CHAPTER 20 – Second Law of Thermodynamics; Heat Engines





1.	For the heat input, we have


		QH = QL + W = 8500 J + 2700 J = 11,200 J.


	We find the efficiency from


		e = W/QH = (2700 J)/(11,200 J) = 0.24 =       24%.





2.	We find the efficiency from


		e = W/QH = (8200 J)/(18.0 kcal)(4186 J/kcal) = 0.109 =       10.9%.





3.	We find the rate of heat input from the efficiency:


		e = W/QH = (W/t)/(QH/t);


		0.38 = (500 MW)/(QH/t), which gives QH/t = 1316 MW.


	We find the rate of heat discharge from 


		QH/t = (QL/t) + (W/t);


		1316 MW = (QL/t) + 500 MW, which gives QL/t =      816 MW.





4.	(a)	We find the rate at which work is done from


			P = W/t = (180 J/cycle/cyl)(4 cyl)(25 cycles/s) =       1.8 ´ 104 J/s.


	(b)	We find the heat input rate from


			e = W/QH  = (W/t)/(QH/t);


			0.25 = (1.8 ´ 104 J/s)/(QH/t), which gives QH/t =       7.2 ´ 104 J/s.


	(c)	We find the time to use one gallon from


			t = E/(QH/t) = (130 ´ 106 J/gal)(1 gal)/(7.2 ´ 104 J/s) = 1.81 ´ 103 s =      30 min.





5.	We use the units to help us find the rate of heat input to the engine from the burning of the gasoline:


		QH/t = [(3.0 ´ 104 kcal/gal)/(38 km/gal)](90 km/h)(4186 J/kcal) = 2.97 ´ 108 J/h.


	The horsepower is the work done by the engine.  We find the efficiency from


		e = W/QH  = (20 hp)(746 W/hp)(3600 s/h)/(2.97 ´ 108 J/h) = 0.18 =      18%.
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6.	(a)	Work is positive for an expansion.  Because the  work done is 


		represented by the area under the PV curve, ½Wbc½ > ½Wac½.


		The net work is the sum of the works done in each leg.  For a 


		positive net work, Wbc > 0, so we have an expansion from b to c, 


		and the path must be       clockwise.


	(b)	We find the ratio of volumes from the ideal gas equation:


			(Pc/Pa)/(Vc/Va ) = Tc/Ta ;


			(1)(Vc/Va ) = Tc/Ta , so Vc/Va  = Vc/Vb = Tc/Ta = Tb/Ta .


		The work done during the isothermal expansion is


			Wbc	= nRTb ln(Vc/Vb) = nRTb ln(Tb/Ta) 


					= (1.0 mol)(8.315 J/mol · K)(423 K) ln(423 K/273 K) = 1.54 ´ 103 J.


		The work done during the constant pressure compression is


			Wca 	= Pa(Va – Vc) = PaVa[1 – (Vc/Va)] = nRTa [1 – (Vc/Va)]


					= (1.0 mol)(8.315 J/mol · K)(273 K)[1 – (423 K/273 K)] = – 1.25 ´ 103 J.


		For the isothermal expansion ?Ubc = 0, so 


			Qbc = Wbc = 1.54 ´ 103 J.


		For the constant volume compression Wab = 0, so 


			Qab = ?Uab = nCV(Tb – Ta) = (1.0 mol)*(8.315 J/mol · K)(423 K – 273 K) = 1.87 ´ 103 J.


		The efficiency is


			e 	= Wnet/Qadded = (Wbc + Wca)/(Qbc + Qab)


				= (1.54 ´ 103 J – 1.25 ´ 103 J)/(1.54 ´ 103 J + 1.87 ´ 103 J) = 0.085 =      8.5%.








7.	We find the heat input rate from


		e = W/QH ;


		0.38 = (810 MW)/(QH/t), which gives QH/t = 2132 MW.


	We find the discharge heat flow from


		QL/t  = (QH/t) – (W/t) = 2132 MW – 810 MW = 1322 MW.


	If this heat flow warms the air, we have 


		QL/t  = (n/t)cP ?T;


		(1322 ´ 106 W)(3600 s/h)(24 h/day) = (n/t)(7.0 cal/mol · C°)(7.5 C°)(4.186 J/cal), 


	which gives n/t = 5.20 ´ 1011 mol/day.


	To find the volume rate, we use the ideal gas law:


		P(V/t) = (n/t)RT;


		(1.013 ´ 105 Pa)(V/t) = (5.20 ´ 1011 mol/day)(8.315 J/mol · K)(293 K), 


	which gives V/t = 1.25 ´ 1010 m3/day =       13 km3/day.


	Depending on the dispersal by the winds, the local climate could be heated significantly.


	We find the area from


		A = (V/t)t/h = (12.5 km3/day)(1 day)/(0.200 km) =       63 km2.
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8.	(a)	We find the heat flow and work done for each leg.


			Adiabatic compression (a ® b):


				Qab = 0;


				?Uab = nCV(Tb – Ta);


				Wab = – ?Uab = – nCV(Tb – Ta).


			Isobaric expansion (b ® c):	


				Qbc = nCP(Tc – Tb)     absorbed;


				?Ubc = nCV(Tc – Tb);


				Wbc = Qbc – ?Ubc = n(CP – CV)(Tc – Tb);


			Adiabatic expansion (c ® d):	


				Qcd = 0;


				?Ucd = nCV(Td – Tc);


				Wcd = – ?Ucd =  – nCV(Td – Tc).


			Constant volume (d ® a):


				Wda = 0;


				?Uda = nCV(Ta – Td);


				Qda = ?Uda + Wda  = nCV(Ta – Td)    liberated.


		The net work is


			W 	= Wbc + Wcd + Wda + Wab


				= n(CP – CV)(Tc – Tb) – nCV(Td – Tc) + 0 – nCV(Tb – Ta)


				= nCP(Tc – Tb) – nCV(Td – Ta).


		The efficiency is


			e 	= W/Qabs = W/Qbc 


				= [nCP(Tc – Tb) – nCV(Td – Ta)]/nCP(Tc – Tb) = 1 – [(Td – Ta)/g (Tc – Tb)].


		For an adiabatic process, PVg = nRTVg – 1 = constant.  


		For the adiabatic processes of the cycle we have 


			Td  = Tc(Vc/Vd)g – 1,   and   Ta = Tb(Vb/Va)g – 1.  When we substitute these, we get


			e 	= 1 – {[Tc(Vc/Vd)g – 1 – Tb(Vb/Va)g – 1]/g (Tc – Tb)}.


		From the other processes we have Vd = Va , and Tb = TcVb/Vc .  When we use these we get 


			e 	= 1 – {[(Vc/Va)g – 1 – (Vb/Vc)(Vb/Va)g – 1]/g [1 – (Vb/Vc)]} 


				= 1 – {[(Vc/Va)g – (Vb/Va)g]/g [(Vc/Va) – (Vb/Va)]} 


				= 1 – {[(Va/Vc)– g – (Va/Vb)– g]/g [(Va/Vc)– 1 – (Va/Vb)– 1]}.


	(b)	For an ideal diatomic gas, g = 1.4, so we get


			e 	= 1 – {[(5.0)– 1.4 – (15)– 1.4]/(1.4)[(5.0)– 1 – (15)– 1]} = 0.56 =      56%.








