CHAPTER 21 – Electric Charge and Electric Field



1.	The magnitude of the Coulomb force is

		F 	= kQ1Q2/r2

			= (9.0 ´ 109 N · m2/C2)(2.50 C)(2.50 C)/(3.0 m)2 =       6.3 ´ 109 N.



2.	The number of electrons is 

		N  = Q/(– e) = (– 30.0 ´ 10–6 C)/(– 1.60 ´ 10–19 C/electrons) =       1.88 ´ 1014 electrons.



3.	The magnitude of the Coulomb force is

		F 	= kQ1Q2/r2

			= (9.0 ´ 109 N · m2/C2)(26)(1.60 ´ 10–19 C)(1.60 ´ 10–19 C)/(1.5 ´ 10–12 m)2 =       2.7 ´ 10–3 N.



4.	The magnitude of the Coulomb force is

		F 	= kQ1Q2/r2

			= (9.0 ´ 109 N · m2/C2)(1.60 ´ 10–19 C)(1.60 ´ 10–19 C)/(5.0 ´ 10–15 m)2 =       9.2 N.



5.	The magnitude of the Coulomb force is

		F 	= kQ1Q2/r2

			= (9.0 ´ 109 N · m2/C2)(25 ´ 10–6 C)(3.0 ´ 10–3 C)/(0.35 m)2 =       5.5 ´ 103 N.



6.	The magnitude of the Coulomb force is

		F = kQ1Q2/r2.

	If we divide the expressions for the two forces, we have

		F2/F1 = (r1/r2)2;

		F2/(4.2 ´ 10–2 N) = (8)2, which gives F2 =        2.7 N.



7.	The magnitude of the Coulomb force is

		F = kQ1Q2/r2.

	If we divide the expressions for the two forces, we have

		F2/F1 = (r1/r2)2;

		3 = [(15.0 cm)/r2]2, which gives r2 =        8.66 cm.



8.	The number of excess electrons is 

		N  = Q/(– e) = (– 40 ´ 10–6 C)/(– 1.60 ´ 10–19 C/electrons) =       2.5 ´ 1014 electrons.

	The mass increase is

		?m = Nme = (2.5 ´ 1014 electrons)(9.11 ´ 10–31 kg/electron) =       2.3 ´ 10–16 kg.



9.	The number of molecules in 1.0 kg H2O is

		N = [(1.0 kg)(103 g/kg)/(18 g/mol)](6.02 ´ 1023 molecules/mol) = 3.34 ´ 1025 molecules.

	Each molecule of H2O contains 2(1) + 8 = 10 electrons.  The charge of the electrons in 1.0 kg is

		q 	= (3.34 ´ 1025 molecules)(10 electrons/molecule)(– 1.60 ´ 10–19 C/electron)

			=       – 5.4 ´ 107 C.



















10.	Using the symbols in the figure, we find the magnitudes of the three individual forces:

�

		F12	= F21 = kQ1Q2/r122 = kQ1Q2/L2 

			= (9.0 ´ 109 N · m2/C2)(70 ´ 10–6 C)(48 ´ 10–6 C)/(0.35 m)2 

			= 2.47 ´ 102 N.

		F13	= F31 = kQ1Q3/r132 = kQ1Q3/(2L)2 

			= (9.0 ´ 109 N · m2/C2)(70 ´ 10–6 C)(80 ´ 10–6 C)/[2(0.35 m)]2 

			= 1.03 ´ 102 N.

		F23	= F32 = kQ2Q3/r232 = kQ2Q3/L2 

			= (9.0 ´ 109 N · m2/C2)(48 ´ 10–6 C)(80 ´ 10–6 C)/(0.35 m)2 

			= 2.82 ´ 102 N.

	The directions of the forces are determined from the signs of the charges and are indicated on the 

	diagram.  For the net forces, we get

		F1 = F13 – F12 = 1.03 ´ 102 N – 2.47 ´ 102 N =      – 1.4  ´ 102 N (left).

		F2 = F21 + F23 = 2.47 ´ 102 N + 2.82 ´ 102 N =      + 5.3  ´ 102 N (right).

		F3 = – F31 – F32 = – 1.03 ´ 102 N – 2.82 ´ 102 N =      – 3.9  ´ 102 N (left).

	Note that the sum for the three charges is zero.



�

11.	Because all the charges and their separations are equal, 

	we find the magnitude of the individual forces:

		F1	= kQQ/L2 = kQ2/L2 

			= (9.0 ´ 109 N · m2/C2)(11.0 ´ 10–6 C)2/(0.150 m)2 

			= 48.4 N.

	The directions of the forces are determined from the signs 

	of the charges and are indicated on the diagram.  

	For the forces on the top charge, we see that the horizontal 

	components will cancel.  For the net force, we have

		F 	= F1 cos 30° + F1 cos 30° = 2F1 cos 30° 

			= 2(48.4 N) cos 30° 

			= 83.8 N up, or away from the center of the triangle.

	From the symmetry each of the other forces will have the same magnitude and a direction away from the center:  The net force on each charge is        83.8 N away from the center of the triangle.

	Note that the sum for the three charges is zero.



�

12.	We find the magnitudes of the individual forces on the 

	charge at the upper right corner:

		F1	= F2 = kQQ/L2 = kQ2/L2 

			= (9.0 ´ 109 N · m2/C2)(6.00 ´ 10–3 C)2/(0.100 m)2 

			= 3.24 ´ 107 N.

		F3	= kQQ/(Lv2)2 = kQ2/2L2 

			= (9.0 ´ 109 N · m2/C2)(6.00 ´ 10–3 C)2/2(0.100 m)2 

			= 1.62 ´ 107 N.

