CHAPTER 16 – Sound



1.	Because the sound travels both ways across the lake, we have

		L = !vt = !(343 m/s)(1.5 s) =       2.6 ´ 102 m.



2.	(a)	We find the extreme wavelengths from

			l1 = v/f1 = (343 m/s)/(20 Hz) = 17 m;

			l2 = v/f2 = (343 m/s)/(20,000 Hz) = 1.7 ´ 10–2 m = 1.7 cm.

		The range of wavelengths is           1.7 cm = l = 17 m.

	(b)	We find the wavelength from

			l = v/f = (343 m/s)/(10 ´ 106 Hz) =       3.4 ´ 10–5 m.



3.	The speed in the concrete is determined by the elastic modulus:

		vconcrete = (E/r)1/2 = [(20 ´ 109 N/m2)/(2.3 ´ 103 kg/m3)]1/2 = 2.95 ´ 103 m/s.

	For the time interval we have

		?t = (d/vair) – (d/vconcrete);

		1.4 s = d{[1/(343 m/s)] – [1/(2.95 ´ 103 m/s)]}, which gives d =         5.4 ´ 102 m.



4.	(a)	For the time interval in sea water we have

			?t 	= d/vwater = (1.0 ´ 103 m)/(1560 m/s) =         0.64 s.

	(b)	For the time interval in the air we have

			?t 	= d/vair = (1.0 ´ 103 m)/(343 m/s) =         2.9 s.



5.	If we let L1 represent the thickness of the top layer, the total transit time is

		t  = (L1/v1) + [(L – L1)/v2)];

		4.5 s = [L1/(331 m/s)] + [(1500 m – L1)/(343 m/s)], which gives L1 =       1200 m.

	Thus the bottom layer is 1500 m – 1200 m =       300 m. 



6.	Because the distance is d = vt, the change in distance from the change in velocity is

		?d = t ?v; so the percentage change is

		(?d/d)100 = (?v/v)100 = (343 m/s – 331 m/s)(100)/(343 m/s) =       3.5%.



7.	We find the displacement amplitude from

		?PM = 2prvDMf.

	(a)	For the frequency of 100 Hz, we have

			3.0 ´ 10–3 Pa = 2p(1.29 kg/m3)(331 m/s)DM(100 Hz), which gives DM =       1.1 ´ 10–8 m.

	(b)	For the frequency of 10 kHz, we have

			3.0 ´ 10–3 Pa = 2p(1.29 kg/m3)(331 m/s)DM(10 ´ 103 Hz), which gives DM =       1.1 ´ 10–10 m.



8.	We find the pressure amplitude from

		?PM = 2prvDMf.

	(a)	For the frequency of 50 Hz, we have

			?PM = 2p(1.29 kg/m3)(331 m/s)(3 ´ 10–10 m)(50 Hz) =       4 ´ 10–5 Pa.

	(b)	For the frequency of 5.0 kHz, we have

			?PM = 2p(1.29 kg/m3)(331 m/s)(3 ´ 10–10 m)(5.0 ´ 103 Hz) =       4 ´ 10–3 Pa.



















9.	The pressure variation is 

		?P = ?PM sin (kx – wt).

	(a)	For the frequency of 50 Hz, we have

			w = 2pf = 2p(50 Hz) = 315 s–1;

			k = w/v = (315 s–1)/(331 m/s) = 0.949 m–1.

		The pressure variation is

			?P = (4 ´ 10–5 Pa) sin [(0.949 m–1)x – (315 s–1)t].

	(b)	For the frequency of 5.0 kHz, we have

			w = 2pf = 2p(5.0 ´ 103 Hz) = 3.15 ´ 104 s–1;

			k = w/v = (3.15 ´ 104 s–1)/(331 m/s) = 94.9 m–1.

		The pressure variation is

			?P = (4 ´ 10–3 Pa) sin [(94.9 m–1)x – (3.15 ´ 104 s–1)t].



10.	The pressure variation is

		?P = (0.0025 Pa) sin {[(p/3) m–1]x – (1700p s–1)t}.

	We compare this to the general expression:

		?P = ?PM sin (kx – wt).

	(a)	The wavelength is

			l = 2p/k = 2p/[(p/3) m–1] =       6.0 m.

	(b)	The frequency is

			f = w/2p = (1700p s–1)/2p =       850 Hz.

	(c)	The speed is

			v = fl = (850 Hz)(6.0 m) =       5.1 ´ 103 m/s.

	(d)	We find the displacement amplitude from

			?PM = 2prvDMf;

			0.0025 Pa = 2p(2.7 ´ 103 kg/m3)(5.1 ´ 103 m/s)DM(850 Hz), which gives DM =       3.4 ´ 10–14 m.



11.	(a)	We find the intensity level from

			b = 10 log10(I/I0) = 10 log10[(8.5 ´ 10–8 W/m2)/(10–12 W/m2)] =       49 dB.

	(b)	We find the intensity from

			b = 10 log10(I/I0);

			25 dB = 10 log(I/10–12 W/m2), which gives I =       3.2 ´ 10–10 W/m2.



12.	From Figure 16–5, we see that a 100-Hz tone with an intensity level of 50 dB has a loudness level of 20 phons.  If we follow this loudness curve to 6000 Hz, we find that the intensity level must be       25 dB.



13.	From Figure 16–5, we see that an intensity level of 30 dB intersects the loudness level of 0 phons at 150 Hz.  At the high frequency end, the highest frequency is reached, so the range is       150 Hz to 20,000 Hz.



14.	We find the ratio of intensities from

		b = 10 log10(Isignal/Inoise);

		63 dB = 10 log10(Isignal/Inoise), which gives Isignal/Inoise =       2.0 ´ 106.



15.	(a)	The intensity of the sound wave is given by

			I = 2p2rf 2DM2v.

		Because the frequency, density, and velocity are the same, for the ratio we have

			I2/I1 = (DM2/DM1)2 = 32 =      9.

	(b)	We find the change in intensity level from

			?b = 10 log10(I2/I1) = 10 log10(9) =       9.5 dB.











16.	We find the ratio of intensities of the sounds from

		b = 10 log10(I2/I1);

		2.0 dB = 10 log10(I2/I1), which gives I2/I1 = 1.58.

	Because the intensity is proportional to the square of the amplitude, we have

		I2/I1 = (A2/A1)2;

		1.58 = (A2/A1)2, which gives A2/A1 =       1.3.



17.	(a)	The pressure amplitude is

			?PM = 2prvDMf.

		In the same medium, r and v are fixed.  When we form the ratio for the two waves, we get

			?PM2/?PM1 = f2/f1 = 2.

		The pressure amplitude of the wave with the       higher frequency is greater by a factor of 2.

	(b)	The intensity of the sound wave is given by

			I = 2p2rf 2DM2v.

		Because the displacement amplitude, density, and velocity are the same, for the ratio we have

			I2/I1 = (f2/f1)2 = 22 =      4.



18.	When three of the four engines are shut down, the intensity is reduced by a factor of 4, so we have

		b2 – b1 = 10 log10(I2/I0) – 10 log10(I1/I0) = 10 log10(I2/I1);

		b2 – 120 dB = 10 log10(#I1/I1), which gives b2 =       114 dB.



19.	(a)	We find the intensity of the sound from

			b = 10 log10(I/I0);

			40 dB = 10 log10(I/10–12 W/m2), which gives I = 1.0 ´ 10–8 W/m2.

		The rate at which energy is absorbed is the power of the sound wave:

			P = IA = (1.0 ´ 10–8 W/m2)(5.0 ´ 10–5 m2) =       5.0 ´ 10–13 W.

	(b)	We find the time from

			t = E/P = (1.0 J)/(5.0 ´ 10–13 W) = 2.0 ´ 1012 s =       6.3 ´ 104 yr.



20.	(a)	We find the intensity of the sound at a distance of 50 cm from

			b = 10 log10(I/I0);

			65 dB = 10 log10(I/10–12 W/m2), which gives I = 3.2 ´ 10–6 W/m2.

		The rate at which energy passes through a hemisphere is 

			P = IA = (3.2 ´ 10–6 W/m2)2p(0.50 m)2 =       5.0 ´ 10–6 W.

