CHAPTER 17 – Temperature, Thermal Expansion, and the Ideal Gas Law





1.	The number of atoms in a mass m is given by


		N = m/Mmatomic.


	Because the masses of the two rings are the same, for the ratio we have


		NAu/NAg = MAg/MAu = 108/197 =       0.548.





2.	The number of atoms in a mass m is given by


		N = m/Mmatomic = (3.4 ´ 10–3 kg)/(63.5 u)(1.66 ´ 10–27 kg/u) =        3.2 ´ 1022 atoms.





3.	(a)	T(°C) = (5/9)[T(°F) – 32] = (5/9)(68°F – 32) =        20°C.


	(b)	T(°F) = (9/5)T(°C) + 32 = (9/5)(1800°C) + 32 = 3272°F      ˜ 3300°F.





4.	(a)	T(°F) = (9/5)T(°C) + 32 = (9/5)(– 15°C) + 32 =       5°F.


	(b)	T(°C) = (5/9)[T(°F) – 32] = (5/9)(– 15°F – 32) =        – 26°C.





5.	T(°F) = (9/5)T(°C) + 32 = (9/5)(40.0°C) + 32.0 =       104.0°F.





6.	Because the temperature and length are linearly related, we have


		?T/?L = (100.0°C – 0.0°C)/(22.85 cm – 11.82 cm) =  9.067 C°/cm.


	(a)	(T1 – 0.0°C)/(16.70 cm – 11.82 cm) =  9.067 C°/cm, which gives T1 =       44.2°C.


	(b)	(T2 – 0.0°C)/(20.50 cm – 11.82 cm) =  9.067 C°/cm, which gives T2 =       78.7°C.





7.	We set T(°F) = T(°C) = T in the conversion between the temperature scales:


		T(°F) = (9/5)T(°C) + 32


		T = (9/5)T + 32, which gives T =       – 40°F = – 40°C.





8.	At any temperature below 20°C the expansion cracks will increase.  Thus the expansion from 20°C to 50°C must eliminate the cracks.  Any higher temperature will cause stress in the concrete.  If the cracks have a width ?L, we have


		?L = aL0 ?T = [12 ´ 10–6 (C°)–1](12 m)(50°C – 20°C) = 4.3 ´ 10–3 m =       0.43 cm.





9.	For the expansion ?L, we have


		?LInvar = aInvarL0 ?T = [0.2 ´ 10–6 (C°)–1](2.0 m)(5.0 C°) =        2.0 ´ 10–6 m.


	For the other materials we have


		?Lsteel = asteelL0 ?T = [12 ´ 10–6 (C°)–1](2.0 m)(5.0 C°) =        1.2 ´ 10–4 m.


		?Lmarble = amarbleL0 ?T = [2.5 ´ 10–6 (C°)–1](2.0 m)(5.0 C°) =        2.5 ´ 10–5 m.





10.	We find the height change from


		?L = aL0 ?T = [12 ´ 10–6 (C°)–1](300 m)(25°C – 2°C) = 8.3 ´ 10–2 m =       8.3 cm.





11.	We can treat the change in diameter as a simple change in length, so we have


		?L = aL0 ?T;


		1.869 cm – 1.871 cm = [12 ´ 10–6 (C°)–1](1.871 cm)(T – 20°C), which gives T =       – 69°C.





12.	For the expanded dimensions, we have


		¬¢ = ¬(1 + a ?T); w¢ = w(1 + a ?T).


	Thus the change in area is


		?A = A¢ – A = ¬¢w¢ – ¬w = ¬w(1 + a ?T)2 – ¬w = ¬w[2a ?T + (a ?T)2] = ¬wa ?T(2 + a ?T).


	Because a ?T « 2, we have


		?A = 2a¬w ?T.











13.	The contraction of the glass causes the enclosed volume to decrease as if it were glass.  The volume of water that can be added is 


		?V	= ?Vglass – ?Vwater = V0bglass ?T – V0bwater ?T = V0(bglass – bwater)?T 


			= (350 mL)[27 ´ 10–6 (C°)–1 – 210 ´ 10–6 (C°)–1](20°C – 100°C) =        5.1 mL.





14.	(a)	The expansion of the container causes the enclosed volume to increase as if it were made of the 


		same material as the container.  The volume of water that was lost is 


			?V =  ?Vwater – ?Vcontainer = V0bwater ?T – V0bcontainer ?T = V0(bwater – bcontainer)?T;


			(0.35 g)/(0.98324 g/mL) = (55.50 mL)[210 ´ 10–6 (C°)–1 – bcontainer](60°C – 20°C), which gives


			bcontainer =        50 ´ 10–6 (C°)–1.


	(b)	From Table 17–1,        copper       is the most likely material. 