	The directions of the forces are determined from the signs 

	of the charges and are indicated on the diagram.  For the 

	forces on the upper-right charge, we see that the net force 

	will be along the diagonal.  For the net force, we have

		F 	= F1 cos 45° + F2 cos 45° + F3 

			= 2(3.24 ´ 107 N) cos 45° + 1.62 ´ 107 N

			= 6.20 ´ 107 N along the diagonal, or away from the center of the square.

	From the symmetry, each of the other forces will have the same magnitude and a direction away from the center:  The net force on each charge is        6.20 ´ 107 N away from the center of the square.

	Note that the sum for the three charges is zero.

�

13.	Because the magnitudes of the charges and the distances 

	have not changed, we have the same magnitudes of the 

	individual forces on the charge at the upper right corner:

		F1	= F2 = kQQ/L2 = 3.24 ´ 107 N.

		F3	= kQ2/2L2 = 1.62 ´ 107 N.

	The directions of the forces are determined from the signs 

	of the charges and are indicated on the diagram.  For the 

	forces on the upper-right charge, we see that the net force 

	will be along the diagonal.  For the net force, we have

		F 	= – F1 cos 45° – F2 cos 45° + F3 

			= – 2(3.24 ´ 107 N) cos 45° + 1.62 ´ 107 N

			= – 2.96 ´ 107 N along the diagonal, or toward the 

										center of the square.

	From the symmetry, each of the other forces will have the same magnitude and a direction toward the center:  The net force on each charge is        2.96 ´ 107 N toward the center of the square.

	Note that the sum for the four charges is zero.



�

14.	The magnitudes of the individual forces on the charges are

		F12 = kQ2Q/¬2 = 2kQ2/¬2;

		F13 = kQ3Q/(¬v2)2 = 3kQ2/2¬2;

		F14 = kQ4Q/¬2 = 4kQ2/¬2;

		F23 = k2Q3Q/¬2 = 6kQ2/¬2;

		F24 = k2Q4Q/(¬v2)2 = 4kQ2/¬2;

		F34 = k3Q4Q/¬2 = 12kQ2/¬2.

	The directions of the forces are determined from the signs 

	of the charges and are indicated on the diagram.  

	For charge Q we have

		F1 	= (– F12 – F13 cos 45°)i + (F13 sin 45° + F14)j

			= [– (2kQ2/¬2) – (3kQ2/2¬2)(v2/2)]i + 

					[(3kQ2/2¬2)(v2/2) + (4kQ2/¬2)]j 

			=      (kQ2/¬2)[(– 2 – 3v2/4)i + (4 + 3v2/4)j].

	For charge 2Q we have

		F2 	= (F12 + F24 cos 45°)i + (F24 sin 45° + F23)j

			= [(2kQ2/¬2) + (4kQ2/¬2)(v2/2)]i + [(4kQ2/¬2)(v2/2) + (6kQ2/¬2)]j 

			=      (kQ2/¬2)[(2 + 2v2)i + (6 + 2v2)j].

	For charge 3Q we have

		F3 	= (F34 + F13 cos 45°)i + (– F13 sin 45° – F23)j

			= [(12kQ2/¬2) + (3kQ2/2¬2)(v2/2)]i + [– (3kQ2/2¬2)(v2/2) – (6kQ2/¬2)]j 

			=      (kQ2/¬2)[(12 + 3v2/4)i + (– 6 – 3v2/4)j].

	For charge 4Q we have

		F4 	= (– F34 – F24 cos 45°)i + (– F24 sin 45° – F14)j

			= [– (12kQ2/¬2) – (4kQ2/¬2)(v2/2)]i + [– (4kQ2/¬2)(v2/2) – (4kQ2/¬2)]j 

			=      (kQ2/¬2)[(– 12 – 2v2)i + (– 4 – 2v2)j].



















�

15.	The magnitudes of the individual forces on the charges are

		F12 = kQ2Q/¬2 = 2kQ2/¬2;

		F13 = kQ3Q/(¬v2)2 = 3kQ2/2¬2;

		F14 = kQ4Q/¬2 = 4kQ2/¬2;

		F23 = k2Q3Q/¬2 = 6kQ2/¬2;

		F24 = k2Q4Q/(¬v2)2 = 4kQ2/¬2;

		F34 = k3Q4Q/¬2 = 12kQ2/¬2.

	The directions of the forces are determined from the signs 

	of the charges and are indicated on the diagram.  

	For charge Q we have

		F1 	= (– F12 + F13 cos 45°)i + (– F13 sin 45° + F14)j

			= [– (2kQ2/¬2) + (3kQ2/2¬2)(v2/2)]i + 

					[– (3kQ2/2¬2)(v2/2) + (4kQ2/¬2)]j 

			=      (kQ2/¬2)[(– 2 + 3v2/4)i + (4 – 3v2/4)j].

	For charge 2Q we have

		F2 	= (F12 + F24 cos 45°)i + (F24 sin 45° – F23)j

			= [(2kQ2/¬2) + (4kQ2/¬2)(v2/2)]i + [(4kQ2/¬2)(v2/2) – (6kQ2/¬2)]j 

			=      (kQ2/¬2)[(2 + 2v2)i + (– 6 + 2v2)j].

	For charge – 3Q we have

		F3 	= (– F34 – F13 cos 45°)i + (F13 sin 45° + F23)j

			= [(– 12kQ2/¬2) – (3kQ2/2¬2)(v2/2)]i + [(3kQ2/2¬2)(v2/2) + (6kQ2/¬2)]j 

			=      (kQ2/¬2)[(– 12 – 3v2/4)i + (6 + 3v2/4)j].

	For charge 4Q we have

		F4 	= (F34 – F24 cos 45°)i + (– F24 sin 45° – F14)j

			= [(12kQ2/¬2) – (4kQ2/¬2)(v2/2)]i + [– (4kQ2/¬2)(v2/2) – (4kQ2/¬2)]j 

			=      (kQ2/¬2)[(12 – 2v2)i + (– 4 – 2v2)j].



