v2)?2D/?t2,

	which is the wave equation. 



31.	(a)	The speed of the wave in a string is v = [FT/m]1/2.  Because the tensions must be the same 

		anywhere along the string, for the ratio of velocities we have

			v2/v1 = (m1/m2)1/2.

	(b)	Because the motion of one string is creating the motion of the other, the frequencies must be the 

		same.  For the ratio of wavelengths we have

			l2/l1 = v2/v1 = (m1/m2)1/2.

	(c)	From the result for part (b) we see that, if m2 > m1 , we have l2 < l1 , so the       lighter cord       will 

		have the greater wavelength.



32.	(a)	For the traveling wave in the lighter cord,

			D1 = (0.050 m) sin [(6.0 m–1)x – (12.0 s–1)t],

		we find the wavelength from the coefficient of x:

			(6.0 m–1)x = 2px/l1 , which gives l1 =       1.05 m.

	(b)	We find the tension from the velocity:

			v1 = w/k1 = (FT/m1)1/2;

			(12.0 s–1)/(6.0 m–1) = [FT/(0.10 kg/m)]1/2, which gives FT =      0.40 N.

	(c)	The tension and frequency do not change, so we have 

			v2 = w/k2 = (FT/m2)1/2,   or   

			k1/k2 = l2/l1 = (m1/m2)1/2;

			l2/(1.05 m) = [(0.10 kg/m)/(0.20 kg/m)]1/2, which gives l2 =      0.74 m.









33.	The tension and frequency will not change across the boundary.  The wave number and velocity will change:

		w1 = w2 , k1v1 = k2v2 .

	The equations for the waves are

		DI = A sin [k1(x – v1t)];

		DR = AR sin [k1(x + v1t)];

		DT = AT sin [k2(x – v2t)].

	(a)	Because the rope is continuous, at x = 0 we have

			DI + DR = DT ;

			A sin (– k1v1t) + AR sin (k1v1t) = AT sin (– k2v2t).

		If we use sin (– q) = – sin q, and k1v1 = k2v2 , we get

			– A sin (k1v1t) + AR sin (k1v1t) = – AT sin (k1v1t),   or   A = AT + AR.

	(b)	The slopes of the waves are

			¶DI/¶x = Ak1 cos [k1(x – v1t)];

			¶DR/¶x = ARk1 cos [k1(x + v1t)];

			¶DT/¶x = ATk2 cos [k2(x – v2t)].

		For the slope to be the same on both sides of x = 0, we have

			¶DI/¶x + ¶DR/¶x = ¶DT/¶x;

			Ak1 cos (– k1v1t) + ARk1 cos (k1v1t) = ATk2 cos (– k2v2t);

		If we use cos (– q) = + cos q, and k1v1 = k2v2 , we get

			Ak1 cos  (k1v1t) + ARk1 cos (k1v1t) = ATk2 cos (k1v1t),   or   

			Ak1 + ARk1 = ATk2 .

		If we use the previous result, we get

			Ak1 + ARk1 = (A – AR)k2 ,   or   AR = [(k2 – k1)/(k2 + k1)]A.

		In terms of v this is

			AR = {[k1(v1/v2) – k1]/[k1(v1/v2) + k1]}A = [(v1 – v2)/(v1 + v2)]A.

	(c)	For AT we have

			AT = A – AR = A – [(k2 – k1)/(k2 + k1)]A =       [2k1/(k2 + k1)]A = [2v2/(v1 + v2)]A.
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34.	









	(c)	Because all particles of the string are at equilibrium positions, there is no potential energy.  

		Particles of the string will have transverse velocities, so they have        kinetic energy.



35.	(a)	 For the sum of the two waves we have

			D 	= D1 + D2 = DM sin (kx – wt) + DM sin (kx – wt + f)

				= 2DM sin !(kx – wt + kx – wt + f) cos !(kx – wt – kx + wt – f) 

				= 2DM cos !(– f) sin !(2kx – 2wt + f) = 2DM cos (!f) sin (kx – wt + !f).

	(b)	The amplitude is the coefficient of the sine function:      2DM cos (!f).

		The variation in x and t is       purely sinusoidal.

	(c)	 If f = 0, 2p, 4p, … ; !f = 0, p, 2p, … ; so cos (!f) = ± 1.