	(b)	Because the intensities add, the number is

			N = Ptotal/P = (100 W)/(5.0 ´ 10–6 W) =       2.0 ´ 107.

		Note that this is 20 million, all speaking from the same location!



21.	The intensity with one firecracker is one-half that of two firecrackers.  

	Thus the change in intensity level is

		b2 – b1 = 10 log10(I2/I1);

		b2 – 90 dB = 10 log10(!), which gives b2 =      87 dB.



22.	The intensity of the sound wave is given by

		I 	= 2p2rf 2DM2v

			= 2p2(1.29 kg/m3)(330 Hz)2(1.3 ´ 10–3 m)2(343 m/s) = 1.61 ´ 103 W/m2.

	We find the intensity level from

		b = 10 log10(I/I0) = 10 log10[(1.61 ´ 103 W/m2)/(10–12 W/m2)] =       1.5 ´ 102 dB.













23.	(a)	We find the intensity of the sound from

			b = 10 log10(I/I0);

			120 dB = 10 log(I/10–12 W/m2), which gives I = 1.00 W/m2.

		We find the maximum displacement from

			I = 2p2rf 2DM2v

			1.00 W/m2 = 2p2(1.29 kg/m3)(210 Hz)2DM2(343 m/s), which gives DM =       5.10 ´ 10–5 m.

	(b)	We find the pressure amplitude from

			I = (?PM)2/2rv;

			1.00 W/m2 =  (?PM)2/2(1.29 kg/m3)(343 m/s), which gives ?PM =       29.8 Pa.



24.	(a)	If we assume that one channel is connected to the speaker, the rating is the power in the sound, and 

		the sound spreads out uniformly, we have

			I = P/4pr2, so we get

			I1 = (250 W)/4p(2.5 m)2 = 3.18 W/m2;

			I2 = (40 W)/4p(2.5 m)2 = 0.509 W/m2.

		For the intensity levels we have

			b1 = 10 log10(I1/I0) = 10 log10[(3.18 W/m2)/(10–12 W/m2)] =       125 dB;

			b2 = 10 log10(I2/I0) = 10 log10[(0.509 W/m2)/(10–12 W/m2)] =       117 dB.

	(b)	The difference in intensity levels is 8 dB.  A change of 10 dB corresponds to a doubling of the 

		loudness, so the expensive amp is       almost twice as loud.



25.	(a)	We find the intensity of the sound from

			b = 10 log10(I/I0);

			130 dB = 10 log(I/10–12 W/m2), which gives I = 10 W/m2.

		The power output of the speaker is

			P = IA = I4pr2 = (10 W/m2)4p(3.4 m)2 =       1.5 ´ 103 W.

	(b)	We find the intensity of the sound from

			b = 10 log10(I/I0);

			90 dB = 10 log(I/10–12 W/m2), which gives I = 1.0 ´ 10–3 W/m2.

		We find the distance from

			P = IA;

			1.45 ´ 103 W = (1.0 ´ 10–3 W/m2)4pr2, which gives r =       3.4 ´ 102 m.



26.	(a)	If we assume negligible absorption in 30 m, we find the intensity of the sound from

			P = IA = I4pr2;

			5.0 ´ 105 W = I4p(30 m)2 , which gives I = 44.2 W/m2.

		We find the intensity level from

			b = 10 log10(I/I0) = 10 log10[(44.2 W/m2)/(10–12 W/m2)] =       136 dB.

	(b)	We find the intensity of the sound without air absorption from

			P = I1A1  = I14pr12;

			5.0 ´ 105 W = I14p(1000 m)2, which gives I1 = 3.98 ´ 10–2 W/m2.

		We find the intensity level from

			b10 = 10 log10(I1/I0) = 10 log10[(3.98 ´ 10–2 W/m2)/(10–12 W/m2)] = 106 dB.

		When we consider air absorption, we have

			b1 = b10 – (7.0 dB/km)r1 = 106 dB – (7.0 dB/km)(1.0 km) =      99 dB.

	(c)	We find the intensity of the sound without air absorption from

			P = I2A2  = I24pr22;

			5.0 ´ 105 W = I24p(5000 m)2, which gives I2 = 1.59 ´ 10–3 W/m2.

		We find the intensity level from

			b20 = 10 log10(I2/I0) = 10 log10[(1.59 ´ 10–3 W/m2)/(10–12 W/m2)] = 92 dB.

		When we consider air absorption, we have

			b2 = b20 – (7.0 dB/km)r2 = 92 dB – (7.0 dB/km)(5.0 km) =      57 dB.



27.	(a)	Because the sounds are in the same medium, the variation in intensity is due only to the change in 

		pressure amplitude.  Thus we have

			b = 10 log10(I/I0) = 10 log10[(?PM)2/(?PM0)2] = 10 log10(?PM/?PM0)2 = 20 log10(?PM/?PM0).

	(b)	For the given data we have

			b = 20 log10(?PM/?PM0) = 20 log10[(1.013 ´ 105 Pa)/(3.0 ´ 10–5 Pa)] =       190 dB.



28.	The wavelength of the fundamental frequency for a string is l = 2L, so the speed of a wave on the string is

		v = lf = 2(0.32 m)(196 Hz) = 125 m/s.

	We find the tension from

		v = [FT/(m/L)]1/2;

		125 m/s = {FT/[(0.68 ´ 10–3 kg)/(0.32 m)]}1/2 , which gives FT =       33 N.



29.	(a)	The empty soda bottle is approximately a closed pipe with a node at the bottom and an antinode at 

		the top.  The wavelength of the fundamental frequency is l = 4L.  We find the frequency from

			v = lf ;

			343 m/s = 4(0.15 m)f, which gives f =        570 Hz.

	(b)	The length of the pipe is now % of the original length.  We find the frequency from

			v = lf ;

			343 m/s = 4(%)(0.15 m)f, which gives f =        860 Hz.



30.	The fundamental wavelength for a flute has an antinode at each end, so the wavelength is l = 2L.  Uncovering a hole shortens the length.  We find the new length from

		v = l¢f ;

		343 m/s = 2L¢(294 Hz), which gives L¢ = 0.583 m.

	Thus the hole must be 0.655 m – 0.583 m = 0.072 m =       7.2 cm       from the end.



31.	For an open pipe the wavelength of the fundamental frequency is l = 2L.  We find the required lengths from

		v = lf  = 2Lf;

		343 m/s = 2Llowest(20 Hz), which gives Llowest = 8.6 m;

		343 m/s = 2Lhighest(20,000 Hz), which gives Lhighest = 8.6 ´ 10–3 m = 8.6 mm.

	Thus the range of lengths is        8.6 mm < L < 8.6 m.



32.	(a)	For an open pipe the wavelength of the fundamental frequency is l = 2L.  We find the fundamental 

		frequencies from

			v = lf  = 2Lf,   or   f = v/2L;

			f1 = (343 m/s)/2(3.0 m) =       57 Hz;

			f2 = (343 m/s)/2(2.5 m) =       69 Hz;

			f3 = (343 m/s)/2(2.0 m) =       86 Hz;

			f4 = (343 m/s)/2(1.5 m) =       114 Hz;

			f5 = (343 m/s)/2(1.0 m) =       172 Hz.

		Note that for the shorter pipes, these results may be affected by the diameter being relatively large 

		compared to the length of the pipe.  We have neglected the presence of overtones.

	(b)	During a noisy day, many frequencies will be generated in the room, so the presence of the 		fundamental frequencies that will resonate with all of the pipes is more likely.























33.	(a)	For a closed pipe the wavelength of the fundamental frequency is l1 = 4L.  We find the fundamental 

		frequency from

			v = l1f 1;

			343 m/s = 4(0.780 m)f1 , which gives f1 =        110 Hz.

		Only the odd harmonics are present, so we have

			f3 = 3f1 = (3)(110 Hz) =       330 Hz;

			f5 = 5f1 = (5)(110 Hz) =       550 Hz;

			f7 = 7f1 = (7)(110 Hz) =       770 Hz.

	(b)	For an open pipe the wavelength of the fundamental frequency is l1 = 2L.  We find the fundamental 

		frequency from

			v = l1f 1 ;

			343 m/s = 2(0.780 m)f1 , which gives f1 =        220 Hz.