16.	For the two forces, we have

		Felectric 	= kq1q2/r122 = ke2/r2 

				= (9.0 ´ 109 N · m2/C2)(1.6 ´ 10–19 C)2/(0.53 ´ 10–10 m)2 =       8.2 ´ 10–8 N.

		Fgravitational 	= Gm1m2/r2  

					= (6.67 ´ 10–11 N · m2/kg2)(9.11 ´ 10–31 kg)(1.67 ´ 10–27 kg)/(0.53 ´ 10–10 m)2 

					=       3.6 ´ 10–47 N.

	The ratio of the forces is

		Felectric /Fgravitational  = (8.2 ´ 10–8 N)/(3.6 ´ 10–47 N) =      2.3 ´ 1039.



17.	If the separation is r and one charge is Q1 , the other charge will be Q2 = QT – Q1 .  

�

	For the repulsive force, we have

		F = kQ1Q2/r2 = kQ1(QT – Q1)/r2.

	(a)	If we plot the force as a function of Q1 , we see that 

		the maximum occurs when 

			Q1 = Q2 = !QT , 

		which we would expect from symmetry, since we could 

		interchange the two charges without changing the force.  

	(b)	We see from the plot that the minimum occurs 

		when either charge is zero:

			Q1 (or Q2) = 0. 











18.	If one charge is Q1 , the other charge will be Q2 = Q – Q1 .  For the force to be repulsive, the two charges must have the same sign.  Because the total charge is positive, each charge will be positive.  We account for this by considering the force to be positive:

		F = kQ1Q2/r2 = kQ1(Q – Q1)/r2;

		22.8 N = (9.0 ´ 109 N · m2/C2)Q1(560 ´ 10–6 C – Q1)/(1.10 m)2, which is a quadratic equation:

		Q12 – (560 ´ 10–6 C)Q1 + 3.07 ´ 10–9 C2 = 0, which gives Q1 =       5.54 ´ 10–4 C, 5.53 ´ 10–6 C.

	Note that, because the labels are arbitrary, we get the value of both charges.



�

19.	Because the charges have the same sign, they repel each other. 

	The force from the third charge must balance the repulsive force 

	for each charge, so the third charge must be positive and 

	between the two negative charges.  For each of the negative charges, we have

		Q0 :	kQ0Q/x2 = kQ0(3Q0)/¬2,   or   ¬2Q = 3x2Q0 ;

		3Q0 :	k3Q0Q/(¬– x)2 = kQ0(3Q0)/¬2,   or   ¬2Q = (¬ – x)2Q0 .

	Thus we have

		3x2 = (¬ – x)2, which gives x = –1.37¬, + 0.366¬.

	Because the positive charge must be between the charges, it must be 0.366¬ from Q0.  When we use this value in one of the force equations, we get

		Q = 3(0.366¬)2Q0/¬2 = 0.402Q0.

	Thus we place a charge of      0.402Q0 , 0.366¬ from Q0.

	Note that the force on the middle charge is also zero.



�

20.	If we place a positive charge, it will be repelled by the 

	positive charge and attracted by the negative charge.  

	Thus the third charge must be placed along the line of the 

	charges, but not between them.  For the net force to be zero, 

	the magnitudes of the individual forces must be equal:

		F = kQ1Q/r12 = kQ2Q/r22 ,  or   Q1/(L + x)2 =  Q2/x2;

		(7.7 mC)/(0.185 m + x)2 = (3.5 mC)/x2, which gives x = 0.38 m, – 0.074 m.

	The negative result corresponds to the position between the charges where the magnitudes and the directions are the same.  Thus the third charge should be placed         0.38 m beyond the negative charge.

	Note that we would have the same analysis if we placed a negative charge.



21.	If one charge is Q1 , the other charge will be Q2 = Q – Q1 .  For the force to be repulsive, the two charges must have the same sign.  Because the total charge is positive, each charge will be positive.  We account for this by considering the force to be positive:

		F = kQ1Q2/r2 = kQ1(Q – Q1)/r2;

		12.0 N = (9.0 ´ 109 N · m2/C2)Q1(90.0 ´ 10–6 C – Q1)/(1.16 m)2, which is a quadratic equation:

		Q12 – (90.0 ´ 10–6 C)Q1 + 1.79 ´ 10–9 C2 = 0, which gives Q1 =       60.2 ´ 10–6 C, 29.8 ´ 10–6 C.

	Note that, because the labels are arbitrary, we get the value of both charges.

	For an attractive force, the charges must have opposite signs, so their product will be negative.  We account for this by considering the force to be negative:

		F = kQ1Q2/r2 = kQ1(Q – Q1)/r2;

		– 12.0 N = (9.0 ´ 109 N · m2/C2)Q1(90.0 ´ 10–6 C – Q1)/(1.16 m)2, which is a quadratic equation:

		Q12 – (90.0 ´ 10–6 C)Q1 – 1.79 ´ 10–9 C2 = 0, which gives Q1 =       – 16.8 ´ 10–6 C, 106.8 ´ 10–6 C.













�

22.	(a)	We assume the angles are small enough that the Coulomb force 

		between the charges can be treated as being horizontal.  

		From the force diagram, we apply ?F = 0 on each charge:

			Q1: 	FT1 sin q1 = F = kQ1Q2/r2 = 2kQ2/r2;

					FT1 cos q1 = m1g,  or  tan q1 = 2kQ2/m1gr2.

			Q2: 	FT2 sin q2 = F = kQ1Q2/r2 = 2kQ2/r2;

					FT2 cos q2 = m2g,  or  tan q2 = 2kQ2/m2gr2.

		If we divide the two results and use tan q ˜ q for small angles, we get

			tan q1/tan q2 = q1/q2 = m2/m1 =      1.

