CHAPTER 18 – Kinetic Theory of Gases



1.	(a)	The average kinetic energy depends on the temperature:

			!mvrms2 = *kT = *(1.38 ´ 10–23 J/K)(273 K) =        5.65 ´ 10–21 J.

	(b)	For the total translational kinetic energy we have

			K	= N(!mvrms2) = *nNAkT 

				= *(2.0 mol)(6.02 ´ 1023 molecules/mol)(1.38 ´ 10–23 J/K)(293 K) =        7.3 ´ 103 J.



2.	The average kinetic energy depends on the temperature:

		!mvrms2 = *kT, which gives

		vrms = (3kT/m)1/2  = [3(1.38 ´ 10–23 J/K)(6000 K)/(4 u)(1.66 ´ 10–27 kg/u)]1/2 =       6.1 ´ 103 m/s.



3.	The average kinetic energy depends on the temperature:

		!mvrms2 = *kT.

	If we form the ratio for the two temperatures, we have

		(vrms2/vrms1)2 = T2/T1 = 373 K/273 K, which gives vrms2/vrms1 =       1.17.



4.	The average kinetic energy depends on the temperature:

		!mvrms2 = *kT. 

	We form the ratio at the two temperatures:

		(vrms2/vrms1)2 = T2/T1 ;

		(2)2 = T2/293 K, which gives T2 = 1172 K =       899°C.



5.	(a)	We find the mean speed from

			vrms = (?v)/N = (6 + 2 + 4 + 6 + 0 + 4 + 1 + 8 + 5 + 3 + 7 + 8)/12 =       4.5.

	(b)	We find the rms speed from

			vrms = [(?v2)/N]1/2 = [(62 + 22 + 42 + 62 + 02 + 42 + 12 + 82 + 52 + 32 + 72 + 82)/12]1/2 =       5.2.

	Note that this is greater than the mean speed of 4.5.



6.	The average kinetic energy depends on the temperature:

		!mvrms2 = *kT. 

	We treat the small changes as differentials.  We find the relationship between the changes by differentiating:

		mvrms dvrms = *k dT,  or, after dividing by !mvrms2 = *kT,

		2 dvrms/vrms = dT/T;

		2(0.010vrms)/vrms = dT/293.2 K, which gives dT = 5.9 K.

	Thus the new temperature is 

		T + dT = 293.2 K + 5.9 K = 299.1 K =       25.9°C.



7.	The average kinetic energy depends on the temperature:

		!mvrms2 = *kT. 

	We form the ratio at the two temperatures, and use the ideal gas law:

		(vrms2/vrms1)2 = T2/T1 = P2V2/P1V1 = P2/P1 ;

		(vrms2/vrms1)2 = 2, which gives vrms2/vrms1 =       v2.



8.	The average kinetic energy depends on the temperature:

		!mvrms2 = *kT,   or   kT/m = @vrms2.

	With M the mass of the gas and m the mass of a molecule, we write the ideal gas law as

		PV = NkT = (M/m)kT,   or

		P = (M/V)(kT/m) = r(@vrms2) = @rvrms2,   or   vrms = (3P/r)1/2.









9.	The average kinetic energy depends on the temperature:

		!mvrms2 = *kT. 

	We form the ratio at the two temperatures, and use the ideal gas law:

		(m2/m1)(vrms2/vrms1)2 = T2/T1 = 1, so we have

		(vrms2/vrms1)2 = (m1/m2),   or   vrms2/vrms1 = (m1/m2)1/2.



10.	We use the ideal gas law to find the temperature:

		PV = nRT;

		(2.1 atm)(1.013 ´ 105 Pa/atm)(8.5 m3) = (1300 mol)(8.315 J/mol · K)T, 

	which gives T = 167 K.

	The average kinetic energy depends on the temperature:

		!mvrms2 = *kT, which gives

		vrms = (3kT/m)1/2  = [3(1.38 ´ 10–23 J/K)(167 K)/(28 u)(1.66 ´ 10–27 kg/u)]1/2 =       3.9 ´ 102 m/s.



11.	(a)	The average kinetic energy depends on the temperature:

			!mvrms2 = *kT, which gives

			vrms = (3kT/m)1/2  = [3(1.38 ´ 10–23 J/K)(273 K)/(32 u)(1.66 ´ 10–27 kg/u)]1/2 =       461 m/s.