		All harmonics are present, so we have

			f2 = 2f1 = (2)(220 Hz) =       440 Hz;

			f3 = 3f1 = (3)(220 Hz) =       660 Hz;

			f4 = 4f1 = (4)(220 Hz) =       880 Hz.



34.	(a)	The wavelength of the fundamental frequency for a string is l = 2L.  Because the speed of a wave on 

		the string does not change, we have

			v = l1f1 = l2f2 ;

			2(0.73 m)(330 Hz) = 2L2(440 Hz), which gives L2 = 0.55 m.

		Thus the finger must be placed 0.73 m – 0.55 m =        0.18 m       from the end.

	(b)	The frequency must be the same:     440 Hz.

		The wave length will be

			l = v/f2 = (343 m/s)/(440 Hz) =      0.78 m.



35.	(a)	We find the speed of sound at 21°C: 

			v = (331 + 0.60T) m/s = [331 + (0.60/C°)(21°C)] m/s = 344 m/s.

		The fundamental wavelength for an open pipe has an antinode at each end, so the wavelength is 

		l = 2L.  We find the length from

			v = lf ;

			344 m/s = 2L(262 Hz), which gives L =       0.656 m.

	(b)	The frequency must be the same:     262 Hz.

		The wavelength will be

			l = 2L = 2(0.656 m) =      1.31 m.

	(c)	The wavelength and frequency in the outside air will be the same as in the air in the organ pipe:

			1.31 m, 262 Hz.



36.	If we consider the ear canal as a closed pipe, the wavelength of the fundamental frequency is l1 = 4L.  

	We find the fundamental frequency from

			v = l1f1 = 4Lf1 ;

			343 m/s = 4(0.025 m)f1 , which gives f1 = 3400 Hz.

	Because only odd harmonics are present in a closed pipe, the audible resonant frequencies are

		3400 Hz, 10,200 Hz, 17,000 Hz.

	From Fig. 16–5, we see that the       fundamental frequency is the most sensitive frequency.



37.	We assume that the length, and thus the wavelength, has not changed.  The frequency change is due to the change in the speed of sound.  We find the speed of sound at 5°C:

		v = (331 + 0.60T) m/s = [331 + (0.60/C°)(5°C)] m/s = 334 m/s.

	Because the frequency is proportional to the velocity, for the percent change in frequency we have

		(?f/f )100 = (?v/v)100 = [(334 m/s – 343 m/s)/(343 m/s)]100 =       – 2.6%.







38.	(a)	For an open pipe all harmonics are present, the difference in frequencies is the fundamental 

		frequency, and all frequencies will be integral multiples of the difference.  For a closed pipe only odd 

		harmonics are present, the difference in frequencies is twice the fundamental frequency, and frequencies 

		will not be integral multiples of the difference but odd multiples of half the difference.  For this pipe 

		we have

			?f = 616 Hz – 440 Hz = 440 Hz – 264 Hz = 176 Hz.

		Because we have frequencies that are not integral multiples of this, the pipe is         closed.

	(b)	The fundamental frequency is

			f1 = !?f = !(176 Hz) =        88 Hz.

		Note that the given frequencies are the third, fifth, and seventh harmonics.



39.	(a)	We find the speed of sound at 15°C: 

			v = (331 + 0.60T) m/s = [331 + (0.60/C°)(15°C)] m/s = 340 m/s.

		For an open pipe, the wavelength of the fundamental frequency is l1 = 2L.  We find the length from

			v = l1f 1 = 2Lf1 ;

			340 m/s = 2L(294 Hz), which gives L =        0.578 m.

	(b)	For helium we have

			v = l1f 1 = 2Lf1 ;

			1005 m/s = 2(0.578 m)f1 , which gives f1 =        869 Hz.

		Note that we have no correction for the 5 C° temperature change.



40.	For an open pipe all harmonics are present, the difference in frequencies is the fundamental 

	frequency, and all frequencies will be integral multiples of the difference.  For a closed pipe only odd 

	harmonics are present, the difference in frequencies is twice the fundamental frequency, and frequencies 

	will not be integral multiples of the difference but odd multiples of half the difference.  For this pipe 

	we have

		?f = 280 Hz – 240 Hz = 40 Hz.

	Because we have frequencies that are integral multiples of this, the pipe is         open,        with a fundamental frequency of 40 Hz.

	The wavelength of the fundamental frequency is l1 = 2L.  We find the length from

		v = l1f 1 = 2Lf1 ;

		343 m/s = 2L(40 Hz), which gives L =        4.3 m.



41.	For an open pipe all harmonics are present, the difference in frequencies is the fundamental frequency, and all frequencies will be integral multiples of the difference.  Thus we have

		f1 = ?f = 330 Hz – 275 Hz = 55 Hz.

	The wavelength of the fundamental frequency is l1 = 2L.  We find the speed of sound from

		v = l1f 1 = 2Lf1 = 2(1.95 m)(55 Hz) =        215 m/s.



































42.	(a)	The wavelength of the fundamental frequency is l1 = 2L.  We find the fundamental frequency from

			v = l1f1 = 2Lf1 ;

			343 m/s = 2(2.16 m)f1 , which gives f1 = 79.4 Hz.

		We find the highest harmonic from

			fn = nf1 ;

			20,000 Hz = n(79.4 Hz), which gives n = 251.9.

		Because all harmonics are present in an open pipe and the fundamental frequency is within the audible 

		range, 251 harmonics are present, which means        250 overtones.

	(b)	The wavelength of the fundamental frequency is l1 = 4L.  We find the fundamental frequency from

			v = l1f1 = 4Lf1 ;

			343 m/s = 4(2.16 m)f1 , which gives f1 = 39.7 Hz.

		Because only the odd harmonics are present in a closed pipe, the frequencies are given by 

			fn = (2n – 1)f1 , n = 1, 2, 3, … .   

		We find the highest harmonic from

			fn = (2n – 1)f1 ;

			20,000 Hz = (2n – 1)(39.7 Hz), which gives n = 252.

		The fundamental frequency is within the audible range, so there are       251 overtones.



43.	Because the intensity is proportional to the square of both the amplitude and the frequency, we have

		I2/I1 = (A2/A1)2(f2/f1)2 = (0.4)2(2)2 =        0.64;

		I3/I1 = (A3/A1)2(f3/f1)2 = (0.15)2(3)2 =        0.20.

	We find the relative intensity levels from

		b2 – b1 = 10 log10(I2/I1) = 10 log10(0.64) =       – 2 dB;

		b3 – b1 = 10 log10(I3/I1) = 10 log10(0.20) =       – 7 dB.



44.	The beat frequency is the difference in frequencies, so we have

		?f = fbeat = 1/(2.0 s) =       0.50 Hz.

	Note that the frequency of the second string could be higher or lower.



45.	The beat frequency is the difference in frequencies, so we have

		fbeat = ?f = f2 – f1;

		± 5.0 kHz = f2 –  23.5 kHz, which gives f2 = 18.5 kHz, 28.5 kHz.

	Because the second whistle cannot be heard by humans, its frequency is       28.5 kHz.



46.	The beat frequency will be the difference in frequencies.  We assume that the change in tension does not change the mass density, so the velocity variation depends only on the tension.  Because the wavelength does not change, we have

		v = lf = (FT/m)1/2.

	If we treat the small changes in f and FT as differentials, we get

		l df = !(1/FTm)1/2 dFT.

	When we divide both sides by v, we get

		df/f = ! dFT/FT;

		df/(294 Hz) = !(0.020), which gives df =       2.9 Hz.























47.	(a)	The beat frequency will be the difference in frequencies.  Because the second frequency could be 

		higher or lower, we have

			fbeat = ?f = f2 – f1;

			± (3 beats)/(2.0 s) = f2 –  132 Hz, which gives f2 =       130.5 Hz,  or  133.5 Hz.

	(b)	We assume that the change in tension does not change the mass density, so the velocity 

		variation depends only on the tension.  Because the wavelength does not change, we treat the small 

		changes in f and FT as differentials to get

			l df = !(1/FTm)1/2 dFT.

		When we divide both sides by v, we get

			df/f = (± 1.5 Hz)/(132 Hz) = ! dFT/FT , which gives dFT/FT  = ± 0.023 =       ± 2.3%.