9.	The maximum efficiency is the efficiency of the Carnot cycle:


		e = 1 – (TL/TH) = 1 – [(578 K)/(803 K)] = 0.280 =        28.0%.





10.	We find the temperature from the Carnot efficiency:


		e = 1 – (TL/TH);


		0.36 = 1 – [(493 K)/TH], which gives TH = 770 K =      500°C.
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11.	(a)	The net work is


			�


		The sum of the first two terms is the area under the abc path, 


		and the sum of the last two terms is the area under the adc path.


		Thus the net work done is the area enclosed by the cycle.


	(b)	For any reversible cycle, we can consider it a large number of 


		paths, with W = ?Wi.  We select the two points with the 


		maximum and minimum volumes.  We could then apply the 


		above reasoning to the upper and lower paths to arrive at the same result.





12.	We find the high temperature from the Carnot efficiency:


		e1 = 1 – (TL1/TH);


		0.35 = 1 – [(633 K)/TH], which gives TH = 974 K.


	Because the high temperature does not change, for the new efficiency we have


		e2 = 1 – (TL2/TH);


		0.50 = 1 – [TL2/(974 K)], which gives TL2 = 487 K =      214°C.





13.	The efficiency of the plant is


		e = 0.75eCarnot = 0.75[1 – (TL/TH)] = 0.75{1 – [(633 K)/(933 K)]} = 0.241.


	We find the intake heat flow rate from


		e = W/QH ;


		0.241 = (1.1 ´ 109 J/s)(3600 s/h)/(QH/t), which gives QH/t = 1.64 ´ 1013 J/h.


	We find the discharge heat flow from


		QL/t = (QH/t) – (W/t) = 1.64 ´ 1013 J/h – (1.1 ´ 109 J/s)(3600 s/h) =      1.2 ´ 1013 J/h.





14.	The efficiency of the engine is


		e1 = ![1 – (TL/TH)] = ![1 – (553 K/798 K)] = 0.154.


	We find the rate at which heat is exhausted from


		e = W/QH  = W/(W + QL) = (W/t)/[(W/t) + (QL/t)];


		0.154 = (850 kW)/[850 kW + (QL/t)], 


	which gives QL/t = (4.67 ´ 103 kW)(103 W/kW)(3600 s/h) =      1.68 ´ 1010 J/h.





15.	If we assume the efficiency of a reversible engine, we have


		e1 = 1 – (TL/TH) = 1 – (293 K/310 K) = 0.055.


	We find the rate at which work can be done from


		e = W/QH ;


		0.055 = W/(4000 kcal/day), which gives W = 219 kcal/day.


	We can estimate the maximum height by assuming all this work increases the potential energy:


		W = mghmax ;


		(219 kcal/day)(4186 J/kcal) = (65 kg)(9.80 m/s2)hmax , which gives hmax =      1.4 ´ 103 m/day.








16.	We find the efficiency from


		e = W/QH = (W/t)/(QH/t) = (570 ´ 103 J/s)/(1350 kcal)(4186 J/kcal) = 0.101.


	We find the temperature from the Carnot efficiency:


		e = 1 – (TL/TH);


		0.101 = 1 – [TL/(853 K)], which gives TL = 767 K =      494°C.





17.	We find the low temperature from the Carnot efficiency:


		e1 = 1 – (TL/TH1);


		0.29 = 1 – [TL/(853 K)], which gives TL = 606 K.


	Because the low temperature does not change, for the new efficiency we have


		e2 = 1 – (TL/TH2);


		0.35 = 1 – [(606 K)/TH2], which gives TH2 = 932 K =      660°C.





18.	For the efficiencies of the engines, we have 
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		e1 	= 0.65eCarnot = 0.60[1 – (TL1/TH1)] 


			= 0.65{1 – [(703 K)/(953 K)]} = 0.171;


		e2 	= 0.65eCarnot = 0.60[1 – (TL2/TH2)] 


			= 0.65{1 – [(553 K)/(688 K)]} = 0.128.


	Because coal is burned to produce the input heat to the first engine, 


	we need to find QH1.  We relate W1 to QH1 from the efficiency:


		e1 = W1/QH1 ,   or    W1 = 0.171QH1 .


	Because the exhaust heat from the first engine is the input heat to 


	the second engine, we have


		e2 = W2/QH2 = W2/QL1 ,   or   W2 = 0.128QL1 .


	For the first engine we know that


		QL1 = QH1 – W1 , so we get


		W2 = 0.128QL1 = 0.128(QH1 – 0.171QH1) = 0.106QH1 .


	For the total work, we have


		W = W1 + W2 = 0.171QH1 + 0.106QH1 = 0.277QH1 .


	When we use the rate at which this work is done, we get


		900 ´ 106 W = 0.277(QH1/t), which gives QH1/t = 3.25 ´ 109 J/s.


	We find the rate at which coal must be burned from


		m/t = (3.25 ´ 109 J/s)/(2.80 ´ 107 J/kg) =      116 kg/s.





19.	We find the discharge heat flow for the plant from


		QL2/t = (QH1/t) – (W/t) = 3.29 ´ 109 J/s – 900 ´ 106 J/s = 2.39 ´ 109 J/s.


	We find the rate at which water must pass through the plant from


		QL2/t = (m/t )c ?T;


		(2.39 ´ 109 J/s)(3600 s/h) = (m/t )(4186 J/kg · C°)(5.5 C°), which gives m/t  =      3.7 ´ 108 kg/h.
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20.	For an ideal gas, ?U = 0 for the isotherm, so we have


		QH = WT absorbed.


	Because there are no other heat flows, this absorbed heat must equal 


	the net work done.  Thus we have a cycle whose sole effect is to 


	transfer heat into work, which violates the Kelvin-Planck statement 


	of the second law of thermodynamics.  Thus adiabatic lines cannot cross.
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21.	(a)	We find the pressures from the ideal gas equation:


			PV = nRT;


			Pa(6.0 ´ 10–3 m3) = (0.50)(8.315 J/mol · K)(743 K), 


		which gives        Pa = 5.15 ´ 105 Pa.


			Pb(15.0 ´ 10–3 m3) = (0.50)(8.315 J/mol · K)(743 K), 


		which gives        Pb = 2.06 ´ 105 Pa.


	(b)	For an adiabatic process, PVg = nRTVg – 1 = constant;


			THVbg – 1 = TLVcg – 1;


			(743 K)(15.0 L)1.4 – 1 = (563 K)Vc1.4 – 1, 


		which gives       Vc = 30.0 L.


			THVag – 1 = TLVdg – 1;


			(743 K)(6.0 L)1.4 – 1 = (563 K)Vd1.4 – 1, 


		which gives       Vd = 12.0 L.


	(c)	The work done during the isothermal process is


			Wab	= nRTH ln(Vb/Va)  


					= (0.50 mol)(8.315 J/mol · K)(743 K) ln(15.0 L/6.0 L) =       2.83 ´ 103 J.


		Note that this is also QH.


	(d)	The heat transfer during the isothermal process is


			Qcd 	= QL = Wcd	= nRTL ln(Vd/Vc)  


					= (0.50 mol)(8.315 J/mol · K)(563 K) ln(12.0 L/30.0 L) =       – 2.14 ´ 103 J.