	(b)	The analysis of forces is the same, so we have

			tan q1/tan q2 = q1/q2 = m2/m1 = 2m/m =       2.

	(c)	The distance between the charges is

			r = ¬ sin q1 + ¬ sin q2 ˜ ¬q1 + ¬q2.

		For the conditions in part (a), we have

			ra = 2¬q1 = 2¬(2kQ2/mgra2), which gives       ra = (4k¬Q2/mg)1/3.

		For the conditions in part (b), we have

			rb = ¬q1 + ¬q2 = 3¬q2 = 3¬(2kQ2/m2grb2)= 3¬(2kQ2/2mgrb2), which gives       rb = (3k¬Q2/mg)1/3.



�

23.	From the symmetry, we see that there are only three 

	magnitudes for the seven forces from the other charges:

		3 adjacent corners:   F1 = kQQ/¬2 = kQ2/¬2;

		3 diagonal corners: F2 = kQQ/(¬v2)2 = kQ2/2¬2;

		1 opposite corner:    F3 = kQQ/(¬v3)2 = kQ2/3¬2.

	The directions of the forces are determined from the signs 

	of the charges and are indicated on the diagram.  

	We could add the seven forces, but we can use the 

	symmetry to reduce the process.  Each of the components 

	will have the same magnitude and will be in the 

	corresponding negative direction.  Thus we find one of them:

		Fx 	= – F1 – F2/v2 – F2/v2 – F3/v3 

			= – [(kQ2/¬2) + 2(kQ2/2¬2)/v2 + (kQ2/3¬2)/v3] 

			= – (kQ2/¬2)[1 + (1/v2) + (1/3v3)] = – 1.90kQ2/¬2.

	Thus the resultant force is

		F = – (1.90kQ2/¬2)(i + j + k).







24.	The acceleration is produced by the force from the electric field:

		F = qE = ma;

		(1.60 ´ 10–19 C)(600 N/C) = (9.11 ´ 10–31 kg)a, which gives a =        1.05 ´ 1014 m/s2.

	Because the charge on the electron is negative, the direction of force, and thus the acceleration, is     

		opposite to the direction of the electric field.



25.	If we take the positive direction to the east, we have

		F = qE = (– 1.60 ´ 10–19 C)(+ 1360 N/C) = – 2.18 ´ 10–16 N,  or      2.18 ´ 10–16 N (west).



26.	If we take the positive direction to the south, we have

		F = qE ;

		2.75 ´ 10–14 N = (+ 1.60 ´ 10–19 C)E, which gives E =      + 1.72 ´ 105 N/C (south).







27.	The electric field above a positive charge will be away from the charge, or up.  

	We find the magnitude from

		E	= kQ/r2 

			= (9.0 ´ 109 N · m2/C2)(33.0 ´ 10–6 C)/(0.200 m)2 =      7.43 ´ 106 N/C (up).



�

28.	The directions of the fields are determined from the signs of the charges 

	and are indicated on the diagram.  The net electric field will be to the 

	left.  We find its magnitude from

		E	= kQ1/L2 + kQ2/L2 = k(Q1 + Q2)/L2 

			= (9.0 ´ 109 N · m2/C2)(8.0 ´ 10–6 C + 7.0 ´ 10–6 C)/(0.040 m)2 

			= 8.4 ´ 107 N/C.

	Thus the electric field is       8.4 ´ 107 N/C toward the negative charge.  



29.	From the definition of the electric field we have

		E = F/Q = (5.85 ´ 10–4 N)j/(4.20 ´ 10–6 C) =       (1.39 ´ 102 N/C)j.



30.	From the definition of the electric field we have

		E = F/Q = [(3.0 ´ 10–3 N)i – (5.0 ´ 10–3 N)j]/(1.25 ´ 10–6 C) =       (2.4 ´ 103 N/C)i – (4.0 ´ 103 N/C)j.



�



31.	We know that the field lines from a point charge are radial.  If we choose 

	two spherical surfaces centered at the point charge, the field lines will be 

	perpendicular to the surfaces and must have the same number passing 

	through each sphere.  If the field varies as 1/r2 + x, and we assume that 

	the number per unit area is proportional to the electric field magnitude, 

	we have

		N1 = b(1/r12 + x)4pr12,   and  N2 = b(1/r22 + x)4pr22.

	For the ratio we get

		N1/N2 = (r22 + x/r12 + x)(r12/r22) = (r2/r1)x ? 1.

	Thus we could not draw the field lines proportional to the magnitude of the field.



32.											33.

	�			�









34.	The acceleration is produced by the force from the electric field:

		F = qE = ma;

		(1.60 ´ 10–19 C)E  = (1.67 ´ 10–27 kg)(1 ´ 106)(9.80 m/s2), which gives E =      0.10 N/C.



35.	The acceleration is produced by the force from the electric field:

		F = qE = ma;

		(– 1.60 ´ 10–19 C)E = (9.11 ´ 10–31 kg)(145 m/s2), which gives E = – 8.26 ´ 10–10 N/C.

	Because the charge on the electron is negative, the direction of the force, and thus the acceleration, is opposite to the direction of the electric field, so the electric field is      8.26 ´ 10–10 N/C (south).



36.	The directions of the fields are determined from the signs of the charges 

�

	and are in the same direction, as indicated on the diagram.  

	The net electric field will be to the left.  We find its magnitude from

		E = kQ1/L2 + kQ2/L2 = k(Q + Q)/L2 = 2kQ/L2 

		845 N/C = 2(9.0 ´ 109 N · m2/C2)Q/(0.080 m)2 , which gives 

		Q = 3.0 ´ 10–10 C.



37.	At point A, from the diagram, we see that the electric fields produced 

�

	by the charges will have the same magnitude, and the resultant field 

	will be up.  We find the angle q from

		tan q = (0.050 m)/(0.100 m) = 0.500,  or  q = 26.6°.

