CHAPTER 19 – Heat and the First Law of Thermodynamics



1.	The required heat flow is

		?Q = mc ?T = (30.0 kg)(4186 J/kg · C°)(95°C – 15°C) =       1.0 ´ 107 J.



2.	We find the temperature from

		?Q = mc ?T;

		7700 J = (3.0 kg)(4186 J/kg · C°)(T – 10.0°C), which gives T =       10.6°C.



3.	The heat flow generated must equal the kinetic energy loss:

		?Q = – (!mvf2 – !mvi2) = !m(vi2 – vf2) 

			= !(3.0 ´ 10–3 kg)[(400 m/s)2 – (200 m/s)2] =       1.8 ´ 102 J.



4.	We convert the units:

		?Q = mc ?T;

		1 Btu = (1 lb)(1.00 kcal/kg · C°)(1 F°)(0.454 kg/lb)(5 C°/9 F°) = 0.252 kcal;

		1 Btu = (0.252 kcal)(4186 J/kcal) = 1055 J.



5.	We find the mass per hour from

		?Q/t = (m/t)c ?T;

		7200 kcal/h = (m/t)(1.00 kcal/kg · C°)(50°C – 15°C), which gives m/t =       2.1 ´ 102 kg/h.



6.	We find the time from

		?Q = mc ?T;

		(350 W)t = (250 mL)(1.00 g/mL)(10–3 kg/g)(4186 J/kg · C°)(60°C – 20°C), which gives t =       120 s.



7.	The heat flow generated must equal the kinetic energy loss:

		?Q = !mv2 = !(1000 kg)[(95 km/h)/(3.6 ks/h)]2(1 kcal/4186 J) =       83 kcal.



8.	We find the specific heat from

		?Q = mc ?T;

		135 ´ 103 J = (5.1 kg)c (30°C – 20°C), which gives c =       2.6 ´ 103 J/kg · C°.



9.	The required heat flow is

		?Q = mc ?T = (16 L)(1.00 kg/L)(4186 J/kg · C°)(90°C – 20°C) =       4.7 ´ 106 J.



10.	We find the temperature from

		heat lost = heat gained;

		mwatercwater ?Twater = mglasscglass ?Tglass;

		(135 mL)(1.00 g/mL)(10–3 kg/g)(4186 J/kg · C°)(T – 39.2°C) = 

											(0.035 kg)(840 J/kg · C°)(39.2°C – 21.6°C), 

	which gives T =       40.1°C.



11.	If all the kinetic energy in the hammer blows is absorbed by the nail, we have

		K = 10(!mv2) = mc ?T;

		10[!(1.20 kg)(6.5 m/s)2] = (0.014 kg)(450 J/kg · C°) ?T, which gives ?T =       40 C°.



12.	We find the temperature from

		heat lost = heat gained;

		mCucCu ?TCu = (mAlcAl + mwatercwater) ?TAl ;

		(0.245 kg)(390 J/kg · C°)(300°C – T) = 

				[(0.150 kg)(900 J/kg · C°) + (0.820 kg)(4186 J/kg · C°)](T – 12.0°C), which gives T =       19.5°C.







13.	We find the temperature from

		heat lost = heat gained;

		mshoecshoe ?Tshoe = (mpotcpot + mwatercwater) ?Tpot ;

		(0.40 kg)(450 J/kg · C°)(T – 25°C) = 

				[(0.30 kg)(450 J/kg · C°) + (1.35 L)(1.00 kg/L)(4186 J/kg · C°)](25°C – 20°C), 

	which gives T =       186°C.



14.	We find the specific heat from

		heat lost = heat gained;

		mxcx ?Tx = (mAlcAl + mwatercwater + mglasscglass) ?Twater ;

		(0.215 kg)cx (330°C – 35.0°C) = 

			[(0.100 kg)(900 J/kg · C°) + (0.150 kg)(4186 J/kg · C°) + (0.017 kg)(840 J/kg · C°)](35.0°C – 12.5°C), 

	which gives cx =       260 J/kg · C° .



15.	The water must be heated to the boiling temperature, 100°C.  We find the time from

		t 	= (heat gained)/P = [(mAlcAl + mwatercwater) ?Twater]/P

			= [(0.360 kg)(900 J/kg · C°) + (0.75 L)(1.00 kg/L)(4186 J/kg · C°)](100°C – 8.0C)/(750 W) 

			= 425 s =      7.1 min.



16.	The Calorie content of 100 g of brownie will be 10 times the thermal energy released when 10 g is ignited:

		Q 	= 10(heat gained) = 10(mbombcAl + mwatercwater + mcupcAl) ?T

			= 10[(0.615 kg)(0.22 kcal/kg · C°) + (2.00 kg)(1.00 kcal/kg · C°) + 

									(0.524 kg)(0.22 kcal/kg · C°)](36.0°C – 15.0°C) =       470 kcal.



17.	(a)	The heat required at a temperature T to raise the temperature by a small amount dT is

			dQ = mc(T) dT.

		We add the total heat required to raise the temperature from T1 to T2 by integrating:

			�

	(b)	For the given relationship, we get
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	(c)	For the mean value of c, we have

			Q 	= mcmean (T2 – T1) = mc0[(T2 – T1) + a(T22 – T12)/2] 

				= mc0(T2 – T1)[1 + a(T2 – T1)(T2 + T1)/2(T2 – T1)] ,

		so we get

			cmean = c0[1 + !a(T2 + T1)].



18.	The silver must be heated to the melting temperature, 961°C, and then melted.  We find the heat required from

		Q	= msilvercsilver ?Tsilver + msilverLsilver

			= (15.50 kg)(230 J/kg · C°)(961°C – 20° C) + (15.50 kg)(0.88 ´ 105 J/kg) =       4.7 ´ 106 J.



19.	If we assume that the heat is required just to evaporate the water, we have

		Q = mwaterLwater ;

		180 kcal = mwater(539 kcal/kg), which gives mwater =       0.334 kg (0.334 L).



20.	Because the liquid oxygen is at the boiling point, there will be only a change in phase:

		Q = moxygenLoxygen;

		2.80 ´ 105 J = moxygen(2.1 ´ 105 J/kg), which gives moxygen =       1.3 kg.





21.	We assume all the ice melts and all the steam condenses, so we have only water.  

	With msteam = mice = m, we have

		heat lost = heat gained;

		mLs + mcwater ?Tsw  = mLi + mci ?Tiw;

		22.6 ´ 105 J/kg + (4186 J/kg · C°)(100°C – T) = 3.33 ´ 105 J/kg + (4186 J/kg · C°)(T – 0°C),

	which gives T = 280°C.

	Because we can not have all water at this temperature, our initial assumption is wrong.  We must have some water and some steam at 100°C. If the amount of steam that has condensed is xm, we have

		heat lost = heat gained;

		xmLs  = mLi + mci ?Tiw;

		x(22.6 ´ 105 J/kg) = 3.33 ´ 105 J/kg + (4186 J/kg · C°)(100°C – 0°C),

	which gives x = 0.333.

	Thus we have        %m steam and )m water at 100°C.