15.	We find the change in volume from


		?V 	= V0b ?T = )pr3b ?T 


				= )p(4.375 cm)3[1 ´ 10–6 (C°)–1](200°C – 30°C) =       0.06 cm3. 





16.	We can treat the change in diameter as a simple change in length, so we have


		D = D0(1 + a ?T).


	The two objects must reach the same diameter:


		D = D0brass(1 + abrass ?T) = D0iron(1 + airon ?T);


		(8.753 cm){1 + [19 ´ 10–6 (C°)–1](T – 20°C)} = (8.743 cm){1 + [12 ´ 10–6 (C°)–1](T – 20°C)},


	which gives


		T =       – 1.4 ´ 102 °C.





17.	We assume that we can ignore the change in cross sectional area of the tube.  The volume change of the fluid is the increased volume in the column:


		?V = ALb ?T = A ?L,   or   ?L = Lb ?T.


	When we compare this to the expression for linear expansion,


		?L = La ?T,


	we see that a = b.





18.	(a)	We consider a fixed mass of the substance.  The change in volume from the temperature change is 


			?V = bV0 ?T.


		Because the density is mass/volume, for the fractional change in the density we have


			?r/r = [(1/V) – (1/V0)]/(1/V0) = (V0 – V)/V ˜ (V0 – V)/V0 = – ?V/V0 = – b ?T,


		which we can write


			?r = – br ?T.


	(b)	For the lead sphere we have


			?r/r = – [87 ´ 10–6 (C°)–1](– 40°C – 25°C) =       0.0057 (0.57%).















































19.	The increase in temperature will cause the length of the brass rod to increase.  The period of the pendulum depends on the length,


		T = 2p(L/g)1/2,


	so the period will be greater.  This means the pendulum will make fewer swings in a day, so the clock will be slow and the clock will lose time.


	We use TC for the temperature to distinguish it from the period.  


	For the length of the brass rod, we have


		L = L0(1 + a ?TC).


	Thus the ratio of periods is


		T/T0 = (L/L0)1/2 = (1 + a ?TC)1/2.


	Because a ?TC is much less than 1, we have 


		T/T0 ˜ 1 + !a ?TC ,   or   ?T/T0 = !a ?TC.


	The number of swings in a time t is N = t/T.  For the same time t, the change in period will cause a change in the number of swings:


		?N = (t/T) – (t/T0) = t(T0 – T)/TT0 ˜ – t(?T/T0)/T0 ,


	because T ˜ T0.  The time difference in one year is


		?t	= T0 ?N = – t(?T/T0) = – t(!a ?TC) 


			= – (1 yr)(3.16 ´ 107 s/yr)![19 ´ 10–6 (C°)–1](25°C – 17°C) = – 2.4 ´ 103 s =       – 40 min.





20.	(a)	The radius will increase as if it were a length:


			r¢ = r(1 + a ?T).


		The new surface area will be


			A¢ = 4pr¢2 = 4pr2(1 + a ?T)2 = A(1 + a ?T)2.


		Thus the change in area is


			?A = A¢ – A = A[2a ?T + (a ?T)2] = 2Aa ?T (1 + !a ?T).


		Because !a ?T « 1, we have


			?A = 2Aa ?T =       8pr2a ?T.


	(b)	For the iron sphere we have


			?A = 8p(60.0 cm)2[12 ´ 10–6 (C°)–1](310°C – 20°C) =       3.1 ´ 102 cm2.





21.	We find the change in radius from


		?R = Ra ?T.


	Because the bearings are frictionless, angular momentum will be conserved:


		I1w1 = I2w2 , with I = !mR2 for a solid cylinder.


	For the fractional change in the angular velocity, we have


		?w/w = (w2 – w1)/w1 = [(I1w1/I2) – w1]/w1 = (I1 – I2)/I2 .


	Because the mass is constant, we have


		?w/w = [R2 – (R + ?R)2]/(R + ?R)2 = – [2R ?R + (?R)2]/(R + ?R)2  ˜ – 2R ?R/R2 = – 2 ?R/R.


	From the temperature change, we have


		?w/w = – 2a ?T = – 2[25 ´ 10–6 (C°)–1](75.0°C – 20.0°C) =       – 2.8 ´ 10–3 (0.28%).





22.	The compressive strain must compensate for the thermal expansion.  From the relation between stress and strain, we have


		Stress = E(Strain) = Ea ?T.


	When we use the ultimate strength of concrete, we have


		20 ´ 106 N/m2 = (20 ´ 109 N/m2)[12 ´ 10–6 (C°)–1](T – 10.0°C), which gives T =        93°C.





23.	The compressive strain must compensate for the thermal expansion.  From the relation between stress and strain, we have


		Stress = E(Strain) = Ea ?T;


		F/A = (70 ´ 109 N/m2)[25 ´ 10–6 (C°)–1](35°C – 15°C) =        3.5 ´ 107 N/m2.