	For the magnitudes of the individual fields we have

		E1A 	= E2A = kQ/rA2 

			= (9.0 ´ 109 N · m2/C2)(7.0 ´ 10–6 C)/[(0.100 m)2 + (0.050 m)2] 

			= 5.04 ´ 106 N/C.

	From the symmetry, the resultant electric field is

		EA = 2E1A sin q = 2(5.04 ´ 106 N/C) sin 26.6° =       4.5 ´ 106 N/C up.

	For point B we find the angles for the directions of the fields from

		tan q1 = (0.050 m)/(0.050 m) = 1.00,  or  q1 = 45.0°.

		tan q2 = (0.050 m)/(0.150 m) = 0.333,  or  q2 = 18.4°.

	For the magnitudes of the individual fields we have

		E1B 	= kQ/r1B2 

			= (9.0 ´ 109 N · m2/C2)(7.0 ´ 10–6 C)/[(0.050 m)2 + (0.050 m)2] 

			= 1.26 ´ 107 N/C.

		E2B 	= kQ/r2B2 

			= (9.0 ´ 109 N · m2/C2)(7.0 ´ 10–6 C)/[(0.150 m)2 + (0.050 m)2] 

			= 2.52 ´ 106 N/C.

	For the components of the resultant field we have

		EBx = E1B cos q1 – E2B cos q2 = (1.26 ´ 107 N/C) cos 45.0° – (2.52 ´ 106 N/C) cos 18.4° = 6.52 ´ 106 N/C;

		EBy = E1B sin q1 + E2B sin q2 = (1.26 ´ 107 N/C) sin 45.0° + (2.52 ´ 106 N/C) sin 18.4° = 9.71 ´ 106 N/C.

	We find the direction from

		tan qB = EBy/EBx = (9.71 ´ 106 N/C)/(6.52 ´ 106 N/C) = 1.49,  or  q1 = 56.1°.

	We find the magnitude from

		EB = EBx/cos qB = (6.52 ´ 106 N/C)/cos 56.1° = 1.17 ´ 107 N/C. 

	Thus the field at point B is       1.2 ´ 107 N/C, 56° above the horizontal.

	These results are consistent with Fig. 21–33b.



















38.	The directions of the individual fields will be along the diagonals of the square, as shown.  

�

	We find the magnitudes of the individual fields:

		E1	= kQ1/(L/v2)2 = 2kQ1/L2 

			= 2(9.0 ´ 109 N · m2/C2)(45.0 ´ 10–6 C)/(0.525 m)2 

			= 2.94 ´ 106 N/C.

		E2	= E3 = E4 = kQ2/(L/v2)2  = 2kQ2/L2 

			= 2(9.0 ´ 109 N · m2/C2)(27.0 ´ 10–6 C)/(0.525 m)2 

			= 1.76 ´ 106 N/C.

	From the symmetry, we see that the resultant field will be along 

	the diagonal shown as the x-axis.  For the net field, we have

		E  = E1 + E3 = 2.94 ´ 106 N/C + 1.76 ´ 106 N/C = 4.70 ´ 106 N/C.

	Thus the field at the center is       

		4.70 ´ 106 N/C away from the positive charge.



�

39.	The directions of the individual fields are shown in the figure.  We find the magnitudes of the individual fields:

		E1	= E3 = kQ/L2  

			= (9.0 ´ 109 N · m2/C2)(3.25 ´ 10–6 C)/(1.00 m)2 

			= 2.93 ´ 104 N/C.

		E2	= kQ/(Lv2)2  = !kQ2/L2 

			= !(9.0 ´ 109 N · m2/C2)(3.25 ´ 10–6 C)/(1.00 m)2 

			= 1.46 ´ 104 N/C.

	From the symmetry, we see that the resultant field will be along 

	the diagonal shown as the x-axis.  For the net field, we have

		E  	= 2E1 cos 45° +E2 = 2(2.93 ´ 104 N/C) cos 45° + 1.46 ´ 104 N/C 

			= 5.61 ´ 104 N/C.

	Thus the field at the unoccupied corner is   

		5.61 ´ 104 N/C away from the opposite corner.



�

40.	(a)	The directions of the individual fields are shown in the figure.  

		We find the magnitudes of the individual fields:

			E1 = E2 = kQ/L2.

		For the components of the resultant field we have

			Ex = – E2 sin 60° = – 0.866kQ/L2;

			Ey = – E1 – E2 cos 60° = – kQ/L2 – 0.500kQ/L2 = – 1.500kQ/L2.

		We find the direction from

			tan q = Ey/Ex = (– 1.50kQ/L2)/(– 0.866kQ/L2) = 1.73,  or  q = 60°.

		We find the magnitude from

			E = Ex/cos q = (0.866kQ/L2)/cos 60° = 1.73kQ/L2. 

		Thus the field is       1.73kQ/L2, 60° below the – x-axis.

	(b)	The directions of the individual fields are shown in the figure.  

		The magnitudes of the individual fields will be the same:

			E1 = E2 = kQ/L2.

		For the components of the resultant field we have

			Ex = + E2 sin 60° = + 0.866kQ/L2;

			Ey = – E1 + E2 cos 60° = – kQ/L2 + 0.500kQ/L2 = – 0.500kQ/L2.

		We find the direction from

			tan q = Ey/Ex = (– 0.500kQ/L2)/(+ 0.866kQ/L2) = – 0.577,  or  q = – 30°.

		We find the magnitude from

			E = Ex/cos q = (0.866kQ/L2)/cos 30° = kQ/L2. 

		Thus the field is       kQ/L2, 30° below the + x-axis.

41.	For the electric field to be zero, the individual fields must have 

	opposite directions, so the two charges must have the same sign.  