22.	We assume there is enough liquid nitrogen that the temperature of the liquid nitrogen will not change, so the ice will cool to 77 K.  We find the amount of nitrogen that has evaporated from

		heat lost = heat gained;

		micecice ?Tice = mnitrogenLnitrogen ;

		(0.040 kg)(2100 J/kg · C°)(273 K – 77 K) = mnitrogen(200 ´ 103 J/kg), which gives mnitrogen =       0.082 kg.

	Note that a change of 1 K is equal to a change of 1 C°.



23.	The temperature of the ice will rise to 0°C, at which point melting will occur, and then the resulting water will rise to the final temperature.  We find the mass of the ice cube from

		heat lost = heat gained;

		(mAlcAl + mwatercwater) ?TAl  = mice(cice ?Tice + Lice + cwater ?Twater);

		[(0.075 kg)(900 J/kg · C°) + (0.300 kg)(4186 J/kg · C°)](20°C – 17°C) = 

					mice{(2100 J/kg · C°)[0°C – (– 8.5°C)] + (3.33 ´ 105 J/kg) + (4186 J/kg · C°)(17°C – 0°C)}, 

	which gives mice = 9.4 ´ 10–3 kg =       9.4 g.



24.	(a)	We find the heat required to reach the boiling point from

			Q1	= (mFecFe + mwatercwater)?T 

				= [(230 kg)(450 J/kg · C°) + (760 kg)(4186 J/kg · C°)](100°C – 20° C) = 2.63 ´ 108 J.

		We find the time from

			t1 = Q1/P = (2.63 ´ 108 J)/(52,000 ´ 103 J/h) =      5.1 h.

	(b)	As the water changes to steam, there is no change in the temperature, so the additional heat 

		required to change the water into steam is

			Q2	= mwaterLsteam 

				= (760 kg)(22.6 ´ 105 J/kg) = 1.72 ´ 109 J.

		We find the additional time from

			t2 = Q2/P = (1.72 ´ 109 J)/(52,000 ´ 103 J/h) = 33.0 h.

		Thus the total time required is

			t = t1 + t2 = 5.1 h + 33.0 h =       38.1 h.



25.	We use the heat of vaporization at body temperature: 585 kcal/kg.  

	If all of the energy supplied by the bicyclist evaporates the water, we have

		Q	= mwaterLwater 

			= (8.0 L)(1.00 kg/L)(585 kcal/kg) =       4.7 ´ 103 kcal.















26.	The steam will condense at 100°C, and then the resulting water will cool to the final temperature.  The ice will melt at 0°C, and then the resulting water will rise to the final temperature.  We find the mass of the steam required from

		heat lost = heat gained;

		msteam(Lsteam + cwater ?T1) = mice(Lice + cwater ?T2);

		msteam[(22.6 ´ 105 J/kg) + (4186 J/kg · C°) (100°C – 20°C)] = 

									(1.00 kg)[(3.33 ´ 105 J/kg) + (4186 J/kg · C°)(20°C – 0°C)], 

	which gives msteam =       0.16 kg.



27.	We find the latent heat of fusion from

		heat lost = heat gained;

		(mAlcAl + mwatercwater) ?Twater = mHg(LHg + cHg ?THg)

		[(0.620 kg)(900 J/kg · C°) + (0.430 kg)(4186 J/kg · C°)](12.80°C – 5.06°C) = 

										(1.00 kg){LHg + (138 J/kg · C°)[5.06°C – (– 39.0°C)]}, 

	which gives LHg =       1.22 ´ 104 J/kg.



28.	We assume that the water created by the melting of the ice stays at 0°C.  Because the work done by friction, which decreases the kinetic energy, generates the heat flow, we have

		Q = !(?K);

		miceLice = !(!mv2);

		mice(3.33 ´ 105 J/kg) = #(54.0 kg)(4.8 m/s)2, which gives mice = 9.3 ´ 10–4 kg =      0.93 g.



29.	The work done by friction, which decreases the kinetic energy, generates the heat flow.  In general a fraction of the heat flow is used to raise the temperature of the lead bullet and then melt the lead bullet.  The larger this fraction, the smaller the bullet velocity needed.  We determine the minimum muzzle velocity by assuming that this fraction is 1:

		Q = ?K;

		mlead(clead ?T + Llead) = !mleadvmin2;

		[(130 J/kg · C°)(327°C – 20°C) + 0.25 ´ 105 J/kg] = !vmin2, which gives vmin =       360 m/s.



30.	We use the first law of thermodynamics to find the change in internal energy:

		?U	= Q – W

			= – 2.78 ´ 103 J – (– 1.6 ´ 103 J) =       – 1.2 ´ 103 J.



31.	(a)	The internal energy of an ideal gas depends only on the temperature, U = *nRT, so we have 

			?U = *nR ?T =      0.

	(b)	We use the first law of thermodynamics to find the heat absorbed:

			?U = Q – W;

			0 = Q – 5.00 ´ 103 J , which gives Q =       5.00 ´ 103 J.



�

32.	For the isothermal process, we have

		PAVA = PBVB ;

		(6.0 atm)(1.0 L) = (1.0 atm)VB , 

	which gives VB = 6.0 L.





















�

33.	For the isothermal process, we have

		PBVB = PCVC ;

		(1.0 atm)(1.0 L) = PC (2.0 L), 

	which gives PC = 0.5 atm.

























34.	(a)	Because the pressure is constant, we find the work from 

			W 	= P(V2 – V1)

				= (1.013 ´ 105 N/m2)(18.2 m3 – 12.0 m3) =       6.3 ´ 105 J.

	(b)	We use the first law of thermodynamics to find the change in internal energy:

			?U	= Q – W

				= + (1400 kcal)(4186 J/kcal) – 6.3 ´ 105 J =       5.23 ´ 106 J.



35.	(a)	Because there is no change in volume, we have

			W =      0.

	(b)	We use the first law of thermodynamics to find the change in internal energy:

			?U	= Q – W

				= – 1300 kJ – 0 =       – 1300 kJ.



36.	(a)	In an adiabatic process there is no heat flow:

			Q =      0.

	(b)	We use the first law of thermodynamics to find the change in internal energy:

			?U	= Q – W

				= 0 – (– 2350 J) – 0 =       + 2350 J.

	(c)	The internal energy of an ideal gas depends only on the temperature, U = *nRT, so we see that an 

		increase in the internal energy means that the temperature must       rise.



�

37.	(a)	Work is done only in the constant pressure process:

			W 	= Pa(Vb – Va)

				= (5.0 atm)(1.013 ´ 105 N/m2 · atm)[(0.710 – 0.400) ´ 10–3 m3] 

				=       1.6 ´ 102 J.

	(b)	Because the initial and final temperatures are the same, we 

		know that ?U = 0.  We use the first law of thermodynamics to 

		find the heat flow for the entire process:

			?U = Q – W;

			0 = Q – (+ 1.6 ´ 102 J), which gives Q =       + 1.6 ´ 102 J.





�

38.	(a)	Work is done only in the constant pressure process:

			W 	= Pb(Vc – Vb)

				= (1.5 atm)(1.013 ´ 105 N/m2 · atm)[(10.0 – 6.8) ´ 10–3 m3] 

				=       4.9 ´ 102 J.

	(b)	Because the initial and final temperatures are the same, we 

		know that        ?U = 0.  