	(b)	The molecule, on the average, will have a component in one direction less than the average 

		speed.  If we take the rms speed as the average speed, from the analysis of the molecular 

		motion, we know that (vx2)av = @vrms2.  Thus the time to go back and forth is

			t = 2¬/(vx)av ˜ 2¬v3/vrms .

		The frequency of collisions with one wall is

			N = 1/t = vrms/2¬v3 = (461 m/s)/2(7.0 m)v3 =       19 s–1.



12.	We find the molecular density from the ideal gas law:

		PV = NkT,   or   

		N/V = P/kT = (1.013 ´ 105 Pa)/(1.38 ´ 10–23 J/K)(273 K)(106 cm3/m3) = 2.69 ´ 1019 molecules/cm3.

	If we assume that each molecule occupies a cube of side a, we can find a, which is the average distance between molecules, from the volume occupied by a molecule:

		V/N = a3;

		1/(2.69 ´ 1019 molecules/cm3) = a3, which gives a =       3.3 ´ 10–7 cm.



13.	The average kinetic energy depends on the temperature:

		!mvrms2 = *kT. 

	We form the ratio for the two masses:

		(m235/m238)(vrms235/vrms238)2 = T2/T1 = 1, so we have

		(vrms235/vrms238)2 = (m238/m235),   or   

		vrms235/vrms238 = (m238/m235)1/2 = {[6(19 u) + 238 u]/[6(19 u) + 235 u]}1/2 =       1.00429.



14.	(a)	We find the average speed from

		vrms 	= (?v)/N 

				= [(2)(10 m/s) + (7)(15 m/s) + (4)(20 m/s) + (3)(25 m/s) + 

									(6)(30 m/s) + (1)(35 m/s) + (2)(40 m/s)]/25 =       23 m/s.

	(b)	We find the rms speed from

		vrms = [(?v2)/N]1/2 = [(2)(10 m/s)2 + (7)(15 m/s)2 + (4)(20 m/s)2 + (3)(25 m/s)2 + 

									(6)(30 m/s)2 + (1)(35 m/s)2 + (2)(40 m/s)2]/25]1/2 =       25 m/s.

		Note that this is greater than the average speed of 23 m/s.

	(b)	The speed with the largest number of particles is the most probable speed:      15 m/s.













15.	(a)	The total number of molecules is represented by the area under the Maxwell distribution, which 

		we find by integration:

			�

		This can be simplified by a change in variable:

			�

		The integral becomes

			�

		where we have used the result from integral tables.

	(b)	We make the same change in variable for the integral to find the rms speed:

			�



16.	(a)	From Figure 18–7 we see that at atmospheric pressure CO2 can exist as a       solid or vapor.

	(b)	From Figure 18–7 we see that CO2 may be a liquid when      

			5.11 atm < P < 73 atm, and – 56.6°C < T < 31°C.



17.	From Figure 18–7 we see that CO2 is a      vapor      at 30 atm and 30°C.



18.	(a)	From Figure 18–6 we see that the phase is        vapor.

	(b)	From Figure 18–6 we see that the phase is        solid.



19.	(a)	From Figure 18–6 we see that water is a gas at 220 atm and 100°C.  As we lower the pressure, it 

		becomes a liquid at 218 atm, and a vapor at 1.0 atm.

	(b)	Water is a gas at 220 atm and 0.0°C.  As we lower the pressure, it becomes a liquid at 218 atm, a 

		solid at 1.0 atm, and a vapor at a pressure < 0.006 atm.



20.	The saturated vapor pressure at 25°C is 23.8 torr.

	At 50% humidity the partial vapor pressure is

		P = 0.50Ps = 0.50(23.8 torr) = 11.9 torr.

	This corresponds to a saturated vapor pressure between 10°C and 15°C.  We assume a linear change between values listed in Table 18–2 and use the values at 10°C and 15°C to find the dew point;

		T = 10°C + [(15°C – 10°C)(11.9 torr – 9.21 torr)/(12.8 torr – 9.21 torr)] =       14°C.



21.	Water boils when the saturated vapor pressure equals the air pressure.  From Table 18–2 we see that the saturated vapor pressure at 90°C is 

		7.01 ´ 104 Pa =       0.69 atm.