	For the net field to be zero, the magnitudes of the individual 

	fields must be equal:

�

		E = kQ1/r12 = kQ2/r22 ,  or   Q1/(@¬)2 =  Q2/(%¬)2, 

	which gives        Q1/Q2 = #.



�

42.	In Example 21–9, the field produced on the axis of a single 

	ring is given in terms of the distance from the center of 

	the ring.  We use two expressions with the origin shifted 

	to the position between the two rings:

		E = (Q/4pÅ0)({(x + !¬)/[(x + !¬)2 + R2]3/2} + 

							{(x – !¬)/[(x – !¬)2 + R2]3/2})i.













�

43.	(a)	From the symmetry of the charges, we see that the electric 

		field points along the y-axis.  Thus we have

			E = 2(Q/4pÅ0) sin q/(y2 + ¬2) j =      2Qy/4pÅ0(y2 + ¬2)3/2 j.

	(b)	To find the position where the magnitude is maximum, 

		we differentiate and set the first derivative equal to zero:

			�

		which gives

			y = ± ¬/v2.







44.	The field along the x-axis is

		E = (Q/4pÅ0)[x/(x2 + a2)3/2] i. 

	To find the position where the magnitude is maximum, we differentiate and set the first derivative equal to zero:

		�

	which gives 

		xM = ± a/v2.

	Note that E = 0 at x = 0, and x = 8.

























45.	The linear charge density of the half-ring is

�

		l = Q/pa.

	We select a differential element of the ring which makes an 

	angle a with the – z-axis of length a da, thus charge dQ = la da.  

	The magnitude of the differential field produced by this element is

		dE = dQ/4pÅ0r2. 

	We get the components of the field from the diagram:

		dE 	= (la da/4pÅ0r2)(cos q i – sin q sin a j – sin q cos a k) 

			= (la da/4pÅ0r2)[(x/r) i – (a/r) sin a j – (a/r) cos a k] 

			= [la/4pÅ0(x2 + a2)3/2][(x da) i – (a sin a da) j – (a cos a da) k].

	We see from the symmetry that the total field will have no z-component.  

	We integrate to find the other components:

		�EMBED Word.Picture.8���



46.	Because 2.8 cm « 2.0 m, we can use the expression for the electric field of a long wire:

		E 	= (1/4pÅ0)2l/x

			= (9.0 ´ 109 N · m2/C2)2[(4.75 ´ 10–6 C)/(2.0 m)]/(0.028 m) =      1.5 ´ 106 N/C away from the wire.





�

47.	We choose a differential element of the rod dy a distance y from the 

	center of the rod, as shown in the diagram.  The charge of this 

	element is dq = (Q/L) dy.  We find the field, which has both 

	x- and y-components, by integrating along the rod:

		�

	From the symmetry we see that there will be no y-component.

	To perform the integration, we must eliminate variables until 

	we have one, for which we choose q.  

	From the diagram we see that r = x/cos q, and y = x tan q.  This gives

		dy = x sec2 q dq = (x dq)/cos2 q. 

	The limits for q are ± q0 = ± sin–1 {!L/[x2 + (!L)2]1/2} = ± sin–1 [L/(4x2 + L2)1/2].  

	When we make these substitutions, we have

		�

	Thus for the magnitude we have

		E = lL/2pÅ0x(L2 + 4x2)1/2.











�

48.	We choose a differential element of the 

	rod dx¢ a distance x¢ from the origin of 

	the coordinate system, as shown in the 

	diagram.  Because the positive direction 

	of x¢  is to the left, the limits for x¢ are 

	0 to ¬.  The charge of the element is dq = (Q/¬) dx¢.  We find the field by integrating along the rod:

		�EMBED Word.Picture.8���









�

49.	We select a differential element of the arc which 

	makes an angle q with the x-axis of length R dq, 

	thus charge dQ = lR dq.  

	The magnitude of the differential field produced 

	by this element is

		dE = dQ/4pÅ0R2. 

	We see from the symmetry that the total field 

	will have only an x-component.  

	We integrate to find the total field:

		�EMBED Word.Picture.8���



































50.	(a)	The differential element of the arc which makes an angle q with the x-axis of length R dq will 

		now have a charge dQ = lR dq = l0R cos q dq. 

		The magnitude of the differential field produced by this element is

			dE = dQ/4pÅ0R2 =  l0R cos q dq/4pÅ0R2, so the field is

			dE = (l0 cos q dq/4pÅ0R)(– cos q i – sin q j).

		We integrate to find the total field:

			�EMBED Word.Picture.8���

	(b)	The differential element of the arc will now have a charge dQ = lR dq = l0R sin q dq. 

		The magnitude of the differential field produced by this element is

			dE = dQ/4pÅ0R2 =  l0R sin q dq/4pÅ0R2, so the field is

			dE = (l0 sin q dq/4pÅ0R)(– cos q i – sin q j).

		We integrate to find the total field:

			�EMBED Word.Picture.8���



�

51.	(a)	We choose a differential element of the rod dy a 

		distance y from the end of the rod, as shown in the 

		diagram.  The charge of this element is dq = l dy.  

		We find the field, which has both x- and 

		y-components, by integrating along the rod:

			�

		To perform the integration, we must eliminate 

		variables until we have one, for which we choose q.  

		From the diagram we see that r = x/cos q, and y = x tan q.  This gives

			dy = x sec2 q dq = (x dq)/cos2 q. 

		The limits for q are 0 and q0 = sin–1 [L/(x2 + L2)1/2].  

		When we make these substitutions, we have

			�EMBED Word.Picture.8���

	(b)	The angle the field makes with the x-axis is found from

			tan a = Ey/Ex = [x – (x2 + L2)1/2]/L.

		When L ® 8, we have

			tan a ® (x – L)/L  = – 1, so the angle is 45° below the x-axis, independent of x.