		Thus the amplitude is maximum and we have complete constructive interference.

		If f = p, 3p, 5p, … ; !f = p/2, 3p/2, 5p/2, … ; so cos (!f) = 0.

		Thus the amplitude is zero and we have destructive interference.

	(d)	 If f = p/2, we have

			D = 2DM cos (p/4) sin (kx – wt + p/4) =       v2DM sin (kx – wt + p/4).

		The resultant wave has amplitude DMv2, travels toward + x, and at x = 0, t = 0, 

		the displacement is + DM.
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36.	From the diagram the initial wavelength is 2L, and the 

	final wavelength is 3L/2.  The tension has not changed, 

	so the velocity has not changed:

		v = f1l1 = f2l2;

		(294 Hz)(2L) = f2(3L/2), which gives f2 =       392 Hz.











37.	All harmonics are present in a vibrating string.  Because the harmonic specifies the multiple of the fundamental, we have fn = nf1 , n = 1, 2, 3, ¼ :

		f1 = 1f1 = (1)(440 Hz) =      440 Hz;

		f2 = 2f1 = (2)(440 Hz) =      880 Hz;

		f3 = 3f1 = (3)(440 Hz) =      1320 Hz;

		f4 = 4f1 = (4)(440 Hz) =      1760 Hz.
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38.	From the diagram the initial wavelength is L/2.  

	We see that the other wavelengths are

		l1 = 2L, l2 = L  and l3 = 2L/3.  

	The tension has not changed, so the velocity has not changed:

		v = fl = fnln;

		(264 Hz)(L/2) = f1(2L), which gives f1 =       66 Hz;

		(264 Hz)(L/2) = f2(L), which gives f2 =       132 Hz;

		(264 Hz)(L/2) = f3(2L/3), which gives f3 =       198 Hz.







39.	The oscillation corresponds to the fundamental with a frequency: 

		f1 = 1/T = 1/(2.0 s) = 0.50 Hz.

	This is similar to the vibrating string, so all harmonics are present:

		fn = nf1 =        n(0.50 Hz), n = 1, 2, 3, ¼ .

	We find the corresponding periods from

		Tn = 1/fn = 1/nf1  = T/n =       (2.0 s)/n, n = 1, 2, 3, ¼ .



40.	We find the wavelength from

		v = fl;

		270 m/s = (131 Hz)l, which gives l = 2.06 m.

	The distance between adjacent nodes is !l, so we have

		d = !l = !(2.06 m) =       1.03 m.



41.	All harmonics are present in a vibrating string: fn = nf1 , n = 1, 2, 3, ¼ .  The difference in frequencies for two successive harmonics is

		?f = fn+1 – fn = (n + 1)f1 – nf1 = f1 , so we have f1 = 350 Hz – 280 Hz =      70 Hz.

	Note that the given harmonics correspond to n = 4 and 5.



42.	We find the speed of the wave from

		v = [FT/(m/L0)]1/2 = {(520 N)/[(0.0036 kg)/(0.900 m)]}1/2 = 361 m/s.

	The wavelength of the fundamental for a string is l1 = 2L.  We find the fundamental frequency from

		f1 = v/l1 = (361 m/s)/2(0.60 m) =       300 Hz.

	All harmonics are present so the first overtone is the second harmonic:

		f2 = (2)f1 = (2)300 Hz =      600 Hz.

	The second overtone is the third harmonic:

		f3 = (3)f1 = (3)300 Hz =      900 Hz.



43.	The speed of the wave depends on the tension and the mass density:

		v = (FT/m)1/2.

	The wavelength of the fundamental for a string is l1 = 2L.  We find the fundamental frequency from

		f1 = v/l1 = (1/2L)(FT/m)1/2.

	All harmonics are present in a vibrating string, so we have 

		fn = nf1 = (n/2L)(FT/m)1/2, n = 1, 2, 3, ¼ . 



44.	The hanging weight creates the tension in the string: FT = mg.  The speed of the wave depends on the tension and the mass density:

		v = (FT/m)1/2 = (mg/m)1/2.

	The frequency is fixed by the vibrator, so the wavelength is

		l = v/f = (1/f )(mg/m)1/2.  With a node at each end, each loop corresponds to l/2.  