22.	Water boils when the saturated vapor pressure equals the air pressure.  From Table 18–2 we see that 0.85 atm = 8.6 ´ 104 Pa lies between 90°C and 100°C.  We use the values at 90°C and 100°C to find the temperature;

		T = 90°C + [(100°C – 90°C)(8.6 ´ 104 Pa – 7.0 ´ 104 Pa)/(10.1 ´ 104 Pa – 7.0 ´ 104 Pa)] =       95°C.



23.	We find the saturated vapor pressure from

		P = (RH)Ps ;

		530 Pa = 0.40Ps , which gives Ps = 1325 Pa.

	This saturated vapor pressure corresponds to a temperature between 10°C and 15°C.  We use the values at 10°C and 15°C to find the temperature;

		T = 10°C + [(15°C – 10°C)(1.325 ´ 103 Pa – 1.23 ´ 103 Pa)/(1.71 ´ 103 Pa – 1.23 ´ 103 Pa)] =       11°C.



24.	From Table 18–2 we see that the saturated vapor pressure at 25°C is 3.17 ´ 103 Pa.  At 35% humidity the partial vapor pressure is

		P = 0.35Ps = 0.35(3.17 ´ 103 Pa) =       1.11 ´ 103 Pa.



25.	Water boils when the saturated vapor pressure equals the air pressure.  From Table 18–2 we see that the saturated vapor pressure at 120°C is 

		1.99 ´ 105 Pa =       1.96 atm.



26.	From Table 18–2 we see that the saturated vapor pressure at 25°C is 3.17 ´ 103 Pa.  Water can evaporate until the saturated vapor pressure is reached.  The initial pressure is (relative humidity)(saturated vapor pressure).  Because the volume and temperature are constant, we use the ideal gas law to find the number of moles that can evaporate:

		?n	= ?P(V/RT) = (1 – RH)PsV/RT

			= (1 – 0.80)(3.17 ´ 103 Pa)(240 m3)/(8.315 J/mol · K)(298 K) = 61.4 mol.

	We find the mass from

		m = M ?n = (18 g/mol)(61.4 mol) = 1.1 ´ 103 g =        1.1 kg.



27.	Because there is only steam in the autoclave, the saturated vapor pressure is the gauge pressure plus atmospheric pressure:

		1.0 atm + 1.0 atm = 2.0 atm = 2.03 ´ 105 Pa.  

	From Table 18–2 we see this saturated vapor pressure occurs at        120°C.



28.	Because the outside air is at the dew point, its vapor pressure is the saturated vapor pressure at 5°C, which is 872 Pa.  We consider a constant mass of gas, that is a fixed number of moles, that moves from outside to inside.  Because the pressure is constant, we have

		V2/T2 = V1/T1 .

	The vapor pressure inside is 

		P2 = nRT2/V2 = nRT1/V1 = P1 = 872 Pa.

	The saturated vapor pressure at 25°C is 3170 Pa, so the relative humidity is

		(872 Pa)/(3170 Pa) = 0.28 =       28%.



29.	(a)	The molar density is

			V/n = (0.40 L)(10–3 m3/L)/(1.0 mol) = 0.40 ´ 10–3 m3/mol.

		We find the pressure from the Van der Waals equation:

			[P + a/(V/n)2][(V/n) – b] = RT;

			[P + (0.14 N · m4/mol2)/(0.40 ´ 10–3 m3/mol)2](0.40 ´ 10–3 m3/mol – 3.2 ´ 10–5 m3/mol) = 

														(8.315 J/mol · K)(273 K),

		which gives P =       5.3 ´ 106 Pa.

	(b)	We find the pressure from the ideal gas equation:

			P(V/n) = RT;

			P(0.40 ´ 10–3 m3/mol) = (8.315 J/mol · K)(273 K), which gives P =       5.7 ´ 106 Pa.



30.	If we consider one mol of oxygen, the volume occupied by the molecules is b, so the volume occupied by one molecule is b/NA.  If we assume the molecule is a sphere of radius r, we have

		b/NA = )pr3;

		(3.2 ´ 10–5 m3/mol)/(6.02 ´ 1023 molecules/mol) = )pr3, 

	which gives r = 2.3 ´ 10–10 m, so d =       4.6 ´ 10–10 m.

	Note: see Problem 32 for a refinement of this calculation.













31.	(a)	We write the Van der Waals equation as

			P = – (an2/V2) + nRT/(V – nb).

		When we differentiate, with the temperature constant, we get

			dP/dV = (2an2/V3) – nRT/(V – nb)2.