24.	(a)	The tensile strain must compensate for the thermal contraction.  From the relation between 


		stress and strain, we have


			Stress = E(Strain) = Ea ?T;


			F/A = (200 ´ 109 N/m2)[12 ´ 10–6 (C°)–1](– 30°C – 30°C) =        – 1.4 ´ 108 N/m2 (tensile).


	(b)	    No,       because the ultimate strength of steel is 500 ´ 106 N/m2 = 5.0 ´ 108 N/m2.


	(c)	For concrete we have


			F/A = (20 ´ 109 N/m2)[12 ´ 10–6 (C°)–1](– 30°C – 30°C) =        – 1.4 ´ 107 N/m2 (tensile).


		Because the ultimate tensile strength of concrete is 2 ´ 106 N/m2, it       will fracture.





25.	(a)	As the iron band expands, the inside diameter will increase as if it were iron. We can treat the 


		change in inside diameter as a simple change in length, so we have


			D = D0(1 + a ?T),  or  D – D0 = D0a ?T;


			134.122 cm – 134.110 cm = (134.110 cm)[12 ´ 10–6 (C°)–1](T – 20°C), which gives T =       27°C.


	(b)	 We assume that the barrel is rigid.  The tensile strain in the circumference of the band is


			p ?D/pD0 = ?D/D0 , 


		which is the thermal strain.  The tensile strain must compensate for the thermal contraction.  


		From the relation between stress and strain, we have


			Stress = E(Strain) = Ea ?T = E ?D/D;


			F/(0.074 m)(0.0065 m) = (100 ´ 109 N/m2)(134.122 cm – 134.110 cm)/(134.110 cm),


		which gives


			F  =        4.3 ´ 103 N.





26.	(a)	T(K) = T(°C) + 273 = 86°C + 273 =        359 K.


	(b)	T(°C) = (5/9)[T(°F) – 32] = (5/9)(78°F – 32) = 26°C.


		T(K) = T(°C) + 273 = 26°C + 273 =        299 K.


	(c)	T(K) = T(°C) + 273 = – 100°C + 273 =        173 K.


	(d)	T(K) = T(°C) + 273 = 5500°C + 273 =        5773 K.





27.	On the Celsius scale, absolute zero is


		T(°C) = T(K) – 273.15 = 0 K – 273.15 = – 273.15°C.


	On the Fahrenheit scale, we have


		T(°F) = (9/5)T(°C) + 32 = (9/5)(– 273.15°C) + 32 =       – 459.7°F.





28.	(a)	T1(K) = T1(°C) + 273 = 4000°C + 273 =        4273 K;


		T2(K) = T2(°C) + 273 = 15 ´ 106 °C + 273 =        15 ´ 106 K.


	(b)	The difference in each case is 273, so we have


			Earth: (273)(100)/(4273) =       6.4%;


			Sun: (273)(100)/(15 ´ 106) =       0.0018%.





29.	For the two states of the gas we can write


		P1V1 = nRT1   and   P2V2 = nRT2 , which can be combined to give


		(P2/P1)(V2/V1) = T2/T1 ;


		(3.20 atm/1.00 atm)(V2/3.00 m3) = (311 K/273 K), which gives V2 =       1.07 m3.





30.	For the two states of the gas we can write


		P1V1 = nRT1   and   P2V2 = nRT2 , which can be combined to give


		(P2/P1)(V2/V1) = T2/T1 ;


		(40 atm/1.00 atm)(1/9) = T2/(293 K), which gives T2 =       1300 K.





31.	If we assume oxygen is an ideal gas, we have 


		PV = nRT = (m/M)RT;


		(1.013 ´ 105 Pa)V = [m/(32 g/mol)(10–3 kg/g)](8.315 J/mol · K)(273 K), which gives


		m/V =       1.43 kg/m3.





32.	The volume, temperature, and mass are constant.  For the two gases we can write


		P1V = n1RT = (m/M1)RT,  and   P2V = n2RT = (m/M2)RT, which can be combined to give


		P2/P1 = M1/M2 ;


		P2/(3.65 atm) = (28 g/mol)/(44 g/mol), which gives P2 =        2.32 atm.





33.	(a)	For the ideal gas we have 


			PV = nRT = (m/M)RT;


			(1.013 ´ 105 Pa)V = [(18.5 kg)(103 g/kg)/(28 g/mol)](8.315 J/mol · K)(273 K), 


		which gives V =       14.8 m3.


	(b)	With the additional mass in the same volume, we have  


			PV = nRT = (m/M)RT;


			P(14.8 m3) = [(18.5 kg + 15.0 kg)(103 g/kg)/(28 g/mol)](8.315 J/mol · K)(273 K), 


		which gives P = 1.83 ´ 105 Pa =       1.81 atm.