48.	Because the flutes are identical, the fundamental wavelengths are the same.  The temperature difference causes a change in velocity, and thus a change in frequency.  The velocities are

		v1 = (331 + 0.60T1) m/s = [331 + (0.60/C°)(5.0°C)] m/s = 334 m/s;

		v2 = (331 + 0.60T2) m/s = [331 + (0.60/C°)(25.0°C)] m/s = 346 m/s.

	If we assume 262 Hz for the lower temperature, for the ratio of frequencies we have

		f2/f1 = v2/v1 , so

		f2 – f1 = [(v2/v1) – 1]f1,  or

		?f = (?v/v1)f1 = [(346 m/s – 334 m/s)/(334 m/s)](262 Hz) =      9.4 Hz.



49.	For destructive interference, the path difference is an odd multiple of half the wavelength.

	(a)	Because the path difference is fixed, the lowest frequency corresponds to the longest 

		wavelength.  We find this from DL = l1/2, so we have

			f1 = v/l1 = (343 m/s)/2(3.5 m – 3.0 m) =      343 Hz.

	(b)	We find the wavelength for the next frequency from DL = 3l2/2, so we have

			f2 = v/l2 = (343 m/s)/[2(3.5 m – 3.0 m)/3] =      1030 Hz.

		We find the wavelength for the next frequency from DL = 5l3/2, so we have

			f3 = v/l3 = (343 m/s)/[2(3.5 m – 3.0 m)/5] =      1715 Hz.



50.	The 180° phase difference of the speakers is equivalent to a path difference of !l.  We consider a point a distance x from one speaker on the line between the two speakers, which are a distance L apart.

	(a)	Because of the 180° phase difference, constructive interference will occur when the path 

		difference from the speakers to the point is !l:

			(L – x) – x = !l,  or  L = 2x + !l.

		If x = 0 (at a speaker), Lmin = !l = !(343 m/s)/(250 Hz) =       0.69 m.

	(b)	Because of the 180° phase difference, destructive interference will occur when the path 

		difference from the speakers to the point is 0, which is the midpoint of the line:

			(L – x) – x = 0,   or  L = 2x.

		Thus we have destructive interference for any separation, with the minimum being        0.



51.	The two sound waves travel in the same medium, so the same wavelength means the same frequency.  

	We take the initial phase of each wave to be zero.  If the sources radiate uniformly in all directions, the intensity decreases as 1/r2, so the amplitude will decrease as 1/r.  If we add the displacements of the two waves, we have

		D = D1 + D2 = (DM/rA) sin (krA – wt) + (DM/rB) sin (krB – wt).

	Because rA ˜ rB , the two coefficients of the sine functions are approximately equal, so we have

		D ˜ (DM/rA)[sin (krA – wt) + sin (krB – wt)] = (DM/rA)2 sin [!k(rA + rB) – wt] cos [!k(rA – rB)].

	Because rA ˜ rB , we have rA + rB ˜ 2rA , and we get

		D ˜ (2DM/rA) sin (krA – wt) cos [!k(rA – rB)],   or   D ˜ (2DM/rA) cos [(p/l)(rA – rB)] sin (krA – wt).

	This is a traveling wave with an amplitude of (2DM/rA) cos [(p/l)(rA – rB)] .
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52.	The wavelength of the sounds is

		l = v/f = (343 m/s)/(440 Hz) = 0.780 m.

	(a)	When the microphone is equidistant from the speakers, there 

		is no path difference from the speakers.  Because a maximum 

		is recorded, the speakers are in phase.  When the microphone 

		is moved a distance x to the first minimum, the path difference 

		must be !l:

			s2 – s1 = !l;

			[(!D + x)2 + L2]1/2 – [(!D – x)2 + L2]1/2 = !l,   or   

			[(!D + x)2 + L2]1/2 = !l + [(!D – x)2 + L2]1/2.

		When we square and cancel terms, we get

			2Dx – l2/4 = l[(!D – x)2 + L2]1/2.

		If we square again and collect terms, we get

			(4D2 – l2)x2 = l2[L2 + (D2/4) – (l2/16)];

			[4(3.00 m)2 – (0.780 m)2]x2 = (0.780 m)2{(3.20 m)2 + [(3.00 m)2/4] – [(0.780 m)2/16]}, 

		which gives x = ± 0.46 m.

		Thus the microphone must be moved      0.46 m       to the right.

	(b)	Because of the 180° phase difference, the maxima and minima will be interchanged, so the       

			minimum will be at the midpoint, x = 0;

			maximum will be at x = 0.46 m.



53.	Because the beat frequency increases for the fork with the higher frequency, the string frequency must be below 350 Hz.  Thus we have

		fstring = f1 – fbeat1 = f2 – fbeat2 = 350 Hz – 4 Hz = 355 Hz – 9 Hz =       346 Hz.



54.	When A and B are sounded, we have

		½fA – fB½ = 3 Hz, so

		fA = fB ± 3 Hz = 440 Hz ± 3 Hz, so       fA = 437 Hz,  or  443 Hz.

	When C and B are sounded, we have

		½fC – fB½ = 4 Hz, so

		fC = fB ± 4 Hz = 440 Hz ± 4 Hz, so       fC = 436 Hz,  or  444 Hz.

	The possible beat frequencies when A and C are sounded are

		½fA – fC½ = ½437 Hz – 436 Hz½ = ½443 Hz – 444 Hz½ =       1 Hz,   and

		½fA – fC½ = ½437 Hz – 444 Hz½ = ½443 Hz – 436 Hz½ =       7 Hz.
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55.	We see that there is no path difference for a listener on the bisector of the 

	two speakers.  The maximum path difference occurs for a listener on the 

	line of the speakers.  If this path difference is less than l/2, there will be

	no location where destructive interference can occur.  Thus we have

		path difference = dB – dA = d = l/2.  































56.	(a)	We find the two frequencies from

			f1  = v/l1 = (343 m/s)/(2.64 m) = 129.9 Hz;

			f2  = v/l2 = (343 m/s)/(2.76 m) = 124.3 Hz.

		The beat frequency is

			fbeat = ?f = f2 – f1 = 129.9 Hz – 124.3 Hz = 5.6 Hz =       6 Hz.

	(b)	The intensity maxima will travel with the speed of sound, so the separation of regions of maximum 

		intensity is the “wavelength” of the beats:

			lbeat = v/fbeat = (343 m/s)/(5.6 Hz) =      61 m.



57.	Because the police car is at rest, the wavelength traveling toward you is

			l1 = v/f0 = (343 m/s)/(1550 Hz) = 0.221 m.

	(a)	This wavelength approaches you at a relative speed of v + vL.  You hear a frequency

			f1 = (v + vL)/l1 = (343 m/s + 30.0 m/s)/(0.221 m) =      1690 Hz.

	(b)	The wavelength approaches you at a relative speed of v – vL.  You hear a frequency

			f2 = (v – vL)/l1 = (343 m/s – 30.0 m/s)/(0.221 m) =      1410 Hz.



58.	Because the bat is at rest, the wavelength traveling toward the object is

		l1 = v/f0 = (343 m/s)/(50,000 Hz) = 6.86 ´ 10–3 m.

	The wavelength approaches the object at a relative speed of v – vobject.  The sound strikes and reflects from the object with a frequency

		f1 = (v – vobject)/l1 = (343 m/s – 25.0 m/s)/(6.86 ´ 10–3 m) = 46,360 Hz.

	This frequency can be considered emitted by the object, which is moving away from the bat.  Because the wavelength behind a moving source increases, the wavelength approaching the bat is

		l2 = (v + vobject)/f1 = (343 m/s + 25.0 m/s)/(46,360 Hz) = 7.94 ´ 10–3 m.

	This wavelength approaches the bat at a relative speed of v, so the frequency received by the bat is

		f2 = v/l2 = (343 m/s)/(7.94 ´ 10–3 m) =      43,200 Hz.



59.	The wavelength in front of a moving object decreases, so the wavelength traveling toward the wall is

		l1 = (v – vbat)/f0 .