	(a)	For one loop, we have l1/2 = L, or

			2L = v1/f = (1/f )(m1g/m)1/2;

			2(1.40 m) = (1/60 Hz)[m1(9.80 m/s2)/(4.8 ´ 10–4 kg/m)]1/2, which gives m1 =       1.4 kg.

	(b)	For two loops, we have l2/2 = L/2, or

			L = v2/f = (1/f )(m2g/m)1/2;

			1.40 m = (1/60 Hz)[m2(9.80 m/s2)/(4.8 ´ 10–4 kg/m)]1/2, which gives m2 =       0.35 kg.

	(c)	For five loops, we have l5/2 = L/5, or

			2L/5 = v5/f = (1/f )(m5g/m)1/2;

			2(1.40 m)/5 = (1/60 Hz)[m5(9.80 m/s2)/(4.8 ´ 10–4 kg/m)]1/2, which gives m5 =       0.055 kg.

	The amplitude of the standing wave can be much greater than the vibrator amplitude because of the resonance built up from the reflected waves at the two ends of the string.



45.	The hanging weight creates the tension in the string: FT = mg.  The speed of the wave depends on the tension and the mass density:

		v = (FT/m)1/2 = (mg/m)1/2, and thus is constant.

	The frequency is fixed by the vibrator, so the constant wavelength is

		l = v/f = (1/f)(mg/m)1/2 = (1/60 Hz)[(0.080 kg)(9.80 m/s2)/(4.8 ´ 10–4 kg/m)]1/2 = 0.674 m.

	The different standing waves correspond to different integral numbers of loops, starting at one loop.  With a node at each end, each loop corresponds to l/2.  The lengths of the string for the possible standing wavelengths are

		Ln = nl/2 = n(0.674 m)/2 = n(0.337 m), n = 1, 2, 3, ¼ ,  or  

		Ln = 0.337 m, 0.674 m, 1.010 m, 1.347 m, 1.684 m, ¼ .

	Thus we see that there are      4      standing waves for lengths between 0.10 m and 1.5 m.



46.	The standing wave is

		D = (8.6 cm) sin [(0.60 cm–1)x] cos [(58 s–1)t].

	(a)	The distance between nodes is

			d = !l = !2p/k = p/(0.60 cm–1) =      5.2 cm.

	(b)	The component waves travel in opposite directions with the same amplitude, frequency, and 

		speed.  They are

			DM1 = !DM = !(8.6 cm) =      4.3 cm;

			f = w/2p = (58 s–1)/2p =      9.2 Hz;

			v = w/k = (58 s–1)/(0.60 cm–1) =      97 cm/s.

	(c)	For any point on the string we have

			u 	= ?D/?t = – (8.6 cm)(58 s–1) sin [(0.60 cm–1)x] sin [(58 s–1)t]

				= – (8.6 cm)(58 s–1) sin [(0.60 cm–1)(3.20 cm)] sin [(58 s–1)(2.5 s)]

				= – 2.2 ´ 102 cm/s, so the speed is       2.2 ´ 102 cm/s.









47.	The traveling wave is

		D = (4.2 cm) sin [(0.71 cm–1)x – (47 s–1)t + 2.1].

	(a)	We get a wave traveling in the opposite direction with the same amplitude, frequency and 

		speed by changing the relative sign of the x and t terms:

			D2 = (4.2 cm) sin [(0.71 cm–1)x + (47 s–1)t + 2.1] .

	(b)	When we add the two sine functions and use a trigonometric identity, we get

		Dresultant = D + D2 

				= (4.2 cm) sin [(0.71 cm–1)x – (47 s–1)t + 2.1] + (4.2 cm) sin [(0.71 cm–1)x + (47 s–1)t + 2.1] 

				= 2(4.2 cm) sin [(0.71 cm–1)x + 2.1] cos [– (47 s–1)t] 

				=       (8.4 cm) sin [(0.71 cm–1)x + 2.1] cos [(47 s–1)t].



48.	With an antinode at each side of the tub, the width is !l.  Thus the speed of the water wave is

		v = fl = (0.85 Hz)2(0.60 m) =      1.0 m/s.



49.	The velocity depends on the tension and mass density, so the frequency is 

		f = v/l = (1/l)(FT/m)1/2.

	The length of the string and thus the wavelength does not change.  If we form the ratio, we get

		f2/f1 = (FT2/FT1)1/2;

		f2/(294 Hz) = (1.10FT1/FT1)1/2, which gives f2 =      308 Hz.