34.	(a)	For the ideal gas we have 


			PV = nRT;


			(1.000 atm + 0.350 atm)(1.013 ´ 105 Pa/atm)V = (18.75 mol)(8.315 J/mol · K)(283 K), 


		which gives V =       0.323 m3.


	(b)	For the two states of the gas we can write


			P1V1 = nRT1   and   P2V2 = nRT2 , which can be combined to give


			(P2/P1)(V2/V1) = T2/T1 ;


			[(1.00 atm + 1.00 atm)/(1.00 atm + 0.350 atm)](1/2) = (T2/283 K), 


		which gives T2 = 210 K =       – 63°C.





35.	If we assume argon is an ideal gas, we have 


		PV = nRT = (m/M)RT;


		P(35.0 ´ 10–3 m3) = [(105.0 kg)(103 g/kg)/(40 g/mol)](8.315 J/mol · K)(293 K), 


	which gives P = 1.83 ´ 108 Pa =       1.80 ´ 103 atm.





36.	For an ideal gas we have 


		PV = nRT = (m/M)RT;


	For the two gases we can write


		P1V1 = (m1/M1)RT1   and   P2V2 = (m2/M2)RT2 , which can be combined to give


		(P2/P1)(V2/V1) = (m2/m1)(M1/M2)(T2/T1);


		[(7.00 atm + 1.00 atm)/(8.70 atm + 1.00 atm)](1) = (m2/30.0 kg)(32 g/mol/4 g/mol)(1), 


	which gives m2 =       3.09 kg He.





37.	The density of an ideal gas is


		r = m/V = mP/nRT = MP/RT.


	The net lift is the buoyant force less the weight of gas in the balloon:


		Flift = (rcold – rhot)gV = (MP/R)[(1/Tcold) – (1/Thot)]gV;


		2700 N = [(29 g/mol)(1.013 ´ 105 Pa)/(8.315 J/mol · K)(103 g/kg)] ´


											[(1/273 K) – (1/Thot)](9.80 m/s2)(1800 m3),


	which gives Thot = 310 K =       37°C.


	The maximum altitude is limited because the pressure decreases with altitude, which decreases the density.  The buoyant force is due to the change in pressure over the height of the balloon, which is reduced by the decreased density.  There is also a limit on the temperature inside the balloon.





38.	The volume and pressure are constant.  For the fractional change in the number of moles, we can write


		?n/n 	= [(PV/RT2) – (PV/RT1)]/(PV/RT1) = (T1 – T2)/T2 


				= (288 K – 311 K)/(311 K) =        – 0.074 (7.4%).











39.	For the two states of the gas we can write


		P1V1 = nRT1   and   P2V2 = nRT2 , which can be combined to give


		(P2/P1)(V2/V1) = T2/T1 ;


		(P2/2.45 atm)(48.8 L/61.5 L) = (323.2 K/291.2 K), which gives P2 =       3.43 atm.





40.	For the two states of the gas we can write


		P1V1 = nRT1   and   P2V2 = nRT2 , which can be combined to give


		(P2/P1)(V2/V1) = T2/T1 ;


		(0.70 atm/1.00 atm)(V2/V1) = (278.2 K/293.2 K), which gives V2/V1 =       1.4´.





41.	If we assume water vapor is an ideal gas, we have 


		PV = nRT = (m/M)RT;


		(1.013 ´ 105 Pa)V = [m/(18 g/mol)(10–3 kg/g)](8.315 J/mol · K)(373 K), which gives


		m/V =       0.588 kg/m3.


	This is less than the listed value of 0.598 kg/m3.  We expect a difference because the tendency of steam to form droplets indicates an attractive force, so       water vapor is not an ideal gas.





42.	The pressure at the bottom of the lake is


		Pbottom = Ptop + rgh = 1.013 ´ 105 Pa + (1000 kg/m3)(9.80 m/s2)(37.0 m) = 4.64 ´ 105 Pa.


	For the two states of the gas we can write


		PbottomVbottom = nRTbottom ,  and   PtopVtop = nRTtop , which can be combined to give


		(Pbottom/Ptop)(Vbottom/Vtop) = Tbottom/Ttop ;


		(4.64 ´ 105 Pa/1.013 ´ 105 Pa)(1.00 cm3/Vtop) = (278.7 K/294.2 K), which gives Vtop =       4.83 cm3.





43.	If we write the ideal gas law as PV = NkT, we have


		N/V = P/kT = (1.013 ´ 105 Pa)/(1.38 ´ 10–23 J/K)(273 K) =       2.69 ´ 1025 molecules/m3.





44.	We find the number of moles from


		n  = rV/M = (1.000 g/cm3)(1.000 ´ 103 cm3)/(18 g/mol) =      55.6 mol.


	For the number of molecules we have


		N = nNA = (55.6 mol)(6.02 ´ 1023 molecules/mol) =       3.34 ´ 1025 molecules.