		At the critical point, we have

			dP/dV = 0 = (2an2/Vcr3) – nRTcr/(Vcr – nb)2 = [2an2(Vcr – nb)2 – nRTcrVcr3]/Vcr3(Vcr – nb)2, so

			2an(Vcr – nb)2 = RTcrVcr3.

		For the second derivative we get

			d2P/dV2 = – (6an2/V4) + 2nRT/(V – nb)3.

		Because the critical point is an inflection point, we have

			d2P/dV2 = 0 = – (6an2/Vcr4) + 2nRTcr/(Vcr – nb)3 = – [6an2(Vcr – nb)3 – 2nRTcrVcr4]/Vcr4(Vcr – nb)3, 

		so

			3an(Vcr – nb)3 = RTcrVcr4.

		When we divide the two equations, we get

			3(Vcr – nb) = 2Vcr ,   or   Vcr = 3nb.

		If we use this result in one of the equations, we get

			2an(3nb – nb)2 = RTcr(3nb)3, which gives   Tcr = 8a/27bR.

		For the pressure at the critical point, we have

			Pcr = – (an2/Vcr2) + nRTcr/(Vcr – nb) = – [an2/(3nb)2] + nR(8a/27bR)/(3nb – nb) = a/27b2.

	(b)	We find b from

			Tcr/Pcr = (8a/27bR)/(a/27b2) = 8b/R;

			(304 K)/(72.8 atm)(1.013 ´ 105 N/m2 · atm) = 8b/(8.315 J/mol · K), 

		which gives       b = 4.28 ´ 10–5 m3/mol.

		We find a from

			Tcr2/Pcr = (8a/27bR)2/(a/27b2) = 64a/27R2;

			(304 K)2/(72.8 atm)(1.013 ´ 105 N/m2 · atm) = 64a/27(8.315 J/mol · K)2, 

		which gives       a = 0.365 N · m4/mol2.



�

32.	(a)	If we consider the relative motion of one molecule with respect to 

		the other, we see that if the direction of motion of the center of one 

		molecule lies on a line that is within 2r of the center of the other 

		molecule, there will be a collision.  Thus the center of one molecule 

		is excluded from 	a sphere of radius 2r.

	(b)	If we consider one mol (NA molecules) of gas, the effective volume 

		occupied by the molecules is b.  

		From part (a) we see that each pair of molecules occupies an effective 

		volume equivalent to a sphere of radius 2r.  Thus we have

			b = ![)p(2r)3NA] = 16pr3NA/3.

	(c)	For CO2 we have

			4.2 ´ 10–5 m3/mol. = 16pr3(6.02 ´ 1023 molecules/mol)/3, 

		which gives r = 1.6 ´ 10–10 m, so d =       3.2 ´ 10–10 m.



33.	(a)	If we use the ideal gas law, PV = NkT, in the expression for the mean free path, we have

			¬M = 1/4pv2r2(N/V) = kT/4pv2r2P;

			1.0 m = (1.38 ´ 10–23 J/K)(273 K)/4pv2(1.5 ´ 10–10 m)2P, 

		which gives P = 9.4 ´ 10–3 Pa ˜      10–7 atm.

	(b)	For a mean free path equal to a diameter, we have

			¬M = 1/4pv2r2(N/V) = kT/4pv2r2P;

			3 ´ 10–10 m = (1.38 ´ 10–23 J/K)(273 K)/4pv2(1.5 ´ 10–10 m)2P, 

		which gives P = 3.1 ´ 107 Pa ˜      300 atm.









34.	(a)	If we use the ideal gas law, PV = NkT, in the expression for the mean free path, we find 

		the radius from 

			¬M = 1/4pv2r2(N/V) = kT/4pv2r2P;

			5.6 ´ 10–8 m = (1.38 ´ 10–23 J/K)(273 K)/4pv2r2(1.013 ´ 105 Pa), 

		which gives r = 1.93 ´ 10–10 m, so d =       3.9 ´ 10–10 m.

	(b)	For helium we have  

			¬M = 1/4pv2r2(N/V) = kT/4pv2r2P;

			25 ´ 10–8 m = (1.38 ´ 10–23 J/K)(273 K)/4pv2r2(1.013 ´ 105 Pa), 

		which gives r = 9.15 ´ 10–11 m, so d =       1.8 ´ 10–10 m.



35.	The length of a side of the cube is

		L = V1/3 = (4.4 ´ 10–3 m3)1/3 = 0.164 m.