�

50.	The two traveling waves are

		D1 = (0.15 m) sin [(3.5 m–1)x – (1.2 s–1)t];

		D2 = (0.15 m) sin [(3.5 m–1)x + (1.2 s–1)t].

	Their sum is

		DR 	= D1 + D2 

			= (0.30 m) sin [(3.5 m–1)x] cos [(1.2 s–1)t].

	At t = 1.0 s, we have

		DR 	= (0.30 m) sin [(3.5 m–1)x] cos (1.2)

				= (0.109 m) sin [(3.5 m–1)x] .

	This agrees with the plot.
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51.	(a)									         (b)

	

	From the plots we see that DR = 0 at x = 0 for any t, so it is a node.  At x = l/4, the displacement varies with the maximum amplitude, so it is an antinode.



52.	(a)	Because two loops are a wavelength, we have l = %L = %(1.80 m) = 1.20 m.  

		The wave characteristics are

			k = 2p/l = 2p/(1.20 m) = 5.24 m–1;

			w = 2pf = 2p(120 Hz) = 240p s–1.

		The wave function is

			D = DM sin (kx) cos (wt) =       (6.0 cm) sin [(5.24 m–1)x] cos [(240p s–1)t].

	(b)	The two waves traveling in opposite directions will have half the amplitude of the standing 

		wave, but the same values for k and w:

			D1 = (3.0 cm) sin [(5.24 m–1)x – (240p s–1)t];

			D2 = (3.0 cm) sin [(5.24 m–1)x + (240p s–1)t].



53.	For the refraction of the waves we have

		v2/v1 = (sin q2)/(sin q1);

		v2/(8.0 km/s) = (sin 31°)/(sin 50°), which gives v2 =        5.4 km/s.



54.	For the refraction of the waves we have

		v2/v1 = (sin q2)/(sin q1);

		(2.5 km/s)/(2.8 km/s) = (sin q2)/(sin 40°), which gives q2 =        35°.



55.	The speed of the longitudinal (compression) wave for the solid rock depends on the modulus and the density: v = (E/r)1/2 .  The modulus does not change, so we have v µ (1/r)1/2.

	For the refraction of the waves we have

		v2/v1 = (r1/r2)1/2 = (SG1/SG2)1/2 = (sin q2)/(sin q1);

		[(3.7)/(2.8)]1/2 = (sin q2)/(sin 25°), which gives q2 =        29°.



56.	(a)	For the refraction of the waves we have

			v2/v1 = (sin q2)/(sin qi);

		Because v2 > v1, q2 > qi.  When we use the maximum value of q2 , we get

			v2/v1 = (sin 90°)/(sin qiM) = 1/(sin qiM),  or        qiM = sin–1(v1/v2).

	(b)	We have  

			qiM = sin–1(v1/v2) = sin–1[(7.5 km/s)/(9.3 km/s)] = 54°.

		Thus for angles        > 54°       there will be only reflection.



57.	The approximate expression for the speed of sound at these temperatures is 

		v = [331 + (0.60 /C°)T] m/s.

	For the refraction we have

		v2/v1 = (sin q2)/(sin qi);

		{[331 + (0.60 /C°)(– 10°C)] m/s}/{[331 + (0.60 /C°)(+ 10°C)] m/s} = (sin q2)/(sin 25°), 

	which gives q2 =      24°.



58.	If we approximate the sloshing as a standing wave at the fundamental frequency with antinodes at each lip, we have l = 2D.  We find the speed of the waves from

		v = fl = (1.0 Hz)2(0.08 m) =       0.16 m/s.



59.	The speed of the longitudinal wave in a solid is given by

		v = (B/r)1/2.

	If we form the ratio for two rods with the same bulk modulus, we get

		v2/v1 = (r1/r2)1/2 = (1/2)1/2,   or   v1 = v2v2 .

	The speed will be greater in the less dense rod by a factor of v2.











60.	Because the speed and frequency are the same for the two waves, the intensity (and thus the power) depends on the amplitude:

		P µ I µ A2.

	For the ratio of the powers we have

		P2/P1 = (A2/A1)2 ;

		3 = (A2/A1)2 , which gives A2/A1 =        1.73.