45.	We find the number of moles in one breath from


		PV = nRT;


		(1.013 ´ 105 Pa)(2.0 ´ 10–3 m3) = n(8.315 J/mol · K)(300 K), which gives n = 8.12 ´ 10–2 mol.


	For the number of molecules in one breath we have


		N = nNA = (8.12 ´ 10–2 mol)(6.02 ´ 1023 molecules/mol) =       4.9 ´ 1022 molecules.





46.	(a)	We find the number of moles from


			n  	= r&V/M = r&4pR2d/M 


				= (1000 kg/m3)3p(6.4 ´ 106 m)2(3 ´ 103 m)(103 g/kg)/(18 g/mol) =      6 ´ 1022 mol.


	(b)	For the number of molecules we have


			N = nNA = (6 ´ 1022 mol)(6.02 ´ 1023 molecules/mol) =       4 ´ 1046 molecules.



































47.	The volume and mass are constant.  For the two states of the gas we can write


		P1V1 = nRT1 ,   and   P2V2 = nRT2 , which can be combined to give


		P2/P1 = T2/T1 ;


		(P2/1.00 atm) = (453 K/293 K), which gives P2 = 1.55 atm.


	We find the length of a side of the box from


		V = L3;


		5.1 ´ 10–2 m3 = L3, which gives L = 0.371 m.


	The net force is the same on each side of the box.  Because there is atmospheric pressure outside the box, the net force is


		F = A ?P = L2(P2 – P1) = (0.371 m)2(1.55 atm – 1.00 atm)(1.013 ´ 105 Pa/atm) =       7.7 ´ 103 N.


	Note that we have assumed no change in dimensions from the increased pressure.





48.	We find the number of moles in one breath from


		PV = nRT;


		(1.013 ´ 105 Pa)(2.0 ´ 10–3 m3) = n(8.315 J/mol · K)(300 K), which gives n = 8.12 ´ 10–2 mol.


	For the number of molecules in one breath we have


		N = nNA = (8.12 ´ 10–2 mol)(6.02 ´ 1023 molecules/mol) = 4.9 ´ 1022 molecules.


	We assume that all of the molecules from the last breath that Galileo took are uniformly spread throughout the atmosphere, so the fraction that are in one breath is given by V/Vatmosphere .  We find the number now in one breath from


		N ¢/N = V/Vatmosphere = V/4pR2h;


		N ¢/(4.9 ´ 1022 molecules) = (2.0 ´ 10–3 m3)/4p(6.4 ´ 106 m)2(10 ´ 103 m),


	which gives N ¢  ˜        20 molecules.





49.	(a)	For the constant-volume gas thermometer, we have


			T = (273.16 K)(P/Ptp);


			(444.6 + 273.15) K = (273.16 K)(187 torr/Ptp), which gives Ptp =      71.2 torr.


	(b)	We find the temperature read by the thermometer from


			T = (273.16 K)(P/Ptp) = (273.16 K)(112 torr/71.2 torr) = 430 K =       157°C.





50.	For the constant-volume gas thermometer, we have


		T = (273.16 K)(P/Ptp);


		(100.00 + 273.15) K = (273.16 K)(P/Ptp), which gives P/Ptp =      1.3660.





51.	(a)	From Fig. 17–16, we read a temperature of 373.34 K from the oxygen curve at a pressure of 268 torr.


		Thus the inaccuracy is


			?T = 373.34 K – (273.15 + 100.00) K =      0.19 K.


	(b)	As a percentage, this is


			(?T/T)100 = (0.19 K/373.15)100 =      0.051%.


�





52.	The two temperatures of the gas are


		T1 	= (273.16 K)(P1/Ptp) 


			= (273.16 K)(218 torr/286 torr) = 208.21 K;


		T2 	= (273.16 K)(P2/Ptp) 


			= (273.16 K)(128 torr/163 torr) = 214.51 K.


	For a constant-volume thermometer, the actual temperature is


		�


	We do this limiting procedure by assuming a linear relation and extrapolating to Ptp = 0:


		(T – T1)/(P1 – 0) = (T – T2)/(P2 – 0);


		(T - 208.21 K)/286 torr = (T – 214.51 K)/163 torr, which gives T =     222.9 K.








53.	(a)	The tape will expand, so the numbers will be beyond the true length, so it will read      low.


	(b)	The percentage error will be


			(?L/L)(100) = (La ?T/L)(100) = (a ?T)(100) = [12 ´ 10–6 (C°)–1](34°C – 20°C)(100) =      0.017%.





54.	Because we neglect the glass expansion, when the 300 mL cools to room temperature, the change in volume of the water will be


		?V = bV0 ?T = [210 ´ 10–6 (C°)–1](300 mL)(20°C – 80°C) =      – 3.8 mL (– 1.3%).