	(c)	We use the first law of thermodynamics to find the heat flow 

		for the entire process:

			?U = Q – W;

			0 = Q – (+ 4.9 ´ 102 J), which gives Q =     + 4.9 ´ 102 J (into the gas).



�

39.	The work done during an isothermal process is

		W 	= nRT ln(V2/V1)

			= (2.00 mol)(8.315 J/mol · K)(300 K) ln(7.00 m3/3.50 m3) 

			=      3.46 ´ 103 J.

	The internal energy of an ideal gas depends only on the 

	temperature, so 

		?U =      0.

	We use the first law of thermodynamics to find the heat flow 

	for the process:

		?U = Q – W;

		0 = Q – (+ 3.46 ´ 103 J), which gives Q =       + 3.46 ´ 103 J (into the gas).



40.	(a)	The initial volume of the water is

			V1 = (1.00 kg)/(1.00 ´ 103 kg/m3) = 1.00 ´ 10–3 m3.

		We find the final volume from the ideal gas law:

			PV2 = nRT;

			(1.013 ´ 105 N/m2)V2 = [(1.00 ´ 103 g)/(18 g/mol)](8.315 J/mol · K)(373 K), 

		which gives V2 = 1.70 m3, so the initial volume is negligible.

		The work done in the constant pressure process is

			W 	= P(V2 – V1)

				= (1.013 ´ 105 N/m2)(1.70 m3) =       1.72 ´ 105 J.

	(b)	The heat added to the system is

			Q = mL = (1.00 kg)(22.6 ´ 105 J/kg) = 2.26 ´ 106 J.  

		We use the first law of thermodynamics to find the internal energy change:

			?U	= Q – W = 2.26 ´ 106 J – 1.72 ´ 105 J =       2.09 ´ 106 J.



41.	The work done during an isothermal process is

		W 	= nRT ln(V2/V1) = P1V1 ln(V2/V1)  

			= (1.013 ´ 105 N/m2 )(2.50 ´ 10–3 m3) ln(1.50 L/2.50 L) = – 129 J.

	Thus the work done on the gas is      + 129 J.



�

42.	(b)	Work done in the constant pressure process is

			W 	= P1(V2 – V1)

				= (450 N/m2)(8.00 m3 – 2.00 m3) =       2.70 ´ 103 J.

		The internal energy of an ideal gas depends only on the 

		temperature, so we have

			?U	= *nR ?T = *(nRT2 – nRT1) = *(P2V2 – P1V1)

				= *P1(V2 – V1) = *W = *(2.70 ´ 103 J) =       4.05 ´ 103 J.

	(d)	Because both paths have the same initial and final 

		states, the change in internal energy is the same: 

			?U =      4.05 ´ 103 J.  

�



43.	We consider a differential area dA on the surface of 

	the arbitrary volume.  Because the force from the outside 

	pressure is perpendicular to the surface, the work done 

	when the surface expands a distance d¬ is

		dW = P dA d¬.

	The work done in a finite expansion is

		W = ? dW = ??P dA d¬.

	The pressure is the same over the surface of the volume, 

	so we can integrate over the area:

		W = ? P [? dA] d¬ = ? PA d¬ = ? P dV.





�

44.	(a)	We can find the internal energy change Uc – Ua from the information 

		for the curved path a®c:	

			Uc – Ua = Qa®c – Wa®c = – 63 J – (– 35 J) = – 28 J.

		For the path a®b®c, we have

			Uc – Ua = Qa®b®c – Wa®b®c = Qa®b®c – Wa®b ;

			– 28 J = Qa®b®c – (– 48 J), which gives Qa®b®c =      – 76 J.

	(b)	For the path c®d®a, work is done only during the constant 

		pressure process, c®d, so we have

			Wc®d®a 	= Pc(Vd – Vc) = !Pb(Va – Vb) 

						= !Wb®a = – !Wa®b = – !(– 48 J) =       + 24 J.

	(c)	We use the first law of thermodynamics for the path c®d®a to find Qc®d®a :

			Ua – Uc = – (Uc – Ua) = Qc®d®a – Wc®d®a ;

			– (– 28 J) = Qc®d®a – (24 J), which gives Qc®d®a =       + 52 J.

	(d)	Ua – Uc = – (Uc – Ua) = – (– 28 J) =      + 28 J.

	(e)	Because there is no work done for the path d®a, we have

			Ua – Ud = (Ua – Uc) + (Uc – Ud) = (Ua – Uc) – (Ud – Uc) = Qd®a – Wd®a ;

			+ 28 J – (+ 5 J) = Qd®a – 0, which gives Qd®a =      + 23 J.



�

45.	(a)	We can find the internal energy change Ua – Uc from the information 

		for the curved path a®c:	

			(Uc – Ua) = – (Ua – Uc) = Qa®c – Wa®c = – 80 J – (– 55 J) = – 25 J,

		so Ua – Uc =       + 25 J.

	(b)	We use the first law of thermodynamics for the path c®d®a 

		to find Qc®d®a :

			Ua – Uc = Qc®d®a – Wc®d®a ;

			+ 25 J = Qc®d®a – (+ 38 J), which gives Qc®d®a =       + 63 J.

	(c)	For the path a®b®c, work is done only during the constant 

		pressure process, a®b, so we have

			Wa®b®c 	= Pa(Vb – Va) = (2.5)Pd(Vc – Vd) 

						= (2.5)Wd®c = – (2.5)Wc®d = – (2.5)(+ 38 J) =       – 95 J.

	(d)	We use the first law of thermodynamics for the path a®b®c to find Qa®b®c :

			Uc – Ua = Qa®b®c – Wa®b®c ;

			– 25 J = Qa®b®c – (– 95 J), which gives Qa®b®c =       – 120 J.

	(e)	Because there is no work done for the path b®c, we have

			Uc – Ub = (Uc – Ua) + (Ua – Ub) = Qb®c – Wb®c ;

			– 25 J + (+ 10 J) = Qb®c – 0, which gives Qb®c =      – 15 J.







�

46.	Because the directions along the path are opposite to the directions 

	in Problem 45, all terms for Q and W will have the opposite sign.  

	(a)	Leg b ® a is an isobaric expansion, W > 0;

			Leg a ® d is an isochoric contraction, W = 0;

			Leg d ® c is an isobaric contraction, W < 0;

			Leg c ® b is an isochoric expansion, W = 0;

	(b)	For the work done around the cycle, we have

			Wcycle 	= Wb®a + Wd®c = Wb®a  – Wc®d 

					= Pa(Va – Vb) – Pd(Vd – Vc) 

					= 2.5Pd(Vd – Vc) – Pd(Vd – Vc)

					= 1.5Wc®d = 1.5(+ 38 J) =       + 57 J.

	(c)	For the cycle, because the gas returns to its initial state, there is no change in internal energy, so

			Qcycle  = Wcycle =       + 57 J.

		We can confirm this using the results of Problem 45:

		For the heat flow during the cycle, we have

			Qcycle 	= Qc®b®a + Qa®d®c = – Qa®b®c – Qc®d®a  

					= – (– 120 J) – (+ 63 J) = + 57 J.

	(d)	For the internal energy change of the cycle, we have

			?Ucycle = 0.

		Because the system returns to the initial state, this must always be true for a cycle.