	(e)	For the adiabatic processes we have


			W = – ?U = – nCV ?T;


			Wbc = – nCV (Tc – Tb) =  – nCV (TL – TH);


			Wda = – nCV (Ta – Td) =  – nCV (TH – TL) = – Wbc .


		Thus the net work done for the cycle is


			W = Wab + Wcd = 2.83 ´ 103 J – 2.14 ´ 103 J =      0.69 ´ 103 J.


	(f)	The efficiency is


			e = W/QH = (0.69 ´ 103 J)/(2.83 ´ 103 J) = 0.24 =      24%.


		From the temperatures we have


			e = 1 – (TL/TH) = 1 – (563 k/743 K) = 0.24.










































































22.	(a)	We find the initial volume from the ideal gas equation:


			PaVa = nRTa ;


			(10 atm)(1.013 ´ 105 Pa/atm)Va = (1.00)(8.315 J/mol · K)(623 K),


		which gives Va = 5.11 ´ 10–3 m3.


		For point b we have


			Vb = 2Va = 10.2 ´ 10–3 m3,   and   Pb = !Pa = 5.0 atm.


		For an adiabatic process, PVg = nRTVg – 1 = constant;


			THVbg – 1 = TLVcg – 1;


			(623 K)(10.2 ´ 10–3 m3)(5/3) – 1 = (483 K)Vc(5/3) – 1, 


		which gives Vc = 14.9 ´ 10–3 m3.
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			THVag – 1 = TLVdg – 1;


			(623 K)(5.11 ´ 10–3 m3)(5/3) – 1 = (483 K)Vd(5/3) – 1, which gives Vd = 7.49 ´ 10–3 m3.


		We find the pressures from the ideal gas equation:


			PV = nRT;


			Pc(14.9 ´ 10–3 m3) = (1.00)(8.315 J/mol · K)(483 K), which gives Pc = 2.70 ´ 105 Pa = 2.7 atm;


			Pd(7.49 ´ 10–3 m3) = (1.00)(8.315 J/mol · K)(483 K), which gives Pd = 5.39 ´ 105 Pa = 5.3 atm.


		The pressures and volumes are


			Pa = 10 atm, Va = 5.11 ´ 10–3 m3; Pb = 5.0 atm, Vb = 10.2 ´ 10–3 m3; 


			Pc = 2.7 atm, Vc = 14.9 ´ 10–3 m3; Pd = 5.3 atm, Vd = 7.49 ´ 10–3 m3.


	(b)	For each segment we have


			Isothermal expansion (a ® b):


				?Uab = 0;


				Qab 	= Wab = nRTH ln(Vb/Va)  


						= (1.00 mol)(8.315 J/mol · K)(623 K) ln(2) = 3.59 ´ 103 J.


			Adiabatic expansion (b ® c):	


				Qbc = 0;


				Wbc = – ?Ubc = – nCV(Tc – Tb)


						= – (1.00 mol)*(8.315 J/mol · K)(483 K – 623 K) = 1.75 ´ 103 J.


			Isothermal compression (c ® d):	


				?Ucd = 0;


				Qcd 	= Wcd = nRTL ln(Vd/Vc)  


						= (1.00 mol)(8.315 J/mol · K)(483 K) ln(!) = – 2.78 ´ 103 J.


			Adiabatic compression  (d ® a):


				Qda = 0;


				Wda 	= – ?Uda = – nCV(Ta – Td)


						= – (1.00 mol)*(8.315 J/mol · K)(623 K – 483 K) = – 1.75 ´ 103 J.


		Thus we have


			Qab = 3.59 ´ 103 J, Wab = 3.59 ´ 103 J, ?Uab = 0;


			Qbc = 0, Wbc = 1.75 ´ 103 J, ?Ubc = – 1.75 ´ 103 J;


			Qcd = – 2.78 ´ 103 J, Wcd = – 2.78 ´ 103 J, ?Ucd = 0;


			Qda = 0, Wda = – 1.75 ´ 103 J, ?Uda = 1.75 ´ 103 J.


	(c)	The net work is


			W	= Wbc + Wcd + Wda + Wab = Wab + Wcd . 


		The efficiency is


			e 	= W/Qabs = (Wab + Wcd)/Qab 


				= (3.59 ´ 103 J – 2.78 ´ 103 J)/(3.59 ´ 103 J) = 0.226 =       22.6% .


		Note that this agrees with 


			e 	= (TH – TL)/TH = (623 K – 483 K)/(623 K) = 0.225.





23.	The maximum coefficient of performance for the cooling coil is


		CP = QL/W = TL/(TH – TL) = (258 K)/(303 K – 258 K) =      5.7.





24.	The coefficient of performance for the refrigerator is


		CP = QL/W = TL/(TH – TL) = (258 K)/(295 K – 258 K) =      7.0.





25.	We find the low temperature from the coefficient of performance:


		CP = QL/W = TL/(TH – TL);


		5.0 = TL/(302 K – TL), which gives TL = 252 K =      – 21°C.





26.	If we compare the definition of the coefficient of performance for a heat pump with that for a refrigerator, we see that CP = TH/(TH – TL).


	(a)	The coefficient of performance for the heat pump is


			CP1 = TH/(TH – TL1) = (295 K)/(295 K – 273 K) = 13.4.


		We find the work from


			CP1 = QH/W1 ;


			13.4 = (2800 J)/W1 , which gives W1 =      2.1 ´ 102 J.


	(b)	The coefficient of performance for the heat pump is now


			CP2 = TH/(TH – TL2) = (295 K)/(295 K – 258 K) = 7.97.


		We find the work from


			CP2 = QH/W2 ;


			7.97 = (2800 J)/W2 , which gives W2 =      3.5 ´ 102 J.





27.	The efficiency of the engine is


		e = 1 – (TL/TH).


	For the coefficient of performance, we have


		CP = TH/(TH – TL) = 1/[1 – (TL/TH)] = 1/e = 1/0.35 =      2.9. 





28.	The efficiency of the engine is


		e = 1 – (TL/TH).


	We find the coefficient of performance of the refrigerator from the efficiency of the engine:


		CP = QL/W = TL/(TH – TL) = (TL/TH)/[1 – (TL/TH)] = (1 – e)/e = (1 – 0.30)/(0.30) = 2.33.


	The heat flow required to cool and freeze the water is


		QL = m(c ?T + L).


	We find the time from


		t 	= W/P = (QL/CP)/P = m(c ?T + L)/(CP)P


			= (12)(0.040 kg){[(4186 J/kg · C°)(20°C – 0°C)] + 3.33 ´ 105 J/kg}/(2.33)(450 W) 


			= 190 s =       3.2 min.





29.	(a)	The coefficient of performance for the refrigerator is


			CP = QL/W = TL/(TH – TL) = (256 K)/(298 K – 256 K) =      6.09.


		The heat that is to be removed is


			QL = m(cwater ?Twater + L + cice ?Tice)


				= (0.50 kg){(4186 J/kg · C°)(25°C – 0°C) + 3.33 ´ 105 J/kg + (2100 J/kg · C°)[0°C – (– 17°C)]} 


				= 2.37 ´ 105 J.


		We find the work from


			CP = QL/W;


			6.09 = (2.37 ´ 105 J)/W , which gives W =      3.9 ´ 104 J.