	(a)	We assume that vigorous shaking will disperse the marbles throughout the box.  Because the 

		diameter of a marble ˜ 0.1L and there are on average about four marbles along a side,  we use the 

		approximation of an ideal gas:

			¬M = 1/4pv2r2(N/V) = 1/4pv2(0.75 ´ 10–2 m)2(70/4.4 ´ 10–3 m3) = 6.29 ´ 10–2 m =      6.3 cm.

	(b)	If the box is slightly shaken , all marbles will be on the floor of the box.  There are on average 

		about eight marbles along a side. Because 8(1.5 cm) = 12 cm < L, there will be space between 

		marbles.  The volume occupied by the marbles is

			Vb = A(2r) = 2L2r.

		We assume we can still use the expression for the mean free path:

			¬Mb = 1/4pv2r2(N/Vb) = 2L2r/4pv2r2N = v2L2/4prN 

				= v2(0.164 m)2/4p(0.75 ´ 10–2 m)(70) = 5.8 ´ 10–3 m =      0.58 cm.



36.	If we use the ideal gas law, PV = NkT, in the expression for the mean free path, we have

		¬M 	= 1/4pv2r2(N/V) = kT/4pv2r2P;

			= (1.38 ´ 10–23 J/K)(273 K)/4pv2(1.5 ´ 10–10 m)2(10–6 torr)(1.013 ´ 105 Pa/760 torr) = 71 m. 

	The time between collisions is proportional to the distance between collisions.  If we take the length of a side of the box for the distance between collisions with a wall (it will actually be slightly greater than this because a molecule on the average will not be moving perpendicular to a wall), we have

		molecular collisions/wall collisions = twall/tmolecule = L/¬M = (1.20 m)/(71 m) = 1.7 ´ 10–2 ˜      1/60. 



37.	We compare the rms speed of a hydrogen molecule with the rms speed of an air molecule:

		vrms,H/vrms,air = (3kT/MH)1/2/(3kT/Mair)1/2 =  (Mair/MH)1/2 = [(29 g/mol)/(2 g/mol)]1/2 = 3.8.

	Because the hydrogen molecules are moving much faster than the air molecules, we assume stationary targets with an effective radius of rH + rair.  Thus the mean free path is

		¬M 	= 1/p(rH + rair)2(N/V) = kT/p(rH + rair)2P

			= (1.38 ´ 10–23 J/K)(298 K)/p(1.0 ´ 10–10 m + 1.5 ´ 10–10 m)2(1.013 ´ 105 Pa) =      2 ´ 10–7 m.



38.	The electrons are  moving much faster than the air molecules and are much smaller.  Thus we assume stationary targets with an effective radius of rair.  The probability of collision is proportional to the distance the electron travels.  The mean free path is the distance in which the probability of collision is 1.  If we want a collision probability of 2% in the length of the cathode ray tube, we have

		¬M/1 = L/0.02.  

	Thus we have 

		¬M = L/0.02 = 1/prair2(N/V) = kT/prair2P;

		(0.38 m)/0.02 = (1.38 ´ 10–23 J/K)(300 K)/p(1.5 ´ 10–10 m)2P, 

	which gives P =      3.1 ´ 10–3 Pa = 2.3 ´ 10–5 torr.

	Note that we have assumed room temperature.











39.	(a)	If the average speed of a molecule is æ, the average time between collisions is

			?t = ¬M/æ, 

		so the frequency of collisions is

			f = 1/?t = æ/¬M.

		When we use the expression for the mean free path, we get

			f = æ/[1/4pv2r2(N/V)] = 4v2 pr2æN/V. 

	(b)	We make use of the ideal gas law and the Maxwell distribution to get  

			f 	= 4v2 pr2æN/V =  4v2 pr2(8kT/pm)1/2P/kT = 16r2P(p/kTm)1/2

				= 16(1.5 ´ 10–10 m)2(1.0 ´ 10–2 atm)(1.013 ´ 105 Pa) ´

						[p/(1.38 ´ 10–23 J/K)(293 K)(28 u)(1.66 ´ 10–27 kg/u)]1/2 =     4.7 ´ 107 s–1.



40.	From the Maxwell distribution, the average speed of an air molecule is

		æ = (8kT/pm)1/2 = [8(1.38 ´ 10–23 J/K)(273 K)/p(29 u)(1.66 ´ 10–27 kg/u)]1/2 = 446 m/s.