55.	For the two conditions of the gas in the cylinder, we can write


		P1V = n1RT,   and   P2V = n2RT, which can be combined to give


		P2/P1 = n2/n1 ;


		(5 atm + 1 atm)/(35 atm + 1 atm)) = n2/n1 , which gives n2/n1 =       1/6.





56.	The ideal gas law is


		PV = nRT = (m/M)RT,


	where m is the mass and M is the molecular weight.  We write this as


		P = (m/V)RT/M = rRT/M.





57.	We use the ideal gas law:


		PV = NkT;


		(1.013 ´ 105 Pa)(8.0 m)(6.0 m)(4.2 m) = N(1.38 ´ 10–23 J/K)(293 K), 


	which gives N =       5.1 ´ 1027 molecules.


	We find the number of moles from


		n = N/NA = (5.05 ´ 1027 molecules)/(6.02 ´ 1023 molecules/mol) =      8.4 ´ 103 mol.





58.	We use the ideal gas law:


		PV = NkT,   or   


		N/V = P/kT = (1 ´ 10–12 N/m2)/(1.38 ´ 10–23 J/K)(273 K)(106 cm3/m3) =       3 ´ 102 molecules/cm3.





59.	The pressure at a depth h is


		P = P0 + rgh = 1.013 ´ 105 Pa + (1000 kg/m3)(9.80 m/s2)(10 m) = 1.99 ´ 105 Pa.


	For the two states of the gas we can write


		PV = nRT,   and   P0V0 = nRT, which can be combined to give


		P/P0 = V0/V;


		(1.99 ´ 105 Pa/1.013 ´ 105 Pa) = (V0/5.5 L), which gives V0 =       11 L.


	This doubling of the volume is definitely      not advisable.
























































60.	When the rod has a length L, a small (differential) change in temperature will cause a small (differential) change in length:


		dL = aL dT,  or  dL/L = a dT.


	(a)	If we integrate this for a constant a, we get


			�EMBED Word.Picture.8���


	(b)	If a = a(T), we have


			�EMBED Word.Picture.8���


	(c)	If a = a0 + bT, we have


			�EMBED Word.Picture.8���





61.	(a)	The ideal gas law is


			PV = nRT = (m/M)RT;


			(1.013 ´ 105 Pa)(770 m3) = [m/(29 g/mol)](8.315 J/mol · K)(293 K),


		which gives m = 9.3 ´ 105 g =       9.3 ´ 102 kg.


	(b)	At the lower temperature we have


			(1.013 ´ 105 Pa)(770 m3) = [m/(29 g/mol)](8.315 J/mol · K)(263 K),


		which gives m = 1.03 ´ 106 g = 10.3 ´ 102 kg.


		Thus the mass that has entered the house is 10.3 ´ 102 kg – 9.3 ´ 102 kg =       1.0 ´ 102 kg.





62.	(a)	The ideal gas law is


			PV = nRT.


		For a small change in volume at constant pressure we have


			P dV = nR dT,   or   


			dV/V = dT/T.


		The thermal expansion is dV/V = b dT, so we see that b = 1/T.


		At 293 K we have


			b = 1/293 K = 3.41 ´ 10–3 (C°)–1, which agrees with the value of 3400 ´ 10–6 (C°)–1 in Table 17–1.


	(b)	When the pressure and volume change at constant temperature, we can differentiate the 


		ideal gas law:


			P dV + V dP = 0 ,   or   dV/V = – dP/P.


		From the definition of the bulk modulus, we have


			B  = – dP/(dV/V) = – dP/(– dP/P) = P.





63.	The pressure on a small area of the surface can be considered to be due to the weight of the air column above the area:


		P = Mg/A.


	When we consider the total surface of the Earth, we have


		Mtotal 	= PAtotal/g = P4pR2/g


				= (1.013 ´ 105 Pa)4p(6.37 ´ 106 m)2/(9.80 m/s2) = 5.27 ´ 1018 kg.


	If we use the average mass of an air molecule, we find the number of molecules from


		N = Mtotal/m = (5.27 ´ 1018 kg)/(28.8 u)(1.66 ´ 10–27 kg) =       1.1 ´ 1044 molecules.








64.	(a)	The volume of the bulb is so much greater than the volume of mercury in the tube that we can 


		ignore any changes in the tube dimensions.  The additional length of the mercury column in the tube 


		will be due to the increased expansion of the mercury in the bulb compared to the expansion of the 


		glass bulb.  The volume of mercury that adds to the length in the tube is 


			?V	= ?Vmercury – ?Vglass = V0bmercury ?T – V0bglass ?T = V0(bmercury – bglass)?T 


				= (0.315 cm3)[180 ´ 10–6 (C°)–1 – 9 ´ 10–6 (C°)–1](33.0°C – 11.5°C) = 1.16 ´ 10–3 cm3.