	(e)	The intake heat is Qc®b®a .  For the efficiency, we have

			e = Wcycle/Qc®b®a = (57 J)/(120 J) = 0.475 =       48%.



47.	The pressure is a function of volume for a van der Waals gas:

		[P + a/(V/n)2][(V/n) – b) = RT.

	With n = 1, we can write this as

		P = [RT/(V – b)] – a/V2.

	We find the work by integrating:
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48.	If both rotational and vibrational degrees of freedom are active, CV = 7R/2, so we have

		U = nCVT = (4.50 mol)[7(8.315 J/mol · K)/2](600 K) =      7.86 ´ 104 J.



49.	If there are no heat losses, we have

		Q = mcV ?T = rVcV ?T,  so the rate is

		Q/?t = rVcV ?T/?t;

		(1.8 ´ 106 J/h)/(4186 J/kcal) = (1.29 kg/m3)(6.5 m)(4.6 m)(3.0 m)(0.17 kcal/kg · C°) ?T/?t, 

	which gives ?T/?t =      22 C°/h.



50.	For one mole of a gas, each degree of freedom has an average energy of !RT, so the internal energy of a mole of the gas is

		U = n(!RT) = CVT, which gives CV = (n/2)R.

	For the molar specific heat at constant pressure we have

		CP = CV + R = [(n/2) + 1]R = [(n + 2)/2]R.



51.	Because hydrogen is diatomic, at room temperature there are 5 degrees of freedom.  Thus we have

		CV = 5R/2 = 5(1.99 cal/mol · K)/2 =      4.98 cal/mol · K; 

		cV = CV /M = (4.98 cal/mol · K)/(2 g/mol) = 2.49 cal/g · K =       2.49 kcal/kg · K;

		CP = CV + R = 4.98 cal/mol · K + 1.99 cal/mol · K =       6.97 cal/mol · K;

		cP = CP /M = (6.97 cal/mol · K)/(2 g/mol) = 3.48 cal/g · K =       3.48 kcal/kg · K.



52.	When we apply the first law of thermodynamics for an adiabatic process, we get

		?U = Q – W = 0 – W = – W.

	Thus the work done by the gas is

		W = – ?U = – nCV ?T = – nCV(T2 – T1) = nCV(T1 – T2).



53.	If the specific heat does not change with temperature, the gas must be monatomic, with 

		CV = McV = *R;

		M(0.0356 kcal/kg · C°)(4186 J/kcal) = *(8.315 J/mol · K)(103 g/kg), which gives M =       83.7 g/mol.

	From the table of atomic masses, we see that the gas is       krypton.



54.	(a)	The molar specific heat at constant volume is 

			CV = McV = (34 g/mol)(0.182 kcal/kg  · K) = 6.19 cal/mol · K.

		The molar specific heat at constant pressure is

			CP = CV + R = 6.19 cal/mol · K + 1.99 cal/mol · K = 8.18 cal/mol · K.

		Thus the specific heat is

			cP = CP /M = (8.18 cal/mol · K)/(34 g/mol) = 0.241 cal/g · K =       0.24 kcal/kg · K.

	(b)	From Table 19–3, it is likely that the gas is      triatomic.



55.	If there are no heat losses, we have

		Q = mcV ?T = rVcV ?T,  so the rate is

		(2500)(70 W)(2.0 h)(3600 s/h)/ (4186 J/kcal)  = (1.29 kg/m3)(30,000 m3)(0.17 kcal/kg · C°) ?T, 

	which gives ?T =      46 C°.



56.	(a)	The heat added to the gas is

			Q =  nCP ?T = (770 mol)(6.95 cal/mol · C°)(180°C – 40°C)(4.186 J/cal) =      3.14 ´ 106 J.

	(b)	The work done at constant pressure is

			W = P ?V = nR ?T = (770 mol)(8.315 J/mol · K)(180°C – 40°C) =     8.96 ´ 105 J.

	(c)	We use the first law of thermodynamics to find the change in internal energy:

			?U = Q – W = 3.14 ´ 106 J – 8.96 ´ 105 J =       2.24 ´ 106 J.

		Note that we could also have used ?U = nCV ?T .



57.	(a)	The change in internal energy is

			?U = nCV ?T = (1.00 mol)(4.96 cal/mol · C°)(100°C – 0°C)(4.186 J/cal) =      2.08 ´ 103 J.

	(b)	The work done at constant pressure is

			W = P ?V = nR ?T = (1.00 mol)(8.315 J/mol · K)(100°C – 0°C) =     8.32 ´ 102 J.

	(c)	We use the first law of thermodynamics to find the heat added to the gas:

			?U = Q – W;

			2.08 ´ 103 J = Q – 8.32 ´ 102 J, which gives Q =      2.91 ´ 103 J. 

































58.	(a)	The change in internal energy is

			?U = nCV ?T = n(R ?T = (1.00 mol)((8.315 J/mol · K)(720°C – 490°C) =      4.78 ´ 103 J.

	(b)	The pressure is a linear function of T: P = P0 + aT.  We find the constants from

			P = P0 + aT;

			1.00 atm =  P0 + a(490 K);   1.60 atm =  P0 + a(720 K).

		When we combine these two equations, we get

			P0  = – 0.279 atm, a = 2.61 ´ 10–3 atm/K.

		The work done by the gas is

			W = ? P dV = ? (P0 + aT) dV.

		We use the ideal gas law to express V as a function of P:

			V = nRT/P = nR[(P – P0)/a]/P = (nR/a) – (nRP0/aP);

			dV = nRP0 dP/aP2.

		We integrate to find the work done by the gas:

			�

			W 	= [(1.00 mol)(8.315 J/mol · K)(– 0.279 atm)/(2.61 ´ 10–3 atm/K)] ln(1.60 atm/1.00 atm) 

				=      – 418 J.

	(c)	We use the first law of thermodynamics to find the heat added to the gas:

			?U = Q – W;

			4.78 ´ 103 J = Q – (– 418 J), which gives Q =      4.36 ´ 103 J. 



59.	For an adiabatic process we have

		P2V2g = P1V1g,   or   P2/P1 = (V1/V2)g;

		P2/1.00 atm = (!)7/5, which gives P2 =       0.379 atm.

	We find the temperature from the ideal gas equation:

		P2V2/P1V1 = T2/T1 ;

		(0.379 atm/1.00 atm)(2) = T2/293 K, which gives T2 = 222 K =       – 51°C.



60.	The pressure is a function of volume, PVg = (constant), so we find the work by integrating:

		�

	where we have used (constant) = P2V2g = P1V1g.



61.	We find the initial and final volumes of the gas:

		P1V1 = nRT1;

		(3.0 atm)(1.013 ´ 105 N/m2 · atm)V1 = (1.0 mol)(8.315 J/mol · K)(300 K), 

	which gives V1 = 8.21 ´ 10–3 m3.

		P2V2g = P1V1g;

		(1.0 atm)(1.013 ´ 105 N/m2 · atm)V25/3= (3.0 atm)(1.013 ´ 105 N/m2 · atm)(8.21 ´ 10–3 m3)5/3, 

	which gives V2 = 1.59 ´ 10–2 m3.