	(b)	The power output is


			P = W/t = QL/(CP)t = m(cwater ?Twater + L )/(CP)t 


			200 W = (0.50 kg)[(4186 J/kg · C°)(25°C – 0°C) + 3.33 ´ 105 J/kg ]/(6.09)t, 


		which gives t = 1.8 ´ 102 s =      3.0 min.














30.	(a)	For a Carnot refrigerator, we have


			½QH½ = nRTH ½ln(Vb/Va)½ = nRTH ln(Vb/Va);


			½QL½ = nRTL ½ln(Vd/Vc)½ = nRTL ln(Vc/Vd) = nRTL ln(Vb/Va), because Vc/Vd = Vb/Va;


			½W½ = ½QH½ – ½QL½.


		The coefficient of performance is


			CP 	= ½QL½/½W½ = ½QL½/(½QH½ – ½QL½) 


				= nRTL ln(Vb/Va)/[nRTH ln(Vb/Va) – nRTL ln(Vb/Va)] = TL/(TH – TL). 


	(b)	The efficiency of the reversible heat engine is


			e = 1 – (TL/TH), so TL/TH = 1 – e.


		Thus we have


			CP = TL/(TH – TL) = (TL/TH)/[1 – (TL/TH)] =       (1 – e)/e.


	(c)	The coefficient of performance is


			CP = TL/(TH – TL) = (257 K)/(295 K – 257 K) =      6.8.





31.	The power input is


		P = W/t = QL/(CP)t = mL /(CP)t = rVL/(CP)t;


		1000 W = (1.00 ´ 103 kg/m3)V(3.33 ´ 105 J/kg)/(7.0)(3600 s), 


	which gives V = 7.6 ´ 10–2 m3 =      76 L.





32.	(a)	The coefficient of performance is


			CP = 0.24CPideal = (0.24)TL/(TH – TL)  = (0.24)(297 K)/(311 K – 297 K) =      5.1.


	(b)	The power required is


			P 	= W/t = QL/t(CP)


				= (36 ´ 103 Btu/h)(1.054 ´ 103 J/Btu )/(5.09)(3600 s/h) = 2.07 ´ 103 W =       2.1 kW.


	(c)	P = (2.07 ´ 103 W)/(746 W/hp) =      2.8 hp.





33.	We assume that the loss in kinetic energy is transferred to the environment as a heat flow.  For the entropy change we have


		?S	= Q/T = !mv2/T 


			= !(10 kg)(3.0 m/s)2/(293 K) =       0.15 J/K.





34.	The freezing occurs at constant temperature.  Because there is a heat flow out of the water, we have


		?S = Q/T = – mL/T = – (1.00 m3)(1000 kg/m3)(79.7 kcal/kg)/(273 K) =      – 292 kcal/K.





35.	We assume when the ice is formed at 0°C it is removed, so its entropy change will be the same as in Problem 34.  The heat flow from the water went into the great deal of ice at – 10°C.  Because there is a great deal of ice, its temperature will not change.  We find the entropy change of the block of ice from


		?Sice = Q/Tice = + mL/T = (1.00 m3)(1000 kg/m3)(79.7 kcal/kg)/(263 K) = + 303 kcal/K.


	Thus the total entropy change is 


		?Stotal = ?Sice + ?S = + 303 kcal/K + (– 292 kcal/K) =      + 11 kcal/K.


	If the new ice were not removed, we would include an additional heat term which would be negative for cooling the new ice and positive for the great deal of ice.  The net additional entropy change would be small.





36.	(a)	The change in entropy of the water is


			?Swater = Q/T = mL/T = – (1.00 kg)(539 kcal/kg)/(373 K) =      + 1.45 kcal/K.


	(b)	Because the heat to vaporize the water comes from the surroundings, we have


			?Ssurr = – Q/T =      – 1.45 kcal/K.


	(c)	For the universe we have


			?Suniverse = ?Swater + ?Ssurr = + 1.45 kcal/K + (– 1.45 kcal/K) =      0.


		This must be so for a reversible process.


	(d)	If the process were irreversible, Tsurr > 100°C, so ?Ssurr would be less negative.  


		Thus ?Suniverse > 0.





37.	The total rate of the entropy change is 


		?Stotal/t 	= ?Ssource/t  + ?Swater/t  = (– Q/t)/Tsource + (+ Q/t)/Twater 


					= (– 7.50 cal/s)/(513 K) + (+ 7.50 cal/s)/(300 K) =      + 0.0104 cal/K · s.





38.	The aluminum and water are isolated, so we find the final temperature from


		heat lost = heat gained;


		mAlcAl ?TAl = mwatercwater ?Twater ;


		(3.8 kg)(0.22 kcal/kg · C°)(30°C – T) = (1.0 kg)(1.00 kcal/kg · C°)(T – 20°C), which gives T = 24.55°C.


	The heat flow from the aluminum to the water is


		Q = mAlcAl ?TAl = (3.8 kg)(0.22 kcal/kg · C°)(30°C – 24.55°C) = 4.55 kcal.


	The heating and cooling do not occur at constant temperature.  We add (integrate) the  differential changes in entropy:


		?SAl  	= ? (mAlcAl dT)/T = mAlcAl ln(T/Thot) 


				= (3.8 kg)(0.22 kcal/kg · C°) ln(297.8 K/303.2 K) = – 1.50 ´ 10–2 kcal/K;


		?Swater 	= ? (mwatercwater dT)/T = mwatercwater ln(T/Tcold) 


				= (1.0 kg)(1.00 kcal/kg · C°) ln(297.8 K/293.2 K) = + 1.56 ´ 10–2 kcal/K.


	The total entropy change is 


		?S = ?SAl + ?Swater = – 1.50 ´ 10–2 kcal/K + 1.56 ´ 10–2 kcal/K = 6 ´ 10–4 kcal/K =      + 0.6 cal/K.





39.	The heat flow to freeze the water is


		Q = mwaterL = (2.5 kg)(3.33 ´ 105 J/kg ) = 8.33 ´ 105 J.


	We find the final temperature of the ice from


		Q = micecice ?Tice  ;


		8.33 ´ 105 J = (450 kg)(2100 J/kg · C°)[T – (– 15°C)], which gives T = – 14.12°C.


	The heating of the ice does not occur at constant temperature.  Because the temperature change is small, to estimate the entropy change, we will use the average temperature:


		Tice,av = !(Tice + T) = ![(– 15°C) + (– 14.12°C)] = – 14.56°C;


	The total entropy change is 


		?S 	= ?Swater + ?Sice = (– Q/Twater) + (+ Q/Tice,av) 


				= [(– 8.33 ´ 105 J)/(273.2 K)] + [(+ 8.33 ´ 105 J)/(258.6 K)] = 172 J/K =      + 1.7 ´ 102 J/K.





40.	We find the final temperature from


		heat lost = heat gained;


		mhotcwater ?Thot = mcoldcwater ?Tcold ;


		(3.0 kg)(1000 cal/kg · C°)(80°C – T) = (2.0 kg)(1000 cal/kg · C°)(T – 20°C), which gives T = 56°C.