	From Problem 39, the collision frequency is

		f = æ/¬M = (446 m/s)/(9 ´ 10–8 m) =      5 ´ 109 s–1.



41.	For collisions of a type 1 molecule with type 1 molecules the volume of the cylinder along the path is

		p(2r1)2æ?t.

	For collisions of a type 1 molecule with type 2 molecules the volume of the cylinder along the path is

		p(r1 + r2)2æ ?t.

	The number of collisions of either type in a time ?t is

		# = n1p4r12æ ?t + n2p(r1 + r2)2æ  ?t.

	Thus the mean free path is

		¬M = æ ?t/# = 1/[4pr12 n1 + p(r1 + r2)2n2].



42.	The probability that a molecule will collide in a small distance dx is dx/¬M.  At an instant when we have N molecules, the average number that will collide in a distance dx is N dx/¬M.  Because every collision removes a molecule from the survivors, we have

		N dx/¬M = – dN,   or   dN/N = – dx/¬M.

	When we integrate, we get

		�



43.	From the result of Example 18–8, we have	

		�EMBED Word.Picture.8���

	Our experience is that the odor is detected much sooner than this, which means that convection is much more important than diffusion.



44.	From the result of Example 18–8, we have	

		�EMBED Word.Picture.8���

	The diffusion speed is

		v = ?x/t = (15 ´ 10–6 m)/(0.28 s) =        5.4 ´ 10–5 m/s.

	We find the rms speed from

		vrms = (3kT/m)1/2  = [3(1.38 ´ 10–23 J/K)(293 K)/(75 u)(1.66 ´ 10–27 kg/u)]1/2 =       3.1 ´ 102 m/s.











45.	(a)	From the ideal gas law, we have

			C0 = n/V = P/RT = (0.21)(1.013 ´ 105 Pa)/(8.315 J/mol · K)(293 K) = 8.7 mol/m3.

	(b)	The concentration change is 

			?C = C0 – !C0 = !C0 = !(8.7 mol/m3) = 4.35 mol/m3.

		We find the diffusion rate from

			J = DA ?C/?x = (1 ´ 10–5 m2/s)(2 ´ 10–9 m2)(4.35 mol/m3)/(2 ´ 10–3 m) =       4 ´ 10–11 mol/s.

	(c)	For the average concentration we have

			Cav = !(C0 + !C0) = &C0 = &(8.7 mol/m3) = 6.53 mol/m3.

		We find the average time from

			t = N/J = CavV/J = (6.53 mol/m3)(2 ´ 10–9 m2)(2 ´ 10–3 m)/(4 ´ 10–11 mol/s) =       0.6 s.



46.	We use the ideal gas law to find the temperature:

		PV = nRT;

		(3.42 atm)(1.013 ´ 105 Pa/atm)(12.8 m3) = (1800 mol)(8.315 J/mol · K)T, 

	which gives T = 296 K.

	The average kinetic energy depends on the temperature:

		!mvrms2 = *kT, which gives

		vrms = (3kT/m)1/2  = [3(1.38 ´ 10–23 J/K)(296 K)/(28 u)(1.66 ´ 10–27 kg/u)]1/2 =       514 m/s.



47.	The average kinetic energy depends on the temperature:

		!mvrms2 = *kT, which gives

		vrms = (3kT/m)1/2 = [3(1.38 ´ 10–23 J/K)(2.7 K)/(1 u)(1.66 ´ 10–27 kg/u)]1/2 =       2.6 ´ 102 m/s.

	We find the pressure from

		PV = NkT,   or   

		P 	= (N/V)kT = (1 atom/cm3)(106 cm3/m3)(1.38 ´ 10–23 J/K)(2.7 K) 

			=       4 ´ 10–17 N/m2 ˜ 4 ´ 10–22 atm.



48.	We find the total number of molecules from the total number of moles of water plus others:

		N 	= {[(0.70)/(18 g/mol)](6.02 ´ 1023 molecules/mol) + [(0.30)/(105 u)(1.66 ´ 10–24 g/u)]}(2.0 ´ 10–12 g) 

			= 4.7 ´ 1010 molecules.

	Because each molecule has an average kinetic energy of *kT, the total translational kinetic energy is

		K = *NkT = *(4.7 ´ 1010 molecules)(1.38 ´ 10–23 J/K)(310 K) =       3.0 ´ 10–10 J.