	Because the wall is stationary, this is also the wavelength of the reflected sound.  This wavelength approaches the bat at a relative speed of v + vbat , so the frequency received by the bat is

		f 	= (v + vbat)/l1 = [(v + vbat)/(v – vbat)]f0 

			= [(343 m/s + 5.0 m/s)/(343 m/s – 5.0 m/s)](30,000 Hz) =      30,890 Hz.



60.	Because the wavelength in front of a moving source decreases, the wavelength from the approaching tuba is

		l1 = (v – v1)/f0 = (343 m/s – 10.0 m/s)/(75 Hz) = 4.44 m .

	This wavelength approaches the stationary listener at a relative speed of v, so the frequency heard by the listener is

		f1 = v/l1 = (343 m/s)/(4.44 m) = 77 Hz.

	Because the frequency from the stationary tube is unchanged, the beat frequency is

		fbeat = ?f = f1 – f0 = 77 Hz – 75 Hz =       2 Hz.



61.	Because the wavelength in front of a moving source decreases, the wavelength from the approaching automobile is

		l1 = (v – v1)/f0 = (343 m/s – 15 m/s)/f0.

	This wavelength approaches the stationary listener at a relative speed of v, so the frequency heard by the listener is

		f1 = v/l1 = (343 m/s)/[(343 m/s – 15 m/s)/f0] = (343 m/s)f0/(328 m/s).

	Because the frequency from the stationary automobile is unchanged, the beat frequency is

		fbeat = ?f = f1 – f0 ;

		5.5 Hz = [(343 m/s)f0/(328 m/s)] – f0 , which gives f0 =        120 Hz.







62.	Because the wavelength in front of a moving source decreases, the wavelength from the approaching source is

		l1 = (v – v1)/f0 .

	This wavelength approaches the stationary listener at a relative speed of v, so the frequency heard by the listener is

		f1 = v/l1 = v/[(v – v1)/f0] = vf0/(v – v1) = (343 m/s)(2000 Hz)/(343 m/s – 15 m/s) =      2091 Hz.

	The wavelength from a stationary source is

		l2 = v/f0 .

	This wavelength approaches the moving receiver at a relative speed of v + v1 , so the frequency heard is

		f2 = (v + v1)/l2 = (v + v1)/(v/f0) = (v + v1)f0/v = (343 m/s + 15 m/s)(2000 Hz)/(343 m/s) =      2087 Hz.

	The two frequencies are       not exactly the same, but close.

	For the other speeds we have,

	at 150 m/s:

		f3 = v/l1 = v/[(v – v1)/f0] = vf0/(v – v1) = (343 m/s)(2000 Hz)/(343 m/s – 150 m/s) =      3554 Hz;

		f4 = (v + v1)/l2 = (v + v1)/(v/f0) = (v + v1)f0/v = (343 m/s + 150 m/s)(2000 Hz)/(343 m/s) =      2875 Hz.

	at 300 m/s:

		f3 = v/l1 = v/[(v – v1)/f0] = vf0/(v – v1) = (343 m/s)(2000 Hz)/(343 m/s – 300 m/s) =      15950 Hz;

		f4 = (v + v1)/l2 = (v + v1)/(v/f0) = (v + v1)f0/v = (343 m/s + 300 m/s)(2000 Hz)/(343 m/s) =      3750 Hz.

	The Doppler formulas are not symmetric; the speed of the source creates a greater shift than the speed of the observer.

	We can write the expression for the frequency from an approaching source as

		f1 = v/l1 = vf0/(v – v1) = f0/[1 – (v1/v)].

	If v1 « v, we use 1/[1 – (v1/v)] ˜ 1 + (v1/v), so we have

		f1 ˜ f0[1 + (v1/v)], 

	which is the expression f2 = (v + v1)f0/v for the frequency for a stationary source and a moving listener.

	Note that we have carried more significant figures than justified to show differences.



63.	Because the source is at rest, the wavelength traveling toward the blood is

		l1 = v/f0 .

	This wavelength approaches the blood at a relative speed of v – vblood.  The ultrasound strikes and reflects from the blood with a frequency

		f1 = (v – vblood)/l1  = (v – vblood)/(v/f0) = (v – vblood)f0/v.

	This frequency can be considered emitted by the blood, which is moving away from the source.  Because the wavelength behind the moving blood increases, the wavelength approaching the source is

		l2 = (v + vblood)/f1 = (v + vblood)/[(v – vblood)f0/v] = [1 + (vblood/v)]v/f0[1 – (vblood/v)].

	This wavelength approaches the source at a relative speed of v, so the frequency received by the source is

		f2 = v/l2 = v/{[1 + (vblood/v)]v/f0[1 – (vblood/v)]} = [1 – (vblood/v)]f0/[1 + (vblood/v)].

	Because vblood « v, we use 1/[1 + (vblood/v)] ˜ 1 – (vblood/v), so we have

		f2 ˜ f0[1 – (vblood/v)]2 ˜ f0[1 – 2(vblood/v)]. 

	For the beat frequency we have

		fbeat = f0 – f2 = 2(vblood/v)f0 = 2[(0.020 m/s)/(1540 m/s)](3.5 ´ 106 Hz) =       91 Hz.





























64.	Because the source is at rest, the wavelength traveling toward the heart is

		l1 = v/f0 .

	If we assume that the heart is moving away, this wavelength approaches the heart at a relative speed of v – vheart.  The ultrasound strikes and reflects from the heart with a frequency

		f1 = (v – vheart)/l1  = (v – vheart)/(v/f0) = (v – vheart)f0/v.

	This frequency can be considered emitted by the heart, which is moving away from the source.  Because the wavelength behind the moving heart increases, the wavelength approaching the source is

		l2 = (v + vheart)/f1 = (v + vheart)/[(v – vheart)f0/v] = [1 + (vheart/v)]v/f0[1 – (vheart/v)].

	This wavelength approaches the source at a relative speed of v, so the frequency received by the source is

		f2 = v/l2 = v/{[1 + (vheart/v)]v/f0[1 – (vheart/v)]} = [1 – (vheart/v)]f0/[1 + (vheart/v)].

	Because vheart « v, we use 1/[1 + (vheart/v)] ˜ 1 – (vheart/v), so we have

		f2 ˜ f0[1 – (vheart/v)]2 ˜ f0[1 – 2(vheart/v)]. 

	The maximum beat frequency occurs for the maximum heart velocity, so we have

		fbeat = f0 – f2 = 2(vheart/v)f0 ;

		500 Hz = 2[vheart/(1.54 ´ 103 m/s)](2.25 ´ 106 Hz), which gives vheart =       0.171 m/s.



65.	In Problem 64, we assumed that the heart is moving away from the source.  Because the heart velocity is much less than the wave speed, the same beat frequency will occur when the heart is moving toward the source.  Thus the maximum beat frequency will occur twice during each beat of the heart, so the heartbeat rate is

		!(180 maxima/min) =     90 beats/min.



66.	(a)	The frequency heard by a stationary observer from a source moving toward the observer is

			f ¢ = f/[1 – (vs/v)] = f [1 – (vs/v)]–1.

		When we use the binomial expansion with vs « v, we get

			f ¢ =  f [1 + (– 1)(– vs/v) + (– 1)(– 2)(vs/v)2/2 + … ] ˜ f [1 + (vs/v)], 

		which is the frequency an observer hears when moving toward a stationary source.

	(b)	The percent error is

			error 	= 100({f/[1 – (vs/v)]} – {f [1 + (vs/v)]})/{f/[1 – (vs/v)]} 

					= 100{1 – [1 + (vs/v)][1 – (vs/v)]} = 100(vs/v)2.

		For the given speed we get

			error = 100[(22 m/s)/(343 m/s)]2 =       0.41%.













































67.	Because the wind velocity is a movement of the medium, it adds or subtracts from the speed of sound in the medium.  

	(a)	Because the wind is blowing away from the observer, the effective speed of sound is v – vwind.  

		Therefore the wavelength traveling toward the observer is

			la = (v – vwind)/f0 .

		This wavelength approaches the observer at a relative speed of v – vwind .  The observer will hear a 

		frequency

			fa = (v – vwind)/la = (v – vwind)/[(v – vwind)/f0] = f0 =       570 Hz.