	If we use the result from Problem 60, we get

		W 	= (P1V1 – P2V2)/(g – 1) 

			= [(3.0 atm)(1.013 ´ 105 N/m2 · atm)(8.21 ´ 10–3 m3) – 

						(1.0 atm)(1.013 ´ 105 N/m2 · atm)(1.59 ´ 10–2 m3)]/[(5/3) – 1] =       1.33 ´ 103 J.











62.	(a)	For an adiabatic process we have

			P2V2g = P1V1g,   or   P2/P1 = (V1/V2)g = (1/4.2)5/3 = 9.15 ´ 10–2.

		We find the temperature from the ideal gas equation:

			P2V2/P1V1 = T2/T1 ;

			(9.15 ´ 10–2)(4.2) = T2/400 K, which gives T2 =       154 K.

	(b)	For a diatomic gas with no vibrations, g = 7/5, so we have

			P2V2g = P1V1g,   or   P2/P1 = (V1/V2)g = (1/4.2)7/5 = 0.134.

		We find the temperature from the ideal gas equation:

			P2V2/P1V1 = T2/T1 ;

			(0.134)(4.2) = T2/400 K, which gives T2 =       225 K.

	(c)	For a diatomic gas with vibrations, g = 9/7, so we have

			P2V2g = P1V1g,   or   P2/P1 = (V1/V2)g = (1/4.2)9/7 = 0.158.

		We find the temperature from the ideal gas equation:

			P2V2/P1V1 = T2/T1 ;

			(0.158)(4.2) = T2/400 K, which gives T2 =       265 K.



63.	(a)	We find the initial temperature from the ideal gas equation:

			P1V1 = nRT1 ;

			(1.013 ´ 105 N/m2)(0.1210 m3) = (4.65 mol)(8.315 J/mol · K)T1 , which gives       T1 = 317 K.

		For an adiabatic process we have

			P2V2g = P1V1g,   or   P2/P1 = (V1/V2)g = (0.1210 m3/0.750 m3)7/5 = 7.78 ´ 10–2.

		We find the final temperature from the ideal gas equation:

			P2V2/P1V1 = T2/T1 ;

			(7.78 ´ 10–2)(0.750 m3/0.1210 m3) = T2/317 K, which gives       T2 = 153 K.

	(b)	The change in internal energy of the ideal gas is

			?U = nCV ?T = n(R ?T = (4.65 mol)((8.315 J/mol · K)(153 K – 317 K) =      – 1.59 ´ 104 J.

	(c)	If we use the result from Problem 60, for the work done by the gas we have

			W 	= (P1V1 – P2V2)/(g – 1) 

				= [(1.00 atm)(0.1210 m3) – (7.78 ´ 10–2 atm)(0.750 m3)](1.013 ´ 105 N/m2 · atm)/[(7/5) – 1] 

				= 1.59 ´ 104 J.

		Thus the work done on the gas is

			Won = – W =       – 1.59 ´ 104 J.

	(d)	For an adiabatic process, there is no heat flow, so      Q = 0.



64.	From the ideal gas equation we have

		P2V2/P1V1 = T2/T1 ;

		(P2/P1)(V2/V1) =  205 K/298 K = 0.688,  or  P2/P1 = 0.688(V1/V2).

	For the adiabatic process we have

		P2V2g = P1V1g,   or   P2/P1 = (V1/V2)g;

		0.688(V1/V2) = (V1/V2)5/3 ,   or   (0.084 m3/V2)2/3 = 0.688, which gives V2 =       0.15 m3.



























�

65.													(a)

	(b)	For a diatomic gas with no vibrations, g = 5/3, so we have

			P2V2g = P1V1g,   or   P2/P1 = (V1/V2)g.

		When we use the ideal gas equation for the adiabatic process, 

		we have

			P2V2/P1V1 = T2/T1 ; 

			P2/P1 = (T2/T1)(V1/V2) = (V1/V2)g ,   or  V1/V2 = (T2/T1)1/(g – 1).

		When we use the ideal gas equation for the constant pressure 

		process, we have

			P3V3/P2V2 = T3/T2 .

		Because P3 = P2 , and V3 = V1 , this becomes

			V1/V2 = T3/T2 .

		When we combine this with the previous result, we get

			T3 = T2g /(g – 1)/T11/(g – 1) = (389 K)(5/3)/(2/3)/(550 K)1/(2/3) =      231 K.

	(c)	For the adiabatic process, 1 ® 2,  we have

			no heat flow: 

				Q1®2 = 0;

			internal energy change: 

				?U1®2 = nCV ?T = n*R ?T = (1.00 mol)*(8.315 J/mol · K)(389 K – 550 K) =      – 2.01 ´ 103 J;

			work done by the gas, from the first law of thermodynamics:

				?U1®2 = Q1®2– W1®2;

				– 2.01 ´ 103 J = 0 – W1®2, which gives       W1®2 = + 2.01 ´ 103 J. 

		For the constant pressure process, 2 ® 3,  we have

			work done by the gas: 

				W2®3 = P ?V = nR ?T = (1.00 mol)(8.315 J/mol · K)(231 K – 389 K) =      – 1.31 ´ 103 J;

			internal energy change: 

				?U2®3 = nCV ?T = n*R ?T = (1.00 mol)*(8.315 J/mol · K)(231 K – 389 K) =      – 1.97 ´ 103 J;

			heat flow added to the gas, from the first law of thermodynamics:

				?U2®3 = Q2®3 – W2®3;

				– 1.97 ´ 103 J = Q2®3 – (– 1.31 ´ 103 J), which gives       Q2®3 = – 3.28 ´ 103 J. 

		For the constant volume process, 3 ® 1,  we have

			work done by the gas: 

				W3®1 = P ?V =      0;

			internal energy change: 

				?U3®1 = nCV ?T = n*R ?T = (1.00 mol)*(8.315 J/mol · K)(550 K – 231 K) =      + 3.98 ´ 103 J;

			heat flow added to the gas, from the first law of thermodynamics:

				?U3®1 = Q3®1– W3®1;

				+ 3.98 ´ 103 J = Q3®1 – 0, which gives       Q3®1 = + 3.98 ´ 103 J. 

	(d)	For the complete cycle,  we have

			Wcycle = W1®2 + W2®3 + W3®1 = + 2.01 ´ 103 J + (– 1.31 ´ 103 J) + 0 =        + 0.70 ´ 103 J.

			Qcycle = Q1®2 + Q2®3 + Q3®1 = 0 + (– 3.28 ´ 103 J) + 3.98 ´ 103 J =      + 0.70 ´ 103 J.

			?Ucycle = ?U1®2 + ?U2®3 + ?U3®1 = – 2.01 ´ 103 J + (– 1.97 ´ 103 J) + 3.98 ´ 103 J =      0.



66.	The strong gusty winds will provide heat convection away from the outside of the window, so the temperature at the outside of the window will be the external air temperature.  We find the rate of heat flow from

		?Q/?t	= kA(?T/L) 

				= (0.84 J/s · m · C°)(3.0 m2)[15°C – (– 5°C)]/(3.2 ´ 10–3 m) =       1.6 ´ 104 W.











67.	(a)	We find the radiated power from

			?Q/?t	= esAT4

					= (0.35)(5.67 ´ 10–8 W/m2 · K4)4p(0.180 m)2(298 K)4 =       64 W.