61.	(a)	The amplitude will be half the total vertical distance:

			DM = !d = !(0.10 m) =      0.050 m.

	(b)	The bug will undergo SHM, so the maximum K is also the maximum U, which occurs at the 

		maximum displacement.  For the ratio of energies we have

			K2/K1 = U2/U1 = (DM2/DM1)2 = [!(0.15 m)/!(0.10 m)]2 =       2.3.



62.	We assume that the change in tension does not change the mass density, so the velocity variation depends only on the tension.  Because the wavelength does not change, we have

		l = v1/f1 = v2/f2 ,  or  FT2/FT1 = (f2/f1)2.

	For the fractional change we have

		(FT2 – FT1)/FT1 = (FT2/FT1) – 1 = (f2/f1)2 – 1 = [(200 Hz)/(205 Hz)]2 – 1 = – 0.048.

	Thus the tension should be       decreased by 4.8%.



63.	An object will leave the ground when the maximum acceleration of the ground during the SHM as the wave passes is greater than the acceleration due to gravity:

		amax = DMw2 > g,   or

		DM > g/w2 = g/4p2f 2 = (9.80 m/s2)/4p2(0.50 Hz)2 =      0.99 m.



64.	(a)	The speed of the wave at a point h above the lower end depends on the tension at that point.  

		From the equilibrium of the lower portion, we know that the tension equals the mass of the 

		lower segment:

			FT = m¢g = (m/L)hg.

		Thus the speed is

			v = (FT/m)1/2 = [(m/L)gh/(m/L)]1/2 = (gh)1/2.

	(b)	We measure h from the bottom of the cord.  The distance traveled by the pulse in a time dt at 

		this location is 

			dh = v dt = (gh)1/2 dt.

		We separate variables and integrate to find the total time to reach the top of the cord:

			�

		which gives      t = 2(L/g)1/2.
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65.									                    (a)

	(b)	To represent a wave traveling 

		to the right, we replace x by x – vt:

			D 	= (4.0 m3)/[(x – vt)2 – 2.0 m2] 

				=   (4.0 m3)/{[x – (3.0 m/s)t]2 – 2.0 m2}.

		Note that at t = 0 the function is 

		discontinuous at x = ± (2.0 m2)1/2.

	(c)	The wave will travel 

			(3.0 m/s)(0.50 s) = 1.5 m.

	(d)	To represent a wave traveling 

		to the left, we replace x by x + vt:

			D 	= (4.0 m3)/[(x + vt)2 – 2.0 m2] 

				=   (4.0 m3)/{[x + (3.0 m/s)t]2 – 2.0 m2}.

		In 0.50 s the wave will travel 

			(3.0 m/s)(0.50 s) = 1.5 m.





































66.	(a)	The wavelength of the fundamental for a string is 2L, so the fundamental frequency is

			f = (1/2L)(FT/m)1/2.

		When the tension is changed, the change in frequency is

			?f	= f ¢ – f = (1/2L)[(FT¢/m)1/2 – (FT/m)1/2] 

				= (1/2L){(FT/m)1/2[(FT¢/FT)1/2 – 1]} = f {[(FT + ?FT)/FT]1/2 – 1]} 

				= f {[1 + (?FT/FT)]1/2 – 1]}.

		If ?FT/FT is small, we have

			[1 + (?FT/FT)]1/2 ˜ 1 + !(?FT/FT), so we get

			?f ˜ f [1 + !(?FT/FT) – 1] = !(?FT/FT)f.

	(b)	With the given data, we get

			?f =  !(?FT/FT)f;

			442 Hz – 438 Hz = !(?FT/FT)(438 Hz), which gives ?FT/FT = 0.018 =       1.8% (increase).

	(c)	For each overtone there will be a new wavelength, but the wavelength does not change when the 

		tension changes, so the formula       will apply       to the overtones.

















67.	(a)	All harmonics are present in a vibrating string: fn = nf1 , n = 1, 2, 3, ¼ .  

		The first overtone is f2 and the second overtone is f3.

		For G we have

			f2 = 2(392 Hz) =       784 Hz;        f3 = 3(392 Hz) =       1176 Hz.

		For A we have

			f2 = 2(440 Hz) =       880 Hz;        f3 = 3(440 Hz) =       1320 Hz.