	(b)	Because the wind is blowing toward the observer, the effective speed of sound is v + vwind.  

		From the analysis in part (a), we see that there will be no change in the frequency:       570 Hz.

	(c)	Because the wind is blowing perpendicular to the line toward the observer, the effective speed of sound 	is v.  Because there is no relative motion of the whistle and the observer, there will be no change in 

		the frequency:       570 Hz.

	(d)	Because the wind is blowing perpendicular to the line toward the observer, the effective speed of 	sound is v.  Because there is no relative motion of the whistle and the observer, there will be no change 

		in the frequency:       570 Hz.

	(e)	Because the wind is blowing toward the cyclist, the effective speed of sound is v + vwind.

		Therefore the wavelength traveling toward the cyclist is

			le = (v + vwind)/f0 .

		This wavelength approaches the cyclist at a relative speed of v + vwind + vcycle .  The cyclist will hear 

		a frequency

			fe 	= (v + vwind + vcycle)/le = (v + vwind + vcycle)/[(v + vwind)/f0] 

				= (v + vwind + vcycle)f0/(v + vwind) 

				= (343 m/s +12.0 m/s + 15.0 m/s)(570 Hz)/(343 m/s + 12.0 m/s) =       594 Hz.

	(f)	Because the wind is blowing perpendicular to the line toward the cyclist, the effective speed of 	sound is v.  Therefore the wavelength traveling toward the cyclist is

			lf = v/f0 .

		This wavelength approaches the cyclist at a relative speed of v + vcycle .  The cyclist will hear 

		a frequency

			ff	= (v + vcycle)/lf = (v + vcycle)/(v/f0) 

				= (v + vcycle)f0/v  = (343 m/s + 15.0 m/s)(570 Hz)/(343 m/s) =       595 Hz.



68.	(a)	From the definition of the Mach number, we have

			v = (Mach number)vsound = (0.33)(343 m/s) =       1.1 ´ 102 m/s.

	(b)	We find the speed of sound from

			v = (Mach number)vsound ;

			(3000 km/h)/(3.6 ks/h) = (3.2)vsound , which gives vsound =       2.6 ´ 102 m/s.
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69.	In a time t the shock wave moves a distance vsoundt perpendicular to the 

	wavefront.  In the same time the object moves vobjectt.  We see from the 

	diagram that

		sin q = (vsoundt)/(vobjectt) = vsound/vobject .
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70.	(a)	We find the angle of the shock wave from

			sin q 	= vsound/vobject  = vsound/(Mach number)vsound  

					= 1/(Mach number) = 1/2.3 = 0.435, so q =       26°.

	(b)	From the diagram we see that, when the shock wave hits 

		the ground, we have

			tan q = h/vairplanet = h/(Mach number)vsoundt;

			tan 26° = (7100 m)/(2.3)(310 m/s)t, which gives t =       21 s.





71.	(a)	From the definition of the Mach number, we have

			v = (Mach number)vsound ;

			(15,000 km/h)/(3.6 ks/h) = (Mach number)(35 m/s), which gives Mach number =       120.

	(b)	We find the angle of the shock wave from

			sin q = vsound/vobject  = (35 m/s)/[(15,000 km/h)/(3.6 ks/h)] = 0.0084, so q = 0.48°.

		Thus the apex angle is 2q =      0.96°.



72.	(a)	We find the angle of the shock wave in the air from

			sin q = vsound/vobject  = (343 m/s)/(8000 m/s) = 0.0429, so q =      2.46°.

	(b)	We find the angle of the shock wave in the ocean, before the meteorite slows down, from

			sin q = vsound/vobject  = (1560 m/s)/(8000 m/s) = 0.193, so q =      11.2°.
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73.	(a)	From the diagram we see that, when the shock wave hits 

		the ground, we have

			tan q = h/dplane = (1.5 km)/(2.0 km) = 0.75, so q =       37°.

	(b)	We find the speed of the plane from

			sin q = vsound/vplane = vsound/(Mach number)vsound = 1/(Mach number);

			sin 37° = 1/(Mach number), which gives Mach number =       1.7.
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74.	The angle of the shock wave is

		sin q 	= vsound/vplane = vsound/(Mach number)vsound 

				= 1/(Mach number) = 1/1.8 = 0.556, q = 33.7°.

	From the diagram we see that, when the shock wave hits 

	the ground, we have

		tan q = h/dplane ;

		tan 33.7° = (10 km)/dplane , which gives dplane =       15 km.



75.	Because the reflected pulse must be received before the emission of the next pulse, the minimum time between pulses is

		tmin = 2d/vsound = 2(200 m)/(1440 m/s) =      0.278 s.



76.	Because the frequency doubles for each octave, we have

		fhigh/flow = 2x;

		(20,000 Hz)/(20 Hz) = 2x,   or

		log10(1000) = x log10(2). which gives x ˜      10.



77.	We choose a coordinate system with origin at the top of the cliff, down positive, and t = 0 when the stone is dropped.  If we call t1 the time of fall for the stone, we have

		y = y01+ v01t1 + !gt12; 

		h = 0 + 0 + !gt12,  or  t1 = (2h/g)1/2.

	For the time t2 for the sound to reach the top of the cliff, we have

		t2 = h/vsound .

	Thus for the total time we have

		t = t1 + t2 = (2h/g)1/2 + h/vsound ;

		3.5 s = [2h/(9.80 m/s2)]1/2 + [h/(343 m/s)].

	This is a quadratic equation for h1/2, which has the positive result h1/2 = 7.39 m1/2, 

	so the height of the cliff is       55 m.



78.	The intensity for a 0 dB sound is I0 = 10–12 W/m2.  For 1000 mosquitoes, we find the intensity level from

		b = 10 log10(I1/I0) = 10 log10(1000I0/I0) =       30 dB.







79.	Because the wavelength in front of a moving source decreases, the wavelength from the approaching car is

		l1 = (v – vcar)/f0 .

	This wavelength approaches the stationary listener at a relative speed of v, so the frequency heard by the listener is

		f1 = v/l1 = v/[(v – vcar)/f0] = vf0/(v – vcar).

	Because the wavelength behind a moving source increases, the wavelength from the receding car is

		l2 = (v + vcar)/f0 .

	This wavelength approaches the stationary listener at a relative speed of v, so the frequency heard by the listener is

		f2 = v/l2 = v/[(v + vcar)/f0] = vf0/(v + vcar).

	If the frequency drops by one octave, we have

		f1/f2 = [vf0/(v – vcar)]/[vf0/(v + vcar)] = (v + vcar)/(v – vcar) = 2,   or  

		2(v – vcar) = v + vcar , which gives vcar = @v = @(343 m/s) = 114 m/s =        410 km/h (255 mi/h).



80.	The wavelength of the fundamental frequency for a string is l = 2L.  Because the speed of a wave on the string does not change, we have

		v = l1f1 = l1¢f1¢;

		2L[(540 Hz)/3] = 2(0.60L)f1¢, which gives f1¢ =       300 Hz.



81.	The tension and mass density of the string determines the velocity:

		v = (FT/m)1/2.

	Because the strings have the same length, the wavelengths are the same, so for the ratio of frequencies we have

		fn+1/fn = vn+1/vn = (mn/mn+1)1/2 = 1.5,  or   mn+1/mn = (1/1.5)2 = 0.444. 

	With respect to the lowest string, we have

		mn+1/m1 = (0.444)n.

	If we call the mass density of the  lowest string 1, we have

		1, 0.444, 0.198, 0.0878, 0.0389.



82.	We find the intensity of each sound from

		b = 10 log10(I/I0);

		80 dB = 10 log10[I1/(1.0 ´ 10–12 W/m2)], which gives I1 = 1.0 ´ 10–4 W/m2;

		85 dB = 10 log10[I2/(1.0 ´ 10–12 W/m2)], which gives I2 = 3.16 ´ 10–4 W/m2.

	The intensities add, so the resultant intensity level is

		b 	= 10 log10[(I1 + I2)/I0] 

			= 10 log10[(1.0 ´ 10–4 W/m2 + 3.16 ´ 10–4 W/m2)/(1.0 ´ 10–12 W/m2)] =      86 dB.