	The heating and cooling do not occur at constant temperature.  We add (integrate) the  differential changes in entropy:


		?Shot 	= ? (mhotcwater dT)/T = mhotcwater ln(T/Thot) 


				= (3.0 kg)(1000 cal/kg · C°) ln(329 K/353 K) = – 211 cal/K;


		?Scold 	= ? (mcoldcwater dT)/T = mcoldcwater ln(T/Tcold) 


				= (2.0 kg)(1000 cal/kg · C°) ln(329 K/293 K) = + 232 cal/K.


	The total entropy change is 


		?S 	= ?Shot + ?Scold = – 211 cal/K + 232 cal/K =      + 21 cal/K.





41.	Because entropy is a state function, if we have a system that is a reversible engine, there is no entropy change of the system in a complete cycle: ?Ssystem = 0.  We assume that we can run this engine and do work while absorbing heat QH but without a heat flow to the lower temperature.  This means a heat flow from the surroundings, so we have  – QH/TH .  Thus the total entropy change is


		?S = ?Ssystem + ?Ssurr =  0 – QH/TH < 0,


	which violates the principle of entropy increase.  To have ?S > 0, there must be a heat flow QL back to the surroundings.








42.	We add (integrate) the  differential changes in entropy:


		?S 	= ? (nCV dT)/T = nCV ln(Tf/Ti) 


				= (2.0 mol)((8.315 J/mol · K) ln(318 K/298 K) =      2.7 J/K.





43.	(a)	The heating does not occur at constant temperature.  We add (integrate) the  


		differential changes in entropy:


			?Swater 	= ? (mwatercwater dT)/T = mwatercwater ln(Tf/Ti) 


					= (1.00 kg)(1.00 kcal/kg · C°) ln(373 K/273 K) =       0.312 kcal/K.


	(b)	If the process were reversible, the energy change of the universe would be zero, so


			?Ssurr = – ?Swater = – 0.312 kcal/K. 


		Because the process is not reversible, ?Ssurr will be greater, that is, less negative:


			?Ssurr > – 0.312 kcal/K. 





44.	(a)	The aluminum and water are isolated, so we find the final temperature from


			heat gained = heat lost;


			mAlcAl ?TAl = mwatercwater ?Twater ;


			(150 g)(0.22 cal/g · C°)(T – 20°C) = (240 g)(1.00 cal/g · C°)(100°C – T), 


		which gives T = 90.3°C =      90°C.


	(b)	We add (integrate) the  differential changes in entropy:


			?S 	= ?Scold + ?Shot = ? (mAlcAl dT)/T + ? (mwatercwater dT)/T 


				= mAlcAl ln(T/TAl) + mwatercwater ln(T/Twater) 


				= (150 g)(0.22 cal/g · C°) ln(363.5 K/293.2 K) + (240 g)(1.00 cal/g · C°) ln(363.5 K/373.2 K) 


					=       + 0.77 cal/K (3.2 J/K).





45.	(a)	For the isothermal process we find the ratio of pressures from the ideal gas equation:


			(P2iV2/P1V1) = T2/T1= 1, so P2i/P1 = V1/V2 = 2.


		For the adiabatic process, 


			P1V1g = P2aV2g, so P2a/P1 = (V1/V2)g = 2g. 


		Because g > 1, P2a/P1 > 2, so the final pressure is greater for the       adiabatic process.


	(b)	For the isothermal process we have


			?U = 0; Qi = Wi. 


		Thus ?Si = Wi/T = [nRT ln(V2/V1)]/T = nR ln(1/2) =       – nR ln 2.


		For the adiabatic process we have


			Qa = 0. 


		Thus        ?Sa = 0.


	(c)	Because each process is reversible, the energy change of the universe is zero.  


		For the isothermal process we have


			?Ssurr,i = – ?Si =      nR ln 2. 


		For the adiabatic process we have


			?Ssurr,a = – ?Sa =      0. 





46.	(a)	Ideal gases do not interact, so each gas expands to twice the volume at constant temperature.


		Thus we have


			?SN = ?SA = nR ln(V2/V1) = nR ln(2) = nR ln 2.


		The total change of the system is


			?Ssys = ?SN + ?SA = 2nR ln 2 = 2(1 mol)(8.315 J/mol · K) ln 2 =      11.5 J/K.


	(b)	Because there is no interaction with the environment,


			?Senv = 0.


	(c)	For one gas, say nitrogen, the volume increases by a factor of 3 and for the other the volume 


		increases by a factor of 1.5.  Thus we have


			?SN = nR ln(V2N/V1) = nR ln(3) = nR ln 3.


			?SA = nR ln(V2A/V1) = nR ln(1.5) = nR ln 1.5 .


		The total change of the system is


			?Ssys = ?SN + ?SA = nR ln 3 + nR ln 1.5  = (1 mol)(8.315 J/mol · K)(ln 3 + ln 1.5) =      12.5 J/K.





47.	(a)	Because entropy is a state function and the system returns to the initial state in a cycle, the 


		change in entropy for the system is zero.  Because all processes are reversible, the change in entropy 


		for the universe is zero, so the change in entropy for the environment is zero.


	(b)	For the adiabatic processes 


			?Q = 0,  so ?Sad = ? dQ/T = 0.


		We let V2 represent the higher volume for the isothermal processes, so the entropy change is 


			?S = ?Shot + ?Scold = nR ln(V2H/V1H) + nR ln(V1L/V2L).


		For a Carnot cycle, V2H/V1H = V2L/V1L , so we get


			?S = nR [ln(V2H/V1H) – ln(V2L/V1L)] =  nR [ln(V2H/V1H) – ln(V2H/V1H)]  = 0.





48.	The cooling does not occur at constant temperature.  We add (integrate) the  differential changes in entropy:


		�


	For the given data we have


		?S 	= (0.25 mol){(2.08 mJ/mol · K2)(1.0 K – 3.0 K) + @(2.57 mJ/mol · K4)[(1.0 K)3 – (3.0 K)3]} 


			=      – 6.6 mJ/K.





49.	(a)	The kinetic energy the rock loses when it hits the ground becomes a heat flow to the ground.  


		We assume the temperature of the ground, TL , does not change appreciably.  The entropy change is


			?S = Q/TL ,  or   TL ?S = Q = !mv2.  This energy is no longer available to do useful work.


	(b)	We find the entropy change for the free expansion of an ideal gas by considering a reversible 


		isothermal process at TL .  Because ?U = 0, Q = W = nRTL ln(V2/V1).  Thus we have


			TL ?S = Q = nRTL ln(V2/V1) = W.


		Although this work could have been done in a reversible process, no work was done in the 


		irreversible free adiabatic expansion, so this energy is no longer available for useful work.


	(c)	The entropy change when QH is conducted from TH to TL is


			 ?S = QH/TL – QH/TH . 


		Thus we have


			TL ?S = QH(1 – TL/TH) = QHeCarnot . 


		For a Carnot engine


			QHeCarnot = W,


		with less heat discharged at the lower temperature.  Thus this work, which was not done during 


		the conduction, is no longer available for useful work.





50.	We find the total energy stored in the copper block from the heat flow that raised its temperature from 290 K to 420 K:


		Q = mCucCu ?TCu = (5.0 kg)(390 J/kg · C°)(420 K – 290 K) = 2.54 ´ 105 J.


	If we extract this energy in a reversible process, the entropy changes are


		?SCu  	= ? (mCucCu dT)/T = mCucCu ln(Tcold/Thot) 


				= (5.0 kg)(390 J/kg · C°) ln(290 K/420 K) = – 7.22 ´ 102 J/K;


		?Ssurr 	= Q/Tcold = (2.54 ´ 105 J)/(290 K) = + 8.76 ´ 102 J/K.