		We find the additional length from


			L = ?V/Atube = ?V/#pd2 = 4(1.16 ´ 10–3 cm3)/p(0.0140 cm)2 =      7.52 cm.


	(b)	If we combine the two expressions from part (a), we get


			L#pd2 = ?V = V0(bmercury – bglass)?T, which gives       L = 4V0(bmercury – bglass)?T/pd2.





65.	 We find the molecular density from the ideal gas law:


		PV = NkT,   or   


		N/V = P/kT = (1.013 ´ 105 Pa)/(1.38 ´ 10–23 J/K)(273 K)(106 cm3/m3) = 2.69 ´ 1019 molecules/cm3.


	If we assume that each molecule occupies a cube of side a, we can find a, which is the average distance between molecules, from the volume occupied by a molecule:


		V/N = a3;


		1/(2.69 ´ 1019 molecules/cm3) = a3, which gives a =       3.3 ´ 10–7 cm.





66.	(a)	If V0Fe is the volume of the iron and V0Hg is the volume of mercury that is displaced, the 


		fraction of the volume of the iron that is submerged is


			f = V0Hg/V0Fe .


		Each volume will increase as the temperature is raised, so the new fraction will be


			f ¢= V0Hg(1 + bHg ?T)/V0Fe(1 + bFe ?T) = f(1 + bHg ?T)/(1 + bFe ?T).


		Because b ?T « 1, we use the approximation


			1/(1 + bFe ?T) ˜ 1 – bFe ?T,  so we have


			f ¢= f (1 + bHg ?T)(1 – bFe ?T) = f [1 + bHg ?T – bFe ?T – bHgbFe(?T)2] ,   or   


			(f ¢ – f )/f = bHg ?T – bFe ?T – bHgbFe(?T)2.


		The last term is the product of two small numbers, so it can be neglected, and we have


			?f/f = bHg ?T – bFe ?T = (bHg – bFe)?T.


		Because bHg > bFe , the fraction that is submerged will increase, so the cube will float      lower.


	(b)	For the percent change in the fraction submerged, we have


			(?f/f )(100)	= (bHg – bFe)(?T)(100)


							= [180 ´ 10–6 (C°)–1 – 35 ´ 10–6 (C°)–1](25°C – 0°C)(100) =       0.36%.





67.	We treat the circumference of the band as a length, which will expand according to


		2pR = 2pR0(1 + a ?T),   or


		R – R0 = R0a ?T = (6.38 ´ 106 m)[12 ´ 10–6 (C°)–1](35°C – 20°C) =      1.1 ´ 103 m.





68.	We consider a fixed mass of iron.  The change in volume from the temperature change is 


		?VT = bV0 ?T.


	The change in volume from the pressure change depends on the bulk modulus:


		?VP = – (V0/B) ?P. 


	Because the density is mass/volume, for the fractional change in the density we have


		?r/r0 	= [(1/V) – (1/V0)]/(1/V0) = (V0 – V)/V ˜ (V0 – V)/V0 = – ?V/V0


				= – b ?T + ?P/B 


				= – [35 ´ 10–6 (C°)–1](2000°C – 20°C) + (5000 atm)(1.013 ´ 105 N/m2 · atm)/(90 ´ 109 N/m2) 


				= – 0.064 =       – 6.4%.




















69.	As the oxygen expands into the atmosphere, we can find the volume it would occupy at atmospheric pressure.  For the two states of the gas we can write


		P1V1 = nRT1   and   P2V2 = nRT2 , which can be combined to give


		(P2/P1)(V2/V1) = T2/T1 ;


		[(1.013 ´ 105 Pa)/(1.38 ´ 107 Pa + 1.013 ´ 105 Pa)](V2/16 L) = 1, which gives V2 = 2.20 ´ 103 L.


	If we ignore the 16 L left in the tank, we find the time from


		t = V2/rate = (2.20 ´ 103 L)/(2.4 L/min) = 915 min =      15 h.





70.	We find the number of moles in the balloon from


		PV = nRT;


		(1.05 atm)(1.013 ´ 105 Pa/atm))p(0.180 m)3 = n(8.315 J/mol · K)(293 K), which gives n =      1.07 mol.


	The mass of the helium is


		m = nM = (1.07 mol)(4 g/mol) =       4.27 g.





71.	We consider a fixed mass of the substance:


		m = r0V0 = rV = rV0(1 + b ?T);


		r0 = r(1 + b ?T);


		0.68 ´ 103 kg/m3 = r{1 + [950 ´ 10–6 (C°)–1](32°C – 0°C)}, which gives r =      0.66 ´ 103 kg/m3.





72.	We can treat the change in radius as a simple change in length, so we have


		R = R0(1 + a ?T).