	(b)	We find the net flow rate from

			?Q/?t	= esA(T24 – T14)

					= (0.35)(5.67 ´ 10–8 W/m2 · K4)4p(0.180 m)2[(298 K)4 – (268 K)4] =      22 W.



68.	We find the distance for the conduction from

		?Q/?t = kA(?T/L) 

		200 W = (0.2 J/s · m · C°)(1.5 m2)(0.50 C°)/L, which gives L  = 7.5 ´ 10–4 m =      0.75 mm.



�

69.	The cross-sectional area of the beam that falls on an area 

	A is A cos q.  Thus the rate at which energy is absorbed is

		P 	= IeA cos q = (1000 W/m2)(0.70)(0.80 m2) cos 30° 

			=       4.8 ´ 102 W.













70.	We find the rate of heat flow through the wall from

		?Q/?t	= kA(?T/L) 

				= (0.84 J/s · m · C°)(4.0 m)(4.0 m)(30°C – 10°C)/(0.15 m) = 1.79 ´ 103 W.

	We find the number of bulbs required to provide this heat flow from

		N =(?Q/?t)/P = (1.79 ´ 103 W)/(100 W) = 17.9  =       18 bulbs.



71.	The cross-sectional area of the beam that falls on an area A is A cos q.  Thus the rate at which energy is absorbed is

		P = IeA cos q. 

	There is no change in temperature of the ice or melted water.  We find the time to provide the energy to melt the ice from

		Q = mL = rAhL = Pt = (IeA cos q)t;

		(917 kg/m3)(0.016 m)(3.33 ´ 105 J/kg) = (1000 W/m2)(0.050)(cos 30°)t, which gives 

		t = 1.13 ´ 105 s =       31 h.

	Note that the result is independent of the area.  We have used the value of I given in Problem 69.



72.	In the steady state, the intermediate temperature does not change, so the heat flow must be the same through the two rods:

		?Q/?t	= kCuACu(Thot – T)/LCu = kAlAAl(T – Tcold)/LAl .

	The rods have the same area and length, so we have

		kCu(Thot – T) = kAl(T – Tcold);

		(380 J/s · m · C°)(250°C – T) = (200 J/s · m · C°)(T – 0.0°C), which gives T =      164°C.



73.	(a)	We use the cross-sectional area of the Earth to find the rate at which solar energy is received:

			P = (1350 W/m2)p(6.38 ´ 106 m)2 = 1.73 ´ 1017 W =      1.7 ´ 1017 W.

	(b)	We estimate the average temperature from the power radiated into space:

			P = esAT4;

			1.73 ´ 1017 W = (1.0)(5.67 ´ 10–8 W/m2 · K4)4p(6.38 ´ 106 m)2T4, which gives T =       278K (5°C).
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74.	The rate of thermal energy flow is the same for the brick and 

	the insulation:

		?Q/?t = A(T1 – T2)/Reff = A(T1 – Tint)/R2 = A(Tint – T2)/R1 ,

	where Tint is the temperature at the brick-insulation interface.

	By equating the first term to each of the others, we have

		Reff(T1 – Tint) = R2(T1 – T2),    and    Reff(Tint – T2) = R1(T1 – T2).

	If we add these two equations, we get

		Reff(T1 – T2) =  R1(T1 – T2) + R2(T1 – T2), which gives        

		Reff = R1 + R2 .

	This shows the usefulness of the R-value.

	For the R-value of the brick we have

		R1	= L1/k1 

			= [(4.0 in)/(12 in/ft)](3.28 ft/m)/(0.84 J/s · m · C°)(1 Btu/1055 J)( 3600 s /1 h)(5 C°/9 F°) 

			= 0.69 ft2 · h · F°/Btu.

	Thus the total R-value of the wall is 

		Reff = R1 + R2 = 0.69 ft2 · h · F°/Btu + 19 ft2 · h · F°/Btu = 19.7 ft2 · h · F°/Btu.

	The rate of heat loss is 

		?Q/?t	= A(T1 – T2)/Reff 

				= [(240 ft2)(10 F°)/(19.7 ft2 · h · F°/Btu)](1055 J/Btu)/(3600 s/h) =       36 W.



�

75.	(a)	We call the temperatures at the interfaces Ta and Tb , as 

		shown.  In the steady state, the rate of heat flow is the same 

		for each layer:

			?Q/?t = k1A(T2 – Ta)/¬1 = k2A(Ta – Tb)/¬2 = k3A(Tb – T1)/¬3 .

		We treat this as three equations:

			T2 – Ta = [(?Q/?t)/A]¬1/k1 ;

			Ta – Tb = [(?Q/?t)/A]¬2/k2 ;

			Tb – T1 = [(?Q/?t)/A]¬3/k3 .

		If we add these equations, we get

			T2 – T1 = [(?Q/?t)/A][(¬1/k1) + (¬2/k2) + (¬3/k3)], which gives

			?Q/?t = A(T2 – T1)/[(¬1/k1) + (¬2/k2) + (¬3/k3)].

	(b)	We can generalize this by recognizing that more layers will mean 

		more equations, similar to the three that we had.  When we eliminate the intermediate 

		temperatures by adding all the equations, we get

			?Q/?t = A(T2 – T1)/?(¬i/ki).



76.	The total area of the six sides of the icebox is

		A = 2[(0.25 m)(0.35 m) + (0.25 m)(0.50 m) + (0.35 m)(0.50 m)] = 0.775 m2.

	As the ice melts, the inside temperature of the icebox remains at 0°C.  The rate at which heat flows through the walls of the icebox is

		?Q/?t = miceLice/?t = kA(?T/L);

		(8.50 kg)(3.33 ´ 105 J/kg)/?t = 2(0.023 J/s · m · C°)(0.775 m2)(30°C – 0°C)/(0.015 m),

	which gives ?t = 3.97 ´ 104 s =      11 h.























77.	We assume that the rate of heat loss is proportional to the temperature difference, so the heat flow in a time t is 

		Q = K(?T)t.

	We assume that the constant K takes into account all forms of heat loss, but does not depend on the temperature difference, and thus is the same day and night.  When the thermostat is turned down, we have

		Q1	= K(?Tday)tday + K(?T1night)tnight 

			= K[(22°C – 8°C)(17.0 h) + (12°C – 0°C)(7.0 h)] = (322 h · C°)K.

	When the thermostat is not turned down, we have

		Q2	= K(?Tday)tday + K(?T2night)tnight 

			= K[(22°C – 8°C)(17.0 h) + (22°C – 0°C)(7.0 h)] = (392 h · C°)K.

	For the percentage increase we have

		(?Q/Q1)(100) = {[(392 h · C°)K – (322 h · C°)K]/[(322 h · C°)K]}(100) =       22%.



�

78.	(a)	We choose a cylindrical shell of length L, radius R 

		and thickness dR.  The heat flow through any 

		cylindrical shell is the same, so we have

			dQ/dt = constant = kA dT/dR = k2pRL dT/dR.

		We separate variables and integrate:

			�

		Thus the rate of heat loss is

			(dQ/dt)loss 	= – 2pkL(T2 – T1)/ln (R2/R1) 

						= 2pkL(T1 – T2)/ln (R2/R1).