	The total entropy change is 


		?S = ?SCu + ?Ssurr = – 7.22 ´ 102 J/K +  8.76 ´ 102 J/K = 1.54 ´ 102 J/K.


	From the result for Problem 49, the unavailable energy is 


		Tcold ?S = (290 K)(1.54 ´ 102 J/K) = 4.5 ´ 104 J.


	Thus the maximum work available is


		2.54 ´ 105 J – 4.5 ´ 104 J =      2.1 ´ 105 J.





51.	We use H for head, and T for tail.  For the microstates we construct the following table:


	Macrostate		Microstates									Number


	6 heads			H H H H H H										1


	5 heads, 1 tail	H H H H H T, H H H H T H, H H H T H H, H H T H H H, H T H H H H, T H H H H H			6


	4 heads, 2 tails	H H H H T T, H H H T H T, H H H T T H, H H T H H T, H H T H T H, H H T T H H, 			15


					H T H H H T, H T H H T H, H T H T H H, H T T H H H, T H H H H T, T H H H T H,


					T H H T H H, T H T H H H,T T H H H H


	3 heads, 3 tails	H H H T T T, H H T H T T, H H T T H T, H H T T T H, H T H H T T, H T H T H T, H T H T T H, 		20


					H T T H H T, H T T H T H, H T T T H H, T H H H T T, T H H T H T, T H H T T H, T H T H H T, 


					T H T H T H, T H T T H H, T T H H H T, T T H H T H, T T H T H H, T T TH H H


	2 heads, 4 tails	H H T T T T, H T H T T T, H T T H T T, H T T T H T, H T T T T H, T H H T T T, 			15


					T H T H T T, T H T T H T, T H T T T H, T T H H T T, T T H T H T, T T H T T H, 


					T T T H H T, T T T H T H, T T T T H H


	1 head, 5 tails	H T T T T T, T H T T T T, T T H T T T, T T T H T T, T T T T H T, T T T T T H			6


	6 tails			T T T T T T										1


	There are a total of 64 microstates.


	(a)	The probability of obtaining three heads and three tails is


			P33 = (20 microstates)/(64 microstates) =       5/16.


	(b)	The probability of obtaining six heads is


			P60 = (1 microstate)/(64 microstates) =       1/64.





52.	Because each die has six possible results, there are (6)(6) = 36 possible microstates.


	(a)	We find the number of microstates that give a 7 by listing all the possibilities:


			(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1), so there are 6 microstates.


		Thus the probability of obtaining a 7 is


			P7 = (6 microstates)/(36 microstates) =       1/6.


	(b)	We find the number of microstates that give an 11 by listing all the possibilities:


			(5, 6), and (6, 5), so there are 2 microstates.


		Thus the probability of obtaining an 11 is


			P11 = (2 microstates)/(36 microstates) =       1/18.


	(c)	We find the number of microstates that give a 5 by listing all the possibilities:


			(1, 4), (2, 3), (3, 2), and (4, 1), so there are 4 microstates.


		Thus the probability of obtaining a 5 is


			P5 = (4 microstates)/(36 microstates) =       1/9.







































































53.	We are not concerned with the order that the cards are placed in the hand.


	(a)	One of the possible microstates is the four aces and one of the four kings.  Because the suit of the 


		king is not specified, there are four different possibilities, and thus the macrostate of four aces and 


		one king has 4 microstates.


	(b)	Because the deck contains only one of each card specified, there is only 1 microstate for the 


		macrostate of six of hearts, eight of diamonds, queen of clubs, three of hearts, jack of spades.


	(c)	If we call the four jacks J1, J2, J3, J4, without regard to order we have the following possible pairs:


			J1J2, J1J3, J1J4, J2J3, J2J4, J3J4, so there are 6 combinations for the jacks.


		Similarly, there will be 6 combinations for the queens, but only 4 combinations for the ace.  


		Thus the total number of microstates for the macrostate of two jacks, two queens, and an ace is 


			(6)(6)(4) = 144.


	(d)	We construct the hand by considering the number of ways we can draw each card.  Because we 


		are not concerned with any specific values, there will be 52 possibilities for the first card.  For the 


		second draw, because we cannot have any of the cards equal in value to the first one, there will be 


		only 48 possibilities.  Similarly, there will be 44 possibilities for the third draw, 40 possibilities 


		for the fourth draw, and 36 possibilities for the fifth draw.  If we were concerned with order, the 


		total number of possibilities would be the product of these.  The number of microstates must be 


		reduced by dividing by the number of ways of arranging five cards, which is 


			(5)(4)(3)(2)(1) = 120.  


		Thus the number of microstates for a hand with no two equal-value cards is


			(52)(48)(44)(40)(36)/120 = 1.32 ´ 106.


	The probability will increase with the number of microstates, so the order is


		(b), (a), (c), (d).





54.	(a)	There is only one microstate for 4 tails: T T T T.


		For two heads and two tails, we have   H H T T, H T H T, H T T H, T H H T, T H T H, T T H H.


		Thus there are six microstates for two heads and two tails.


		The change in entropy is


			?S = k(ln W2 – ln W1) = k ln(W2/W1) = (1.38 ´ 10–23 J/K) ln(6/1) =      2.47 ´ 10–23 J/K.


	(b)	There is only one microstate for 100 heads: W2 = 1.


		For 100 coins there are 100! ways of arranging them.  There are 50! ways of arranging 50 heads, 


		and 50! ways of arranging 50 tails.  Thus the number of microstates for any arrangement of 


		50 heads and 50 tails is


			W1 = 100!/50! 50! = (9.33 ´ 10157)/(3.04 ´ 1064)(3.04 ´ 1064) = 1.0 ´ 1029.


		The change in entropy is


			?S = k ln(W2/W1) = (1.38 ´ 10–23 J/K) ln(1/1.0 ´ 1029) =      – 9.2 ´ 10–22 J/K.


	(c)	These changes are      much smaller      than those for ordinary thermodynamic systems, which have 


		much larger numbers of microstates, and thus much greater entropy changes.





55.	The maximum possible efficiency is the efficiency of the Carnot cycle:


		e = 1 – (TL/TH) = 1 – [(90 K)/(293 K)] = 0.69 =        69%.





56.	The maximum possible efficiency is the efficiency of the Carnot cycle:


		e = 1 – (TL/TH) = 1 – [(277 K)/(300 K)] = 0.077 =        7.7%.


	The engine might be feasible because the great amount of water in the ocean could allow a large flow rate through the engine.  Possible adverse environmental effects would be that mixing the waters on a large scale would change the environment for those creatures that live in the cooler water, and change in the surface temperature of the ocean over a large area could cause atmospheric changes.





57.	We assume that the loss in kinetic energy is transferred to the environment as a heat flow.  For the entropy change we have


		?S	= Q/T = 2(!mv2)/T = mv2/T 


			= (1100 kg)[(95 km/h)/(3.6 ks/h)]2/(293 K) =       2.6 ´ 103 J/K.