83.	We find the intensity of the sound from

		b = 10 log10(I/I0);

		100 dB = 10 log(I/10–12 W/m2), which gives I = 1.00 ´ 10–2 W/m2.

	If the speaker radiates equally in all directions, the power output of the speaker is

		P = IA = I4pr2 = (1.00 ´ 10–2 W/m2)4p(12.0 m)2 =       18.1 W.

























84.	(a)	The wavelength of the fundamental frequency for a string is l = 2L, so the speed of a wave on the 

		string is

			v = lf = 2(0.32 m)(440 Hz) =       2.8 ´ 102 m/s.

		We find the tension from

			v = (FT/m)1/2;

			282 m/s = [FT/(6.1 ´ 10–4 kg/m)]1/2 , which gives FT =       49 N.

	(b)	For a closed pipe the wavelength of the fundamental frequency is l = 4L.  We find the required 

		length from

			v = lf  = 4Lf;

			343 m/s = 4L(440 Hz), which gives L = 0.195 m =       19.5 cm.

	(c)	All harmonics are present in the string, so the first overtone is the second harmonic:

			f2 = 2f1 = 2(440 Hz) =       880 Hz.

		Only the odd harmonics are present in a closed pipe, so the first overtone is the third harmonic:

			f3 = 3f1 = 3(440 Hz) =       1320 Hz.



85.	We find the ratio of intensities from

		?b = 10 log10(I2/I1);

		– 10 dB = 10 log10(I2/I1), which gives I2/I1 = 0.10.

	If we assume uniform spreading of the sounds, the intensity is proportional to the power output, so we have

		P2/P1 = I2/I1 ;

		P2/(150 W) = 0.10, which gives P2 =       15 W.
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86.	At each resonant position the top of the water column is a node.  

	Thus the distance between the two readings corresponds to the

	distance between adjacent nodes, or half a wavelength:

		?L = l/2,  or  l = 2 ?L.

	For the frequency we have

		f = v/l = (343 m/s)/2(0.395 m – 0.125 m) =       635 Hz.





















87.	Because the speakers are at rest, the wavelength traveling toward the person is

		l = v/f0.

	This wavelength from the speaker in front of the person approaches the person at a relative speed 

	of v + vperson.  The frequency heard is

		f1 = (v + vperson)/l.

	This wavelength from the speaker behind the person approaches the person at a relative speed 

	of v – vperson.  The frequency heard is

		f2 = (v – vperson)/l.

	Thus the beat frequency is

		?f 	= f1 – f2 = [(v + vperson)/l] – [(v – vperson)/l] 

			= 2vperson/l = 2vpersonf0/v = 2(1.4 m/s)(280 Hz)/(343 m/s) =      2.3 Hz.











88.	We find the intensity of the sound at a distance of 30 m from

		b = 10 log10(I/I0);

		140 dB = 10 log10(I/10–12 W/m2), which gives I = 1.0 ´ 102 W/m2.

	The power intercepted by the ear is

		P = IA = Ipr2 = (1.0 ´ 102 W/m2)p(0.020 m)2 =       0.13 W.



89.	The intensity of the sound wave is given by

		I = 2p2rf 2DM2v.

	Because the frequency, density, and velocity are the same, for the ratio we have

		I/I0 = (DM/DM0)2 = 1012, which gives DM/DM0 = 106.

	The pressure amplitude is proportional to the displacement amplitude, so we have

		?PM/?PM0 = DM/DM0 = 106.



90.	The smallest displacement maximum will occur for the lowest intensity, or intensity level.  

	From Fig. 16–5, we estimate the intensity levels.  For the four frequencies we have

		35 Hz: 		b = 10 log10(I1/I0);

					60 dB = 10 log(I1/10–12 W/m2), which gives I1 = 1.0 ´ 10–6 W/m2.

			We find the displacement maximum from

					I1 = 2p2rf 2DM12v

					1.0 ´ 10–6 W/m2 = 2p2(1.29 kg/m3)(35 Hz)2DM12(343 m/s), 

			which gives DM1 =       3.1 ´ 10–7 m.

		1000 Hz: 	b = 10 log10(I2/I0);

					0 dB = 10 log(I2/10–12 W/m2), which gives I2 = 1.0 ´ 10–12 W/m2.

			We find the displacement maximum from

					I2 = 2p2rf 2DM22v

					1.0 ´ 10–12 W/m2 = 2p2(1.29 kg/m3)(1000 Hz)2DM22(343 m/s), 

			which gives DM2 =       1.1 ´ 10–11 m.

		5000 Hz: 	b = 10 log10(I3/I0);

					0 dB = 10 log(I3/10–12 W/m2), which gives I3 = 1.0 ´ 10–12 W/m2.

			We find the displacement maximum from

					I3 = 2p2rf 2DM32v

					1.0 ´ 10–12 W/m2 = 2p2(1.29 kg/m3)(5000 Hz)2DM32(343 m/s), 

			which gives DM3 =       2.1 ´ 10–12 m.

		15,000 Hz: 	b = 10 log10(I4/I0);

					20 dB = 10 log(I4/10–12 W/m2), which gives I4 = 1.0 ´ 10–10 W/m2.

			We find the displacement maximum from

					I4 = 2p2rf 2DM42v

					1.0 ´ 10–10 W/m2 = 2p2(1.29 kg/m3)(15,000 Hz)2DM42(343 m/s), 

			which gives DM4 =       7.1 ´ 10–12 m.

	The ear is most sensitive to displacement at a frequency of       5000 Hz.



91.	We find the gain from

		b = 10 log10(P2/P1) =  10 log10[(100 W)/(1 ´ 10–3 W)] =       50 dB.

















92.	(a)	Because both sources are moving toward the observer at the same speed, they will have the 

		same Doppler shift, so the beat frequency will be         0.

	(b)	Because the wavelength in front of a moving source decreases, the wavelength from the 

		approaching loudspeaker is

			l1 = (v – vcar)/f0 = (343 m/s – 10.0 m/s)/(200 Hz) = 1.665 m.

		This wavelength approaches the stationary listener at a relative speed of v, so the frequency heard by 

		the listener is

			f1 = v/l1 = (343 m/s)/(1.665 m) = 206 Hz.

		Because the wavelength behind a moving source decreases, the wavelength from the receding 

		loudspeaker is

			l2 = (v + vcar)/f0 = (343 m/s + 10.0 m/s)/(200 Hz) = 1.765 m.

		This wavelength approaches the stationary listener at a relative speed of v, so the frequency heard by 

		the listener is

			f2 = v/l2 = (343 m/s)/(1.765 m) = 194 Hz.

		The beat frequency is

			fbeat = ?f = 206 Hz – 194 Hz =       12 Hz.

		Note that this frequency may be too high to be heard as beats. 

	(c)	Because both sources are moving away from the observer at the same speed, they will have the 

		same Doppler shift, so the beat frequency will be         0.



93.	Because the wavelength in front of a moving source decreases, the wavelength from the approaching train whistle is

		l1 = (v – vtrain)/f0 .

	Because you are stationary, this wavelength approaches you at a relative speed of v, so the frequency heard by you is

		f1 = v/l1 = v/[(v – vtrain)/f0 ] = vf0 /(v – vtrain).

	Because the wavelength behind a moving source increases, the wavelength from the receding train 

	whistle is

		l2 = (v + vtrain)/f0 .

	This wavelength approaches you at a relative speed of v, so the frequency heard by you is

		f2 = v/l2 = v/[(v + vtrain)/f0] = vf0/(v + vtrain).

	For the ratio of frequencies, we get

		f2/f1 = (v – vtrain)/(v + vtrain);

		(486 Hz)/(538 Hz) = (343 m/s – vtrain)/(343 m/s + vtrain), which gives vtrain =       17.5 m/s.



94.	For a closed pipe the wavelength of the fundamental frequency is l1pipe = 4L.  Thus the frequency of the third harmonic is

		f3pipe = 3f1pipe = 3v/4L = 3(343 m/s)/4(0.75 m) = 343 Hz.

	This is the fundamental frequency for the string.  The wavelength of the fundamental frequency for the string is l1string = 2L, so we have

		vstring = f1string2L = [FT/(m/L)]1/2;

		(343 Hz)2(0.75 m) = {FT/[(0.00210 kg)/(0.75 m)]}1/2, which gives FT =       7.4 ´ 102 N.

