	(b)	For the given data we have

			(dQ/dt)loss 	= 2pkL(T1 – T2)/ln (R2/R1) 

						= mc ?T/dt = rpR12Lc ?T/dt;

			2p(1.1 ´ 10–2 kcal/s · m · C°)(71°C – 30°C)L/ln (4.00 cm/3.00 cm) = 

									(1.00 ´ 103 kg/m3)p(3.00 ´ 10–2 m)2L(1.00 kcal/kg · C°)?T/dt;  

		which gives ?T/dt =      3.5 C°/s.

		Note that over time this may cause T1 to decrease, which would cause dQ/dt to decrease.

	(c)	The rate of travel is v = dL/dt, so we have

			?T/dt = v ?T/dL,   or  

			?T/dL = (?T/dt)/v = (3.5 C°/s)/(8.0 cm/s) =      0.44 C°/cm.

		Note that this would affect the rate of heat flow farther down the pipe.



79.	The liberated heat is

		?Q 	= mc ?T = rVc ?T 

			= (1.00 ´ 103 kg/m3)(1 ´ 103 m)3(4186 J/kg · C°)(1 C°) =       4 ´ 1015 J.



80.	The work done by friction, which decreases the kinetic energy, generates the heat flow.  If all the heat flow is absorbed by the lead bullet and wooden block, we have

		Q = ?K;

		(mleadclead + mwoodcwood)?T  = !mleadv2;

		[(0.015 kg)(130 J/kg · C°) + (0.92 kg)(1700 J/kg · C°)](0.020 C°) = !(0.015 kg)v2, 

	which gives v =       65 m/s.



81.	We find the latent heat of fusion from

		heat lost = heat gained;

		(mAlcAl + mwatercwater) ?Twater = mHg(LHg + cHg ?THg)

		[(0.50 kg)(0.22 kcal/kg · C°) + (1.20 kg)(1.00 kcal/kg · C°)](20.0°C – 16.5°C) = 

										(1.00 kg){LHg + (0.033 kcal/kg · C°)[16.5°C – (– 39°C)]}, 

	which gives LHg =       2.8 kcal/kg.



�

82.	(a)	The pressure where the bubble is released is		(b) 

			P1 	= P2 + rgh 

				= 1.013 ´ 105 N/m2 + 

						(1.00 ´ 103 kg/m3)(9.80 m/s2)(14.0 m) 

				= 2.39 ´ 105 N/m2.

		From the ideal gas equation we have

			P2V2 = P1V1;

			(1.013 ´ 105 N/m2))pR23 = (2.39 ´ 105 N/m2))p(1.50 cm)3, 

		which gives R2 = 2.00 cm, so the diameter is       4.00 cm.

	(c)	We find the work done during the isothermal process by integration:

			�

		where we have used P1V1 = nRT.

		Thus we have

			W = 3(2.39 ´ 105 N/m2)[)p(1.50 ´ 10–2 m)3] ln (2.00 cm/1.50 cm) =     2.92 J.

		Because the temperature is constant, we have

			?U = 0.

		We use the first law of thermodynamics to find the heat added to the gas:

			?U = Q – W;

			0 = Q – 2.92 J, which gives Q =      2.92 J (added). 



83.	We use the first law of thermodynamics to find the rate at which the internal energy is changing:

		?U/?t = Q/?t – W/?t = (– 1.5 kW) – (– 10 kW) = 8.5 kW.

	The time for the compression is the time for half a revolution:

		?t = !(1/400 rpm)(60 s/min) = 0.075 s.

	If we assume an ideal gas, we have

		?U/?t = nCV ?T/?t;

		8.5 ´ 103 W = (1.00 mol)(5.0 cal/mol · C°)(4.186 J/cal) ?T/(0.075 s), which gives ?T =      30 C°.



84.	From the ideal gas equation, for the isothermal 

	compression, we have:

		P2V2/P1V1 = (P2/P1)(V2/V1) = T2/T1 ;

		(P2/1.00 atm)(1/5) = 1, which gives P2 = 5.00 atm.

	For the adiabatic expansion we have

		P2V2g = P3V3g,   or   P2/P3 = (V3/V2)g;

		(5.00 atm/P3) = (5)5/3,  which gives P3 = 0.342 atm.

	If we compare the initial and final states, from the ideal 

	gas equation we have:

		P1V1/P3V3 = (P1/P3)(V1/V3) = T1/T3 ;

		(1.00 atm/0.342 atm)(1) = 273 K/T3 , which gives T3 = 93 K.

	Thus we have

		Thigh = 273 K, Tlow = 93 K, Phigh = 5.00 atm, Plow = 0.342 atm.





85.	Because the molar specific heat is a function of temperature, we find the heat needed by integrating:

		�

	For rock salt we have

		Q = [(3.5 mol)(1940 J/mol · K)/4(281 K)3][(55.0 K)4 – (22.0 K)4] =       682 J.





86.	(a)	We find the power radiated from

			?Q/?t	= esAT4

					= (1.0)(5.67 ´ 10–8 W/m2 · K4)4p(7.0 ´ 108 m)2(5500 K)4 =       3.2 ´ 1026 W.

	(b)	Because this radiation passes through a sphere centered at the Sun, we have

			P/4pR2 = (3.2 ´ 1026 W)/4p(1.5 ´ 1011 m)2 =      1.1 ´ 103 W/m2.



87.	We find the temperature rise from

		Q = mc ?T;

		(0.80)(200 kcal/h)(1.00 h) = (70 kg)(0.83 kcal/kg · C°)?T, which gives ?T =      2.8 C°. 



88.	(a)	We use the two expressions for Q:

			Q = mc ?T = C ?T, which gives      C = mc.

	(b)	For 1.0 kg we have

			C = mc = (1.0 kg)(4186 J/kg · C°) =      4.2 ´ 103 J/C°.

	(c)	For 25 kg we have

			C = mc = (25 kg)(4186 J/kg · C°) =      1.0 ´ 105 J/C°.



89.	We find the temperature rise in the rod of length L from

		?Q = mc ?T = rALc ?T;

		410 ´ 103 J = (11.3 ´ 103 kg/m3)p(0.0100 m)2L(130 J/kg · C°) ?T, which gives ?T = (888 C° · m)/L.

	Because the rod is very long, the temperature rise will be small.  We find the change in length from

		?L = La ?T = L[29 ´ 10–6 (C°)–1][(888 C° · m)/L] = 2.58 ´ 10–2 m =      2.58 cm.

	If the rod is 2.0 cm long, the temperature rise will be

		?T = (888 C° · m)/L = (888 C° · m)/(2.0 ´ 10–2 m) = 4.4 ´ 104 C°.

	This is so much greater than the boiling point for lead, 1750°C, that the      rod vaporizes.



90.	(a)	We find the rate of heat flow through the clothing from

			?Q/?t	= kA(?T/L) 

					= (0.025 J/s · m · C°)(1.9 m2)[34°C – (– 20°C)]/(0.035 m) =       73 W.

	(b)	When the clothing is wet, we have

			?Q/?t	= kA(?T/L) 

					= (0.56 J/s · m · C°)(1.9 m2)[34°C – (– 20°C)]/(0.0050 m) =       1.1 ´ 104 W.