49.	(a)	We find the rms speed from

			vrms = (3kT/m)1/2  = [3(1.38 ´ 10–23 J/K)(310 K)/(89 u)(1.66 ´ 10–27 kg/u)]1/2 =       2.9 ´ 102 m/s.

	(b)	For the protein we have

			vrms 	= (3kT/m)1/2  = [3(1.38 ´ 10–23 J/K)(310 K)/(50,000 u)(1.66 ´ 10–27 kg/u)]1/2 

					=       12 m/s.



50.	(a)	We find the temperature from

			æ = (8kT/pm)1/2  ;

			1.12 ´ 104 m/s = [8(1.38 ´ 10–23 J/K)T/p(32 u)(1.66 ´ 10–27 kg/u)]1/2, which gives 

			T =       1.90 ´ 105 K.

	(b)	For helium atoms we have

			æ = (8kT/pm)1/2  ;

			1.12 ´ 104 m/s = [8(1.38 ´ 10–23 J/K)T/p(4 u)(1.66 ´ 10–27 kg/u)]1/2, which gives 

			T =       2.37 ´ 104 K.













51.	We find the average volume occupied by a molecule from the ideal gas law:

		PV = NkT,   or   

		V/N = kT/P = (1.38 ´ 10–23 J/K)(273 K)/(1.013 ´ 105 Pa) = 3.7 ´ 10–26 m3/molecule.

	The volume of a molecule is

		Vmolecule = )pr3 = )p(0.1 ´ 10–9  m)3 = 4 ´ 10–30 m3 ˜ 0.01% of average volume occupied by a molecule.

	Thus the assumption is       reasonable.

	If we consider the average volume occupied by a molecule to be a cube, the side of the cube (which we can use as the average distance between molecules) is

		¬ = (3.7 ´ 10–26 m3)1/3 = 3.3 ´ 10–9  m.

	If we scale the diameter of a molecule to the size of a ping-pong ball, for the average distance between molecules we have

		D = [(4 cm)/(0.2 ´ 10–9  m)](3.3 ´ 10–9  m) ˜      70 cm.



52.	If we consider one molecule moving in the container, the time between collisions with a particular wall, say one perpendicular to the x-axis, is

		?t = 2L/vx.

	If we approximate the average component from

		vx2 = @vrms2 = @(3kT/m) = kT/m,

	for the frequency of collision we have

		f = 1/?t = (kT/m)1/2/2L.

	Because this will be the average frequency for all the molecules, we have

		ftotal 	= nNAf = nNA(kT/m)1/2/2L 

				= (2.0 mol)(6.02 ´ 1023 molecules/mol) ´

						[(1.38 ´ 10–23 J/K)(293 K)/(32 u)(1.66 ´ 10–27 kg/u)]1/2/2(1.0 m) =      1.7 ´ 1026 s–1.



53.	The gravitational potential energy of a molecule at the top of the box is

		mgh = (32 u)(1.66 ´ 10–27 kg/u)(9.80 m/s2)(0.50 m) = 2.6 ´ 10–25 J.

	The average kinetic energy of a molecule is

		!mvrms2 = *kT = *(1.38 ´ 10–23 J/K)(293 K) = 6.1 ´ 10–21 J.

	Thus the ratio is

		mgh/!mvrms2 = (2.6 ´ 10–25 J)/(6.1 ´ 10–21 J) = 4.3 ´ 10–5, or      mgh =  4.3 ´ 10–5(!mvrms2) .

	It is        reasonable       to neglect the gravitational potential energy.



54.	From Table 18–2 we see that the saturated vapor pressure at 20°C is 2.33 ´ 103 Pa.  The vapor pressure is (relative humidity)(saturated vapor pressure).  Because the volume and temperature are constant, we use the ideal gas law to find the number of moles that must be removed:

		?n	= ?P(V/RT) = (RH2 – RH1)PsV/RT

			= (0.30 – 0.95)(2.33 ´ 103 Pa)(85 m2)(2.8 m)/(8.315 J/mol · K)(293 K) = – 148 mol.

	We find the mass from

		m = M ?n = (18 g/mol)(148 mol) = 2.7 ´ 103 g =        2.7 kg.



55.	For the two conditions of the gas in the cylinder, we can write

		P1V = nRT1 ,   and   P2V = nRT2 , which can be combined to give

		P2/P1 = T2/T1 ;

		P2/P1  = (563 K/393 K) =       1.43.