95.	Because the source is at rest, the wavelength traveling toward the blood is

		l1 = v/f0 .

	This wavelength approaches the blood at a relative speed of v – vblood.  The ultrasound strikes and reflects from the blood with a frequency

		f1 = (v – vblood)/l1  = (v – vblood)/(v/f0) = (v – vblood)f0/v.

	This frequency can be considered emitted by the blood, which is moving away from the source.  Because the wavelength behind the moving blood increases, the wavelength approaching the source is

		l2 = (v + vblood)/f1 = (v + vblood)/[(v – vblood)f0/v] = [1 + (vblood/v)]v/f0[1 – (vblood/v)].

	This wavelength approaches the source at a relative speed of v, so the frequency received by the source is

		f2 = v/l2 = v/{[1 + (vblood/v)]v/f0[1 – (vblood/v)]} = [1 – (vblood/v)]f0/[1 + (vblood/v)].

	Because vblood « v, we use 1/[1 + (vblood/v)] ˜ 1 – (vblood/v), so we have

		f2 ˜ f0[1 – (vblood/v)]2 ˜ f0[1 – 2(vblood/v)]. 

	For the beat frequency we have

		fbeat = f0 – f2 = 2(vblood/v)f0 = 2[(0.32 m/s)/(1.54 ´ 103 m/s)](5.50 ´ 106 Hz) = 2.29 ´ 103 Hz =       2.3 kHz.



�

96.	The initial path difference is

		?D = 2[(¬/2)2 + d2]1/2 – ¬.

	When the obstacle is moved ?d, the new path difference is

		?D¢ = 2[(¬/2)2 + (d + ?d)2]1/2 – ¬.

	Because ?d « d, we get

		?D¢ 	= 2[(¬/2)2 + d2 + ?d(2d + ?d)]1/2 – ¬ 

				= 2[(¬/2)2 + d2 + 2d ?d]1/2 – ¬

				= 2[(¬/2)2 + d2]1/2(1 + {2d ?d/[(¬/2)2 + d2]})1/2 – ¬.

				= 2[(¬/2)2 + d2]1/2(1 + !{2d ?d/[(¬/2)2 + d2]}) – ¬.

				= 2[(¬/2)2 + d2]1/2(1 + {d ?d/[(¬/2)2 + d2]}) – ¬.

	To create destructive interference, the change in path difference

	must be l/2, so we have

		?D¢ – ?D = l/2;

		2[(¬/2)2 + d2]1/2(1 + {d ?d/[(¬/2)2 + d2]}) – ¬ – {2[(¬/2)2 + d2]1/2 – ¬} = l/2;

		2[(¬/2)2 + d2]1/2d ?d/[(¬/2)2 + d2] = l/2, which gives        ?d = (l/4d)[(¬/2)2 + d2]1/2.



97.	When the person is equidistant from the sources, there is constructive interference.  To move to a point where there is destructive interference, the path difference from the sources must be 

		?L = nl/2, with n = 1, 3, 5, … .  

	If we assume that n = 1, we find the frequency from

		f = v/l = v/2 ?L = (343 m/s)/2(0.31 m) =       550 Hz.

	Because larger values of n would give a frequency out of the given range, this is the result.



98.	Because the wavelength in front of a moving source decreases, the wavelength approaching the moth is

		l1 = (v – vbat)/f0 .

	The wavelength approaches the moth at a relative speed of v + vmoth.  The sound strikes and reflects from the object with a frequency

		f1 = (v + vmoth)/l1 = (v + vmoth)/[(v – vbat)/f0 ] = (v + vmoth)f0/(v – vbat).

	This frequency can be considered emitted by the moth, which is moving toward the bat.  Because the wavelength in front of a moving source decreases, the wavelength approaching the bat is

		l2 = (v – vmoth)/f1 = (v – vmoth)/[(v + vmoth)f0/(v – vbat)] = (v – vmoth)(v – vbat)/(v + vmoth)f0.

	This wavelength approaches the bat at a relative speed of v + vbat , so the frequency received by the bat is

		f2 	= (v + vbat)/l2 = (v + vbat)(v + vmoth)f0/(v – vmoth)(v – vbat) 

			= (343.0 m/s + 6.5 m/s)(343.0 m/s + 5.0 m/s)(51.35 kHz)/(343.0 m/s – 5.0 m/s)(343.0 m/s – 6.5 m/s) 

			=       54.91 kHz.







99.	(a)	The rod will have a node at the middle and antinodes at the ends.  The wavelength for 

		the fundamental frequency is

			l1 = 2L.

		Thus the fundamental frequency is

			f1 = v/l1 = v/2L = (5100 m/s)/2(0.90 m) =       2.8 ´ 103 Hz.

	(b)	The wavelength in the rod is

			lrod = l1 = 2L = 2(0.90 m) =       1.80 m.

	(c)	The frequency in the air is the frequency in the rod, so the wavelength in the air is

			lair = v/f1 = (343 m/s)/(2.8 ´ 103 Hz) =       0.12 m.



100.	We consider standing waves along each dimension, with nodes at the walls, so the wavelength is twice 	the dimension.  Thus we have

			f1 = v/2L = (343 m/s)/2(5.0 m) =       34 Hz.

			f2 = v/2W = (343 m/s)/2(4.0 m) =       43 Hz.

			f3 = v/2H = (343 m/s)/2(2.8 m) =       61 Hz.

		Note that there could be more complicated standing waves from reflections in two or three directions. 



101.	We find the intensity of the sound from

		b = 10 log10(I/I0);

		100 dB = 10 log10(I/10–12 W/m2), which gives I = 1.0 ´ 10–2 W/m2.

	(a)	We find the maximum displacement from

			I = 2p2rf 2DM2v

			1.0 ´ 10–2 W/m2 = 2p2(1.29 kg/m3)(10 ´ 103 Hz)2DM2(343 m/s), which gives DM = 1.1 ´ 10–7 m.

		The cone will vibrate with SHM, so the total motion is

			d = 2DM = 2(1.1 ´ 10–7 m) =        2.2 ´ 10–7 m.

	(b)	For the given frequency we get

			I = 2p2rf 2DM2v

			1.0 ´ 10–2 W/m2 = 2p2(1.29 kg/m3)(40 Hz)2DM2(343 m/s), which gives DM = 2.7 ´ 10–5 m.

		The cone will vibrate with SHM, so the total motion is

			d = 2DM = 2(2.7 ´ 10–5 m) =        5.4 ´ 10–5 m.



102.	The velocity component of the blood parallel to the sound transmission is vblood cos 45° = 0.707vblood.

	Because the source is at rest, the wavelength traveling toward the blood is

		l1 = v/f0 .

	This wavelength approaches the blood at a relative speed of v – 0.707vblood.  The ultrasound strikes and reflects from the blood with a frequency

		f1 = (v – 0.707vblood)/l1  = (v – 0.707vblood)/(v/f0) = (v – 0.707vblood)f0/v.

	This frequency can be considered emitted by the blood, which is moving away from the source.  Because the wavelength behind the moving blood increases, the wavelength approaching the source is

		l2 	= (v + 0.707vblood)/f1 

			= (v + 0.707vblood)/[(v – 0.707vblood)f0/v] = [1 + (0.707vblood/v)]v/f0[1 – (0.707vblood/v)].

	This wavelength approaches the source at a relative speed of v, so the frequency received by the source is

		f2 	= v/l2 = v/{[1 + (0.707vblood/v)]v/f0[1 – (0.707vblood/v)]} 

			= [1 – (0.707vblood/v)]f0/[1 + (0.707vblood/v)].

	Because vblood « v, we use 1/[1 + (0.707vblood/v)] ˜ 1 – (0.707vblood/v), so we have

		f2 ˜ f0[1 – (0.707vblood/v)]2 ˜ f0[1 – 2(0.707vblood/v)]. 

	For the beat frequency we have

		fbeat = f0 – f2 = 2(0.707vblood/v)f0 

		900 Hz = 2[(0.707vblood)/(1.54 ´ 103 m/s)](5.0 ´ 106 Hz), which gives vblood =        0.20 m/s.
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