91.	If we assume that all the energy evaporates the water, with the latent heat at 20°C given in the text, we have

		Q = mwaterLwater 

		(1000 kcal/h)(2.5 h) = mwater(585 kcal/kg), which gives mwater =       4.3 kg.



92.	We find the rate of heat conduction from

		?Q/?t	= kA(?T/L) 

				= (0.2 J/s · m · C°)(1.5 m2)(37°C – 34°C)/(0.040 m) =       23 W.

	This is much less than the 230 W that must be dissipated, so the convection provided by the blood in carrying a heat flow to the skin is necessary.





93.	The net heat flow rate from radiation, when the temperature difference is ?T = T1 – T2 , is

		?Q/?t	= esA(T14 – T24) 

				= esA[(T2 + ?T)4 – T24] = esA{T24[1 + (?T/T2)]4 – T24} = esAT24{[1 + (?T/T2)]4 – 1}.

	Because ?T/T2 « 1, we use the binomial expansion for the first term:

		[1 + (?T/T2)]4 ˜ 1 + 4(?T/T2).

	When we substitute this, we get

		?Q/?t	˜ esAT24[1 + 4(?T/T2) – 1] 

				= 4esAT24(?T/T2) = 4esAT23 ?T = 4esAT23 (T1 – T2) = constant ´ (T1 – T2).



94.	(a)	We find the rate of heat flow from

			?Q/?t	= k1A1(?T/L1) + k2A2(?T/L2) + k3A3(?T/L3) 

					= [(k1A1/L1) + (k2A2/L2) + (k3A3/L3)]?T

					= {[(0.023 J/s · m · C°)(410 m2)/(0.155 m)] + [(0.1 J/s · m · C°)(280 m2)/(0.065 m)] + 

									[(0.84 J/s · m · C°)(33 m2)/(0.0065 m)]}[23°C – (– 10°C)] = 1.57 ´ 105 W 

					=      160 kW.

	(b)	The heat flow needed to raise the temperature of the air is

			Qair	= maircair ?T = rairVaircair ?T

				= (1.29 kg/m3)(750 m3)(0.24 kcal/kg · C°)(4186 J/kcal)(23°C – 10° C) = 1.26 ´ 107 J.

		During the 30 minutes there will be heat loss from conduction.  We use the average temperature 

		difference:

			?Tav = !(23°C + 10°C) – (– 10°C) = 26.5 C°.

		Because the conduction loss is proportional to the temperature difference, the loss during the 30 

		minutes is

			Qloss = [(1.57 ´ 105 W)/(33 C°)](26.5 C°)(30 min)(60 s/min) = 2.27 ´ 108 J.

		The total heat required is

			Qtotal = Qair + Qloss = 1.26 ´ 107 J + 2.27 ´ 108 J =       2.4 ´ 108 J.



95.	(a)	If we assume that all of the radiation is absorbed to raise the temperature of the leaf, we have

			P = IeA = mleafcleaf (?T /?t);

			(1000 W/m2)(0.85)(40 ´ 10–4 m2) = (4.5 ´ 10–4 kg)(0.80 kcal/kg · C°)(4186 J/kcal)(?T/?t), 

		which gives ?T/?t =      2.3 C°/s.

	(b)	When the leaf reaches the temperature at which the absorbed energy is re-radiated to the 

		surroundings from both sides of the leaf, we have

			IeA = es 2A(T24 – T14),   or   I = 2s (T24 – T14);

			(1000 W/m2) = 2(5.67 ´ 10–8 W/m2 · K4)[T24 – (293 K)4], which gives T2 = 357 K =      84°C.

	(c)	The major ways that heat can be dissipated are by       convection      from     conduction       to the air 

		in contact with the leaf, and       evaporation.



96.	The work done by friction, which decreases the kinetic energy, generates the heat flow.  In general, some of the heat flow will heat the air and some will be radiated, so a fraction of the heat flow is used to raise the temperature of the iron meteorite and then melt the iron meteorite.  The larger this fraction is, the smaller the necessary velocity.  We determine the minimum velocity by assuming that this fraction is 1:

		Q = ?K;

		miron(ciron ?T + Liron) = !mironvmin2;

		(450 J/kg · C°)[1808°C – (– 125°C)] + 2.89 ´ 105 J/kg = !vmin2, which gives vmin =       1.52 ´ 103 m/s.



97.	(a)	From the ideal gas equation we have

			PV = nRT,   or   V = nRT/P.

		The density is

			r = m/V = (mP/nR)/T.

	(b)	When the temperature is constant, the density is

			r = m/V = (m/nRT)P.



98.	The internal energy of an ideal gas depends only on the temperature, U = *nRT.  For an adiabatic process there is no heat flow.  For the first law of thermodynamics we have

		?U  = *nR ?T = Q – W;

		*(2.0 mol)(8.315 J/mol · K) ?T= 0 – (7500 J), which gives ?T = – 300 K =       – 300 C°.









�

99.	(a)	Because the pressure is constant, we find the work from		(c)

			W 	= p(V2 – V1)

				= (1.013 ´ 105 N/m2)(4.1 m3 – 2.2 m3) =       1.9 ´ 105 J.

	(b)	We use the first law of thermodynamics to find the 

		change in internal energy:

			?U	= Q – W

				= + 5.30 ´ 104 J – 1.9 ´ 105 J =       – 1.4 ´ 105 J.



100.	When we use the ideal gas equation for the adiabatic process, we have

			P2V2/P1V1 = T2/T1 ; 

			P2/P1 = (T2/T1)(V1/V2) = (V1/V2)g ,   or  V1/V2 = (T2/T1)1/(g – 1);

			V1/V2 = (833 K/300 K)1/(1.4 – 1) =       12.8.



101.	The heat of fusion from the ice forming at the bottom of the ice must be conducted through the ice to 

		the air.  When the ice has a thickness x, we have

			dQ/dt = kA ?T/x = r(A dx/dt)Lf .

		We separate the variables and integrate:

			�

		For the time to form a sheet 25 cm thick, we have

			(2.0 J/s · m · C°)[0°C – (–15°C)]t/(0.917 ´ 103 kg/m3)(3.33 ´ 105 J/kg) = (0.25 m)2/2,

		which gives t =      3.2 ´ 105 s = 3.7 d.



102.	(a)	We consider the heat conducted through 30 m of the surface of the Earth:

					?Q/?t	= kA(?T/L) 

							= (0.8 W/m · C°)4p(6.38 ´ 106 m)2(1 C°)(86,400 s/day)/(30 m) =       1.2 ´ 1018 J/day.

		(b)	If we use the result from Problem 86 for the intensity received by the Earth, the rate at which 

			this energy falls on the cross-section of the Earth is

				P = (1.1 ´ 103 W/m2)p(6.38 ´ 106 m)2(86,400 s/day) =     1.2 ´ 1022 J/day.

			This is 10,000´ the heat conducted from the interior.



103.	We find the temperature difference from conduction through the glass:

			?Q/?t = kA(?T/L); 

			95 W = (0.84 J/s · m · C°)4p(0.030 m)2 ?T/(1.0 ´ 10–3 m), which gives ?T =       10 C°.
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