52.	(a)	We choose a differential element of the rod dy a 

		distance y from the end of the rod, as shown in the 

		diagram.  The charge of this element is dq = l dy.  

		We find the field, which has both x- and 

		y-components, by integrating along the rod:

			�

		To perform the integration, we must eliminate 

		variables until we have one, for which we choose q.  

�

		From the diagram we see that r = x/cos q, and y = x tan q.  

		This gives

			dy = x sec2 q dq = (x dq)/cos2 q. 

		The limits for q are 

			q1 = tan–1 (L1/x) = tan–1 (4.0 m/0.250 m) = tan–1 16.0 = 86.4°,  and 

			q2 = tan–1 (L2/x) = tan–1 (2.0 m/0.250 m) = tan–1 8.00 = 82.9°.

		When we make the substitutions, we have

			�

		For the given data we have

			E 	= (9.0 ´ 109 N · m2/C2)[(3.15 ´ 10–6 C)/(6.0 m)(0.250 m)] ´

										[(sin 82.9° + sin 86.4°) i + (cos 82.9° – cos 86.4°) j]

				=       (3.76 ´ 104 N/C) i + (1.17 ´ 103 N/C) j.

	(b)	If we use the result from Example 21–10, we get

			E = 2l/4pÅ0x = 2(9.0 ´ 109 N · m2/C2)[(3.15 ´ 10–6 C)/(6.0 m)(0.250 m)]  = 3.78 ´ 104 N/C.

		The errors are

			errorx = (Ex – E)/E = (3.76 ´ 104 N/C – 3.78 ´ 104 N/C)/(3.78 ´ 104 N/C) = – 0.005 =      – 0.5%.

			errory = Ey/E = (1.17 ´ 103 N/C)/(3.78 ´ 104 N/C) = – 0.031 =      – 3.1%.































�

53.	For a differential element of the plate we choose a 

	strip of width dy a distance y from the x-axis, as 

	shown in the diagram.  The charge on a length L is 

	dq = sL dy, so the linear charge density is dl = s dy.

	For the field, we can use the result for an infinite rod:

		dE = 2 dl/4pÅ0r.

	From the symmetry, we see that the resultant field 

	will be in the z-direction.  We find the field by 

	integrating over the surface:

		�

	To perform the integration, we must eliminate 

	variables until we have one, for which we choose q.  

	From the diagram we see that r = z/cos q, and y = z tan q.  This gives

		dy = z sec2 q dq = (z dq)/cos2 q. 

	The limits for q are – p/2 to p/2.  Thus we have

		�EMBED Word.Picture.8���



54.	(a)	The force is opposite to the direction of the electron.  We find the acceleration produced by the 

		electric field:

			– qE = ma;

			– (1.60 ´ 10–19 C)(11.4 ´ 103 N/C) = (9.11 ´ 10–31 kg)a, which gives a = – 2.00 ´ 1015 m/s2.

		Because the field is constant, the acceleration is constant, so we find the distance from

			v2 = v02 + 2ax;

			0 = (21.5 ´ 106 m/s)2 + 2(– 2.00 ´ 1015 m/s2)x, which gives x = 1.15 ´ 10–1 m =       11.5 cm.

	(b)	We find the time from

			x = v0t + !at2;

			0 = (21.5 ´ 106 m/s)t + !(– 2.00 ´ 1015 m/s2)t2, 

		which gives t = 0 (the starting time), and 2.15 ´ 10–8 s =       21.5 ns.





55.	(a)	We find the acceleration produced by the electric field:

			qE = ma;

			(– 1.60 ´ 10–19 C)[(2.0 ´ 104 N/C) i + (8.0 ´ 104 N/C) j] = (9.11 ´ 10–31 kg)a, 

		which gives       a = – (3.5 ´ 1015 m/s2) i – (1.41 ´ 1016 m/s2) j.

		Because the field is constant, the acceleration is constant.

	(b)	We find the velocity from

			v 	= v0 + at

				= (8.0 ´ 104 m/s) i + [– (3.5 ´ 1015 m/s2) i – (1.41 ´ 1016 m/s2) j](1.0 ´ 10–9 s)  

				= (– 3.43 ´ 106 m/s) i – (1.41 ´ 107 m/s) j.

		The direction of the electron is the direction of its velocity:

			tan q = vy/vx = (– 1.41 ´ 107 m/s) /(– 3.43 ´ 106 m/s) = 4.11,    or       q = – 104°.



56.	The weight must be balanced by the force from the electric field:

		mg = r)pr3g = NeE ;

		(1000 kg/m3))p(2.0 ´ 10–5 m)3(9.80 m/s2) = N(1.60 ´ 10–19 C)(150 N/C), 

	which gives N =      1.4 ´ 107 electrons.







57.	We find the vertical acceleration produced by the electric field:

		ay = – qE/m = – (1.60 ´ 10–19 C)(5.0 ´ 103 N/C)/(9.11 ´ 10–31 kg) = – 8.78 ´ 1014 m/s2.

	The horizontal velocity is constant, so we find the time to pass through the plates from

		x = v0t;

		6.0 ´ 10–2 m = (1.0 ´ 107 m/s)t, which gives t = 6.0 ´ 10–9 s.

	As the electron leaves the plates, its vertical velocity is

		vy = ayt = (– 8.78 ´ 1014 m/s2)(6.0 ´ 10–9 s) = – 5.27 ´ 106 m/s.

	We find the angle from

		tan q = vy/vx = (– 5.27 ´ 106 m/s) /(1.0 ´ 107 m/s) = – 0.527,    or       q = – 28°.



58.	The vertical acceleration produced by the electric field is

		ay = – qE/m = – (1.60 ´ 10–19 C)(5.0 ´ 103 N/C)/(9.11 ´ 10–31 kg) = – 8.78 ´ 1014 m/s2.