58.	(a)	We find the final temperature from


			heat lost = heat gained;


			mwatercwater ?Twater  = mAlcAl ?TAl ;


			(0.210 kg)(4186 J/kg · C°)(50°C – T) = (0.120 kg)(900 J/kg · C°)(T – 15°C), 


		which gives T =       46.2°C.


	(b)	The heating and cooling do not occur at constant temperature.  We add (integrate) the  


		differential changes in entropy:


			?Swater 	= ? (mwatercwater dT)/T = mwatercwater ln(T/Twater) 


					= (0.210 kg)(4186 J/kg · C°) ln(319.4 K/323.2 K) = – 10.4 J/K;


			?SAl 	= ? (mAlcAl dT)/T = mAlcAl ln(T/TAl) 


					= (0.120 kg)(900 J/kg · C°) ln(319.4 K/288.2 K) = + 11.1 J/K.


		The total entropy change is 


			?S 	= ?Swater + ?SAl = – 10.4 J/K + 11.1 J/K =      + 0.70 J/K.





59.	(a)	The coefficient of performance for the heat pump is


			CP = TH/(TH – TL) = (297 K)/(297 K – 279 K) = 16.5 =       17.


	(b)	We find the heat delivered at the high temperature from


			CP = QH/W ;


			16.5 = QH/(1000 J/s)(3600 s/h) , which gives QH =      5.9 ´ 107 J/h.





60.	First we check to see if energy is conserved:


		QL + W = 1.50 MW + 1.50 MW = 3.00 MW = QH ,


	so energy is conserved.


	The efficiency of the engine is


		e = W/QH = (1.50 MW)/(3.00 MW) = 0.500 = 50.0%.


	The maximum possible efficiency is the efficiency of the Carnot cycle:


		e = 1 – (TL/TH) = 1 – [(215 K)/(425 K)] = 0.494 = 49.4%.


	Yes,      there is something fishy, because his claimed efficiency is not possible.





61.	(a)	The efficiency of the plant is


			e = 1 – (TL/TH) = 1 – [(285 K)/(600 K)] = 0.525 = 52.5%.


		We find the heat input rate from


			e = W/QH ;


			0.525 = (900 MW)/(QH/t), which gives QH/t = 1714 MW.


		We find the discharge heat flow from


			QL/t  = (QH/t) – (W/t) = 1714 MW – 900 MW = 814 MW.


		If this heat flow warms some river water, which mixes with the rest of the river water, we have 


			QL/t  = (n/t)c ?T;


			(814 ´ 106 W) = (37 m3/s)(1000 kg/m3)(4186 J/kg · C°) ?T, which gives ?T =       5.3 C°.


	(b)	The heat flow does not occur at constant temperature.  We add (integrate) the  differential 


		change in entropy:


			?S = ? (mc dT)/T = mc ln(Tf/Ti).


		Thus we have


			?S/m = c ln(Tf/Ti) = (4186 J/kg · K) ln(290.3 K/285 K) =       + 77 J/kg · K.
































62.	(a)	The efficiency of the Carnot cycle is


			eCarnot = 1 – (TL/TH) = 1 – [(358 K)/(773 K)] = 0.537 = 53.7%.


		Thus we have


			e/eCarnot = 15%/53.7% = 0.28, so       e = (28%)eCarnot .


	(b)	The rate at which heat flows into the engine is


			QH/t = (100 hp)(746 W/hp) = 7.46 ´ 104 W.


		The useful power, which moves the car, is


			W/t = eQH/t = (0.15)(7.46 ´ 104 W) =       1.12 ´ 104 W.


		The rate at which heat is exhausted is


			QL/t 	= QH/t – W/t = [7.46 ´ 104 W – 1.12 ´ 104 W](3600 s/h) 


					=       2.28 ´ 108 J/h = 5.45 ´ 104 kcal/h.





63.	The kinetic energy the rock loses when it hits the ground becomes a heat flow to the ground.  


	We assume the temperature of the ground, T, does not change appreciably.  The entropy change is


		?S = Q/T = K/T.





64.	We find the final temperature from


		heat lost = heat gained;


		mhotcwater ?Thot = mcoldcwater ?Tcold ;


		(0.500 kg)(4186 J/kg · C°)(50°C – T) = (0.500 kg)(4186 J/kg · C°)(T – 0°C), which gives T = 25°C.


	The heating and cooling do not occur at constant temperature.  We add (integrate) the  differential changes in entropy:


		?S 	= ?Shot + ?Scold = ? (mhotcwater dT)/T + ? (mcoldcwater dT)/T 


				= mcwater [ln(T/Thot) + ln(T/Tcold)] 


				= (0.500 kg)(4186 J/kg · C°)[ln(298 K/323 K) + ln(298 K/273 K)] =      + 15 J/K.





65.	(a)								(b)	  The area within the curve is


�


				area = ? T dS = ? dQ = Qnet .


			Because there is no internal energy change, we have


				area = Qnet = Wnet .













































































66.	(a)	The actual efficiency of the engine is


			eactual = W/QH = (600 J)/(1600 J) = 0.375 = 37.5%.


		The ideal efficiency is


			eideal = 1 – (TL/TH) = 1 – [(400 K)/(850 K)] = 0.529 = 52.9%.


		Thus the engine is running at 


			eactual /eideal = (0.375 )/(0.529 ) = 0.708 =      70.8% of ideal.


	(b)	We find the heat exhausted in one cycle from


			QL = QH – W = 1600 J – 600 J = 1000 J.


		In one cycle of the engine there is no entropy change for the engine.  The input heat is taken from 


		the universe at TH and the exhaust heat is added to the universe at TL.  The total entropy change is


			?Stotal	= (– QH/TH) + (QL/TL) 


					= [– (1600 J)/(850 K)] + [(1000 J)/(400 K)] =      + 0.618 J/K.


	(c)	For a Carnot engine we have


			W = eQH = 0.529QH ;


			QL = QH – W = (1 – e)QH = (1 – 0.529 )QH = 0.471 QH .


		The total entropy change is


			?Stotal	= (– QH/TH) + (QL/TL) 


					= [– QH/(850 K)] + [+ 0.471 QH/(400 K)] =      0,      as expected for an ideal engine.


	(d)	For a Carnot engine we have


			WCarnot = eQH = 0.529QH = 0.529(1600 J) = 846 J.


		For the real engine Wreal = 600 J, so the difference is 


			WCarnot – Wreal = 846 J – 600 J = 246 J.


		For TL ?S we get


			TL ?S = (400 K)(0.618) = 247 J, which agrees within significant figures.





�


67.	Because process ab is isothermal, ?Uab = 0, and 


		Qab = Wab = nRTH ln(Vb/Va).


	Because process bc is constant volume, we have


		Qbc = ?Ubc = nCV(TL – TH) = n*R(TL – TH);


		Wbc = 0. 


	Because process cd is isothermal, ?Ucd = 0, and 


		Qcd 	= Wcd = nRTL ln(Vd/Vc) 


				= nRTL ln(Va/Vb) = – nRTL ln(Vb/Va).


	Because process da is constant volume, we have


		Qda = ?Uda = nCV(TH – TL) = n*R(TH – TL);


		Wda = 0. 


	The net work done by the cycle is


		W 	= Wab + Wcd = nRTH ln(Vb/Va) – nRTL ln(Vb/Va) 


			= nR(TH – TL)ln(Vb/Va).