	The difference in the radii of the lid and jar is


		?R = Rbrass – Rglass = R0(1 + abrass ?T) – R0(1 + aglass ?T)


			= R0(abrass – aglass) ?T


			= (4.0 cm)[19 ´ 10–6 (C°)–1 – 9 ´ 10–6 (C°)–1](60°C – 20°C) =       1.6 ´ 10–3 cm.





73.	We find the temperature change that would produce a change in length equal to the accuracy:


		?L = aL0 ?T;


		± 1.0 ´ 10–6 m = [9.0 ´ 10–6 (C°)–1](1.00 m) ?T, which gives ?T =       ± 0.11 C°.





74.	Because brass has a larger coefficient of expansion, a compressive stress will be created in the brass and a tensile stress will be created in the concrete so they have the same length.  Thus the change in length from the two causes for the brass will be equal to the change in length for the concrete:


		(?Lthermal + ?Lstress)brass = (?Lthermal + ?Lstress)concrete.


	We assume the stress has the same magnitude in the brass and the concrete:


		abrassL0 ?T – (stress)L0/Ebrass = aconcreteL0 ?T + (stress)L0/Econcrete ,   or 


		(stress)[(1/Econcrete) + (1/Ebrass)] = (abrass – aconcrete) ?T;


		(stress)[(1/20 ´ 109 N/m2) – (1/100 ´ 109 N/m2)] = [19 ´ 10–6 (C°)–1 – 12 ´ 10–6 (C°)–1](20 C°), 


	which gives stress = 3.5 ´ 106 N/m2.


	The ultimate tensile strength of the concrete is 2 ´ 106 N/m2, so it will       not stay in one piece.





75.	(a)	If P refers to the pressure in the atmosphere, for the two states of the gas we can write


			1.05P0V0 = nRT0   and   1.05PV = nRT1 , which can be combined to give


			(P/P0)(V/V0) = T1/T0 .


		When we use the dependence of the pressure in the atmosphere on the altitude, 


			P = P0 e –cy, where c = r0g/P0 , we get


			(P0 e –cy/P0)(V/V0) = T1/T0 ,  or  V = V0(T1/T0) e +cy.


	(b)	The density of the air is


			r = m/V, so


			r/r0 = V0/V = (P/P0)(T0/T1).


		The buoyant force at an altitude y is 


			Fbuoy = rgV = r0(P/P0)(T0/T1)gV0(T1/T0)e +cy = r0 e –cygV0 e +cy  = r0gV0  = Fbuoy0 .





76.	(a)	For the two states of the gas we can write


			P1V1 = nRT1   and   P2V2 = nRT2 , which can be combined to give


			(P2/P1)(V2/V1) = T2/T1 ;


			(1.00 atm/200 atm)(V2/11.3 L) = 1, which gives V2 =       2.26 ´ 103 L.


	(b)	On the surface, because the air expands as the person breathes, we have


			t = V2/rate = (2.26 ´ 103 L)/(2.0 L/breath)(12 breaths/min) = 94 min =      1.6 h.


	(c)	The pressure on the lungs at the depth of 20.0 m is


			P3 	= P1 + rgh 


				= 1.00 atm + (1.025 ´ 103 kg/m3)(9.80 m/s2)(20.0 m)/(1.013 ´ 105 Pa/atm) = 2.98 atm.


		We find the volume the air would occupy at this pressure and temperature:


			(P3/P1)(V3/V1) = T3/T1 ;


			(2.98 atm/200 atm)(V2/11.3 L) = (283 K/293 K), which gives V2 = 7.33 ´ 102 L.


		Thus the time is


			t = V3/rate = (7.33 ´ 102 L)/(2.0 L/breath)(12 breaths/min) =       30 min.





�


77.	The arc of the composite strip subtends an angle q, as 


	shown in the diagram.  We take the average length of 


	each strip, of thickness d, as the length of its centerline:


		Lbrass = (R + !d)q = L0(1 + abrass ?T);


		Lsteel = (R – !d)q = L0(1 + asteel ?T).


	If we divide the two equations, we get


		(R + !d)/(R – !d) = (1 + abrass ?T)/(1 + asteel ?T);	


		[1 + (d/2R)]/[1 – (d/2R)] = (1 + abrass ?T)/(1 + asteel ?T). 


	Because d/2R « 1 and a ?T « 1, we can use the approximation, 


		1/(1 ± x) ˜ 1 — x:


		[1 + (d/2R)][1 + (d/2R)] = (1 + abrass ?T)(1 – asteel ?T).


	When we expand each side and keep only first-order terms, 


	we have


		1 + (d/R) = 1 + (abrass – asteel) ?T,   or


		R 	= d/(abrass – asteel) ?T


			= (2.0 ´ 10–3 m)/{[19 ´ 10–6 (C°)–1] – [12 ´ 10–6 (C°)–1]}(100°C – 20°C) =       3.6 m.
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