	(b)	The speed of the wave in a string is v = [FT/(M/L)]1/2.  Because the lengths are the same, the 

		wavelengths of the fundamentals must be the same.  For the ratio of frequencies we have

			fA/fG = vA/vG = (MG/MA)1/2;

			(440 Hz)/(392 Hz) = (MG/MA)1/2, which gives MG/MA =       1.26.

	(c)	Because the mass densities and the tensions are the same, the speeds must be the same.  The 

		wavelengths are proportional to the lengths, so for the ratio of frequencies we have

			fA/fG = lG/lA = LG/LA;

			(440 Hz)/(392 Hz) = LG/LA , which gives LG/LA =       1.12.

	(d)	The speed of the wave in a string is v = [FT/(M/L)]1/2.  Because the lengths are the same, the 

		wavelengths of the fundamentals must be the same.  For the ratio of frequencies we have

			fA/fG = vA/vG = (FTA/FTG)1/2;

			(440 Hz)/(392 Hz) = (FTA/FTG)1/2, which gives FTG/FTA =       0.794.



68.	Without the support the bridge is like a string, so the wavelength is l1 = 2L.  Adding the support creates a node at the middle, so the wavelength is l2 = L.  The wave speed in the bridge has not changed.  We find the new frequency from

		v = l1f1 = l2f2 ;

		2L(4.0 Hz) = Lf2 , which gives f2 =        8.0 Hz.

	Yes,        because this resonant frequency is higher than the expected earthquake frequencies, the modification did some good.
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69.	The fundamental standing wave will have a node at the 

	fixed end and an antinode at the free end.  The distance 

	between an adjacent node-antinode pair is l/4, so the 

	wavelength of the fundamental is 4L.

	The first overtone will have an additional node-antinode 

	pair, so the wavelength is 4L/3.  The wavelength of the next 

	overtone, with another node-antinode pair,  is 4L/5.  

	Thus the general form for the wavelengths is

		ln = 4L/(2n – 1), n = 1, 2, 3, … .
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70.	The work done by the force F to pull the string into the triangular shape 

	is stored in the string as elastic potential energy.  If we assume the 

	tension is constant as the string vibrates, this energy will oscillate  

	between kinetic and potential.  We ignore the small change in 

	gravitational potential energy.  If the string is slowly pulled by the 

	force F, we see from the force diagram that

		F = 2FT sin q = 2FTy/[(!L)2 + y2]1/2.

	For the next differential distance dy, the work done will be dW = F dy.  

	We integrate to find the total work pulling the center of the string a distance h:

		�









71.	From the figure we see that 

		DM = 3.5 cm,   and   l = 6.0 cm, so k = 2p/l = 2p/(6.0 cm) = 1.05 cm–1.

	The displacement y = 0 is at x = 1.5 cm at t = 0, and at x = 5.5 cm at t = 3.0 s.  

	Thus the velocity of the wave is

		v = (5.5 cm – 1.5 cm)/(3.0 s) = 1.33 cm/s,    and   w = vk = (1.33 cm/s)(1.05 cm–1) = 1.39 s–1.

	The wave is moving to the right.  We also see that y is maximum at x = 0 and t = 0, so we can use a cosine function without a phase angle:

		y = DM cos (kx – wt) =      (3.5 cm) cos[(1.05 cm–1)x – (1.39 s–1)t].



72.	From the given data    DM = 0.50 m, l = 2.5 m, T = 5.0 s, 

	we can find the wave speed:

		v = fl = l/T = (2.5 m)/(5.0 s) = 0.50 m/s.

	If we use the density of sea water and estimate the area of the chest as (0.25 m)2, we have

		�	= 2p2rAvf 2DM2 = 2p2(1.025 ´ 103 kg/m3)(0.25 m)2(0.50 m/s)(1/5.0 s)2(0.50 m)2 =      6.3 W.
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73.	In 1.0 s, each pulse will travel (5.0 cm/s)(1.0 s) = 5.0 cm.

	



































































74.	Because the radiation is uniform, the same energy must pass through every spherical surface, which has an area 4pr2.  Thus the intensity, which is proportional to the square of the amplitude, must decrease as 1/r2.  Thus the amplitude will decrease as 1/r.  The radial motion will be sinusoidal, so we have

		D = (A/r) sin (kr – wt).

Chapter 15	
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