	The average kinetic energy depends on the temperature:

		!mvrms2 = *kT. 

	We form the ratio for the two temperatures:

		(vrms2/vrms1)2 = T2/T1 = (563 K/393 K), which gives vrms2/vrms1 =       1.20.









56.	(a)	The volume of each gas is !Vtank. We use the ideal gas law:

			PVO = NOkT;

			(10 atm + 1 atm)(1.013 ´ 105 Pa/atm)!(2800 cm3)/(106 cm3/m3) = NO(1.38 ´ 10–23 J/K)(293 K), 

		which gives       NO = 3.9 ´ 1023 molecules = NHe ,       because the molecular mass is not in the ideal 

		gas law.

	(b)	The average kinetic energy depends on the temperature:

			!mvrms2 = *kT.

		Because the gases are at the same temperature, the ratio of average kinetic energies is       1.

	(c)	We see that 

			(vrmsHe/vrmsO)2 = mO/mHe = (32 u)/(4 u), which gives vrmsHe/vrmsO =       2.8.



57.	The rms speed is the speed of the nitrogen molecules, so we have

		!mvrms2 = *kT;

		(28 u)(1.66 ´ 10–27 kg/u)[(40,000 km/h)/(3.6 ks/h)]2 = 3(1.38 ´ 10–23 J/K)T, 

	which gives T =      1.4 ´ 105 K.



58.	If we neglect the thermal energy of the water molecules in the liquid, the energy required to evaporate the water becomes the kinetic energy of the molecules in the vapor.  If mevap is the evaporated mass and m is the mass of a molecule, we have

		E = N(!mv2) = (mevap/m)(!mv2) = !mevapv2;

		2.45 ´ 103 J = !(1.00 ´ 10–3 kg)v2, which gives v =     2.2 ´ 103 m/s.

	The rms speed is

		vrms = (3kT/m)1/2 = [3(1.38 ´ 10–23 J/K)(293 K)/(18 u)(1.66 ´ 10–27 kg/u)]1/2 = 6.4 ´ 102 m/s.

	Thus we have

		v/vrms  = (2.2 ´ 103 m/s)/(6.4 ´ 102 m/s) =     3.5´.



59.	(a)	From Table 18–2 the saturated vapor pressure at 30°C is 4.24 ´ 103 Pa.

		At 40% humidity the water vapor pressure is

			P = 0.40Ps = 0.40(4.24 ´ 103 Pa) =       1.7 ´ 103 Pa.

	(b)	From Table 18–2 the saturated vapor pressure at 5°C is 8.72 ´ 102 Pa.

		At 80% humidity the water vapor pressure is

			P = 0.80Ps = 0.80(8.72 ´ 102 Pa) =       7.0 ´ 102 Pa.

	The ratio of summer to winter is 2.4.



60.	We find the pressure from the ideal gas equation:

		PidealV = nRT;

		Pideal(0.200 m3) = (8.50 mol)(8.315 J/mol · K)(300 K), which gives       Pideal = 1.060 ´ 105 Pa.

	We find the pressure from the Van der Waals equation:

		[PVW + a/(V/n)2][(V/n) – b] = RT;

		{PVW + (3.6 ´ 10–3 N · m4/mol2)/[(0.200 m3)/(8.50 mol)]2}[(0.200 m3)/(8.50 mol) – 4.2 ´ 10–5 m3/mol] = 

													(8.315 J/mol · K)(300 K),

		which gives       PVW = 1.062 ´ 105 Pa.

	The error is 

		[(Pideal – PVW)/PVW]100 = [(1.060 ´ 105 Pa. – 1.062 ´ 105 Pa)/(1.062 ´ 105 Pa)]100 =      – 0.2%.



61.	The mean free path is

		¬M = 1/4pv2r2(N/V) = 1/4pv2[!(1.0 ´ 10–10 m)]2[1 atom/(1 ´ 10–6 m3)] =       2 ´ 1013 m.



62.	If we use the ideal gas law, PV = NkT, in the expression for the mean free path, we have

		¬M = 1/4pv2r2(N/V) = kT/4pv2r2P.

	For the given data we have

		¬M = (1.38 ´ 10–23 J/K)(300 K)/4pv2(1.5 ´ 10–10 m)2(10 atm)(1.013 ´ 105 Pa/atm) =       1.0 ´ 10–8 m. 
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