	The heat added to the system is


		Qin = Qab + Qda = nRTH ln(Vb/Va) + n*R(TH – TL).


	The efficiency is


		eStirling	= W/Qin = nR(TH – TL)ln(Vb/Va)/[nRTH ln(Vb/Va) + n*R(TH – TL)] 


				=       (TH – TL)ln(Vb/Va)/[TH ln(Vb/Va) + *(TH – TL)].


	The efficiency of a Carnot cycle is


		eCarnot	= (TH – TL)/TH .


	We rearrange the expression for the Stirling cycle:


		eStirling	= [(TH – TL)/TH]{1/[1 + *(TH – TL)/TH ln(Vb/Va)]}.


	Because the denominator of the second factor is greater than 1, we see that


		eStirling < eCarnot .
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68.	For a monatomic gas CP = 5/2, CV = 3/2, g = CP/CV = 5/3.  


	(a)	We find the pressure at b from the ideal gas equation:


			(Pb/Pa)/(Vb/Va) = Tb/Ta ;


			(Pb/1 atm)(2.5) = 1, so       Pb = 0.40 atm.


		For the adiabatic compression, we have


			PaVag = PcVcg,   or  Pc/Pa = (Va/Vc)g;


			Pc/1 atm = (1/2.5)5/3, so       Pc = 0.217 atm.


	(b)	We find the temperature at c from the ideal gas equation:


			(Pc/Pa)/(Vc/Va) = Tc/Ta ;


			(0.217 atm/1 atm)(2.5) = Tc/273 K, so       Tc = 148 K.


	(c)	For process ab, the isothermal expansion, we have


			?Uab = 0;


			Qab  = Wab = nRTa ln(Vb/Va) = (1 mol)(8.315 J/mol · K)(273 K) ln(2.5) =       2.08 ´ 103 J.


			?Sab = Qab/Ta = (2.08 ´ 103 J)/(273 K) =       7.62 J/K.


		For process bc, at constant volume, we have


			Wbc = 0;


			Qbc = ?Ubc = nCV(Tc – Tb) = (1 mol)*(8.315 J/mol · K)(148 K – 273 K) =       – 1.56 ´ 103 J.


			?Sbc = nCV ln(Tc/Tb) = (1 mol)*(8.315 J/mol · K) ln(148 K/273 K) =       – 7.64 J/K.


		For process ca, the adiabatic compression, we have


			Qca = 0;


			Wca = – ?Uca = – nCV(Ta – Tc) = – (1 mol)*(8.315 J/mol · K)(273 K – 148 K) =       – 1.56 ´ 103 J.


			?Sca = 0.


	(d)	The efficiency of the cycle is	


		 	e = W/QH = (Wab + Wca)/Qab = (2.08 ´ 103 J – 1.56 ´ 103 J)/(2.08 ´ 103 J) = 0.25 =       25%.





69.	The rate at which heat is conducted through the walls is


		dQ/dt = kA ?T/?L = (0.050 W/m · K)(6.0 m2)[20°C – (– 10°C)]/(0.10 m) = 90 W.


	In a time t, the amount of heat entering the freezer is (dQ/dt)t, which, at a minimum,  must be removed by the unit in 15% of the time:


		(dQ/dt)t < 0.15t(QL/t), so (QL/t) > (dQ/dt)/0.15 = (90 W)/0.15 = 600 W.


	We find the power requirement from the coefficient of performance:


		CP = QL/W = (QL/t)/(W/t) = TL/(TH – TL);


		(600 W)/(W/t) < (263 K)/(293 K – 263 K), which gives (W/t) > 68 W =      0.091 hp.





70.	We find the heat transfers, which occur for the 
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	constant pressure processes:


		Qbc = nCP(Tc – Tb),  (into the gas);


		Qda = nCP(Ta – Td), (from the gas).


	The net heat flow in the cycle is also the net work done:


		W = Q = Qbc + Qda = nCP(Tc – Tb + Ta – Td).


	The efficiency of the cycle is	


		eBrayton	= W/Qbc = nCP(Tc – Tb + Ta – Td)/nCP(Tc – Tb) 


				= 1 – (Td – Ta)/(Tc – Tb).


	When we use the ideal gas equation, we get


		eBrayton	= 1 – (PdVd – PaVa)/(PcVc – PbVb) 


				= 1 – Pa(Vd – Va)/Pb(Vc – Vb), because Pd = Pa , and Pc = Pb .


	For the adiabatic processes, we have


		PaVag = PbVbg,   or  Va = (Pb/Pa)1/gVb ;


		PdVdg = PcVcg,   or  Vd = (Pc/Pd)1/gVc =  (Pb/Pa)1/gVc .


	When we use these in the expression for the efficiency, we get


		e	= 1 – (Pa/Pb)[(Pb/Pa)1/gVc – (Pb/Pa)1/gVb]/(Vc – Vb),


				= 1 – (Pb/Pa)–1(Pb/Pa)1/g(Vc – Vb)/(Vc – Vb) = 1 –  (Pb/Pa)(1 – g)/g.





71.	(a)	We assume that our hand is the first dealt and we receive the aces in the first four cards.  The 


		probability of the first card being an ace is 4/52.  For the next three cards dealt to the other 


		players, there must be no aces, so the probabilities are 48/51, 47/50, 46/49.  The next card is ours; 


		the probability of it being an ace is 3/48.  For the next three cards, there must be no aces, so the 


		probabilities are 45/47, 44/46, 43/45.  For the next cards, we have 


			2/44, 42/43, 41/42, 40/41, 1/40, 39/39, 38/38,¼ .  


		For the product of all these, we have


			P1 	= (4/52)(48/51)(47/50)(46/49)(3/48)(45/47)(44/46)(43/45)(2/44)(42/43)(41/42)(40/41)(1/40) 


				= (4)(3)(2)(1)/(52)(51)(50)(49).


		Because we do not have to receive the aces as the first four cards, we multiply this probability by 


		the number of ways 4 cards can be drawn from a total of 13, which is 


			13!/4!9! = (13)(12)(11)(10)/(4)(3)(2)(1).  


		Thus the probability of being dealt four aces is


			P 	= [(4)(3)(2)(1)/(52)(51)(50)(49)][(13)(12)(11)(10)/(4)(3)(2)(1)] 


				= (13)(12)(11)(10)/(52)(51)(50)(49) = 0.00264 =       1/379.


		[Note that this is (48! 4!/52!)(13!/4! 9!).]


	(b)	We assume that our hand is the first dealt.  Because the suit is not specified, any first card is 


		acceptable, so the probability is (52/52) = 1.  For the next three cards dealt to the other 


		players, there must be no cards in the suit we were dealt, so the probabilities are 


			39/51, 38/50, 37/49.  


		The next card is ours; the probability of it being in the same suit is 12/48.  


		For the next three cards, there must be no cards in the suit we were dealt, so the probabilities are 


			36/47, 35/46, 34/45.  


		For the next cards, we have 


			11/44, 33/43, 32/42, 31/41, 10/40, ¼ .  


		For the product of all these, we have


			P1 	= (1)(39/51)(38/50)(37/49)(12/48)(36/47)(35/46)(34/45)(11/44)(33/43)(32/42)(31/41)(10/40)¼ 


				= 12! 39!/51! = 6.3 ´ 10–12 =        1/1.59 ´ 1011.








Chapter 20	
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