	The vertical velocity at a height y is given by

		vy2 = v0y2 + 2ayy.

	To avoid striking the upper plate there is no real solution for vy , so we have

		vy2 = v0y2 + 2ay(!H)  = 0,  or

		v0 sin 45° = (– ayH)1/2 = [– (– 8.78 ´ 1014 m/s2)(0.010 m)]1/2, which gives       v0 = 4.2 ´ 106 m/s.

	Note that the analysis of the time from the vertical motion at the limiting condition will show that the electron will strike the bottom plate before exiting.



59.	(a)	The field along the axis of the ring is

			E = (– Q/4pÅ0)[x/[(x2 + R2)3/2] i,

		so the force on the charge is

			F = qE = (– qQ/4pÅ0)[x/[(x2 + R2)3/2] i = (– qQx/4pÅ0R3)/[1 + (x/R)2]3/2 i.

		If x « R, we can use the approximation (1 + u)–n ˜ 1 – nu:

			F ˜ (– qQx/4pÅ0R3)[1 – *(x/R)2] ˜ – qQx/4pÅ0R3.

		We see that the force is a restoring force proportional to the displacement, so the motion will be 

		simple harmonic.

	(b)	The effective spring constant is 

			k = qQ/4pÅ0R3, 

		so the period is

			T = 2p(m/k)1/2 =       2p(4pÅ0mR3/qQ)1/2.



60.	(a)	The dipole moment is

			p = Q¬ = (1.60 ´ 10–19 C)(0.68 ´ 10–9 m) =      1.1 ´ 10–28 C · m.

	(b)	The torque on the dipole is

			t = pE sin q = (1.1 ´ 10–28 C · m)(2.7 ´ 104 N/C) sin 90° =      2.9 ´ 10–24 m · N.

		Note that this is the maximum torque.

	(c)	The torque on the dipole is

			t = pE sin q = (1.1 ´ 10–28 C · m)(2.7 ´ 104 N/C) sin 45° =      2.1 ´ 10–24 m · N.

	(d)	The work done on the dipole changes its potential energy:

			W = ?U = (– p · E)f – (– p · E)i

				= [– (– pE)] – (– pE) = 2pE = 2(1.1 ´ 10–28 C · m)(2.7 ´ 104 N/C) =       5.9 ´ 10–24 J.

















61.	(a)	We find the net charge from

			p = Q¬ ;

			3.4 ´ 10–30 C · m = Q(1.0 ´ 10–10 m), which gives Q =      3.4 ´ 10–20 C.

	(b)	      No,      this is not an integral multiple of e.  The covalent bonding means the electron is shared 

		between the H and Cl atoms, so the effective net charge is less than e.

	(c)	The maximum torque on the dipole is

			t = pE sin q = (3.4 ´ 10–30 C · m)(2.5 ´ 104 N/C) sin 90° =      8.5 ´ 10–26 m · N.

	(d)	The lowest potential energy is when the dipole and electric field are parallel.  Thus the energy 

		needed to change the potential energy is

			W = ?U = (– p · E)f – (– p · E)i

				= (– pE cos 45°) – (– pE) = pE(1 – cos 45°) 

				=  (3.4 ´ 10–30 C · m)(2.5 ´ 104 N/C)(1 – 0.707) =       2.5 ´ 10–26 J.



�

62.	(a)	From the symmetry we see that the resultant field will be 

		in the y-direction:

			E 	= 2E1 sin f = 2{Q/4pÅ0[r2 + (!¬)2]}{r/[r2 + (!¬)2]1/2} 

				= 2Qr/4pÅ0[r2 + (!¬)2]3/2.

		If r » ¬, this becomes

			E ˜ 2Q/4pÅ0r2.

	(b)	For like charges, the field far away is the sum of the individual 

		fields and therefore is the field of a point charge 2Q.  

		For unlike charges, the field far away is the small difference 

		of the individual fields and therefore decreases more rapidly.



63.	(a)	The torque on the dipole, which is in a direction to decrease q, produces an angular acceleration:

			t = Ia;

			– pE sin q = I d2q/dt2.

		If       q « 1,       sin q ˜ q, so we get

			– pEq = I d2q/dt2, 

		which produces simple harmonic motion, with the effective force constant k = pE.

	(b)	The period is

			T = 2p(I/k)1/2 = 2p(I/pE)1/2, so the frequency is f = 1/T =       (pE/I)1/2/2p.



�

64.	If the charges of the dipole are separated by dx, the dipole 

	moment is p = Q dx i.  If the negative charge is at x, where the 

	electric field is E(x), the electric field at the positive charge is

		E(x + dx) = E(x) + (dE/dx) dx.

	The net force on the dipole is

		F 	= F+ – F– = [QE(x + dx) – QE(x)] i

			= Q (dE/dx) dx i = p(dE/dx) i = [p · (dE/dx)]i.



�

65.	(a)	Along the x-axis the fields from the two charges are parallel, 

		so the magnitude of the net field is

			E 	= E+ – E– = (Q/4pÅ0)[1/(r – !¬)2 – 1/(r + !¬)2] 

				= (Q/4pÅ0){[(r + !¬)2 – (r – !¬)2]/(r + !¬)2(r – !¬)2} 

				= (Q/4pÅ0)2r¬/[r2 – (!¬)2]2.

		If r » ¬, we have

			E ˜ 2Qr¬/4pÅ0r4 = 2p/4pÅ0r3.	

	(b)	The electric field points in the       direction of the dipole.





66.	When we equate the two forces, we have

		mg = ke2/r2;

		(9.11 ´ 10–31 kg)(9.80 m/s2) = (9.0 ´ 109 N · m2/C2)(1.60 ´ 10–19 C)2/r2, which gives r =       5.08 m.



67.	Because the charge on the Earth can be considered to be at the center, we can use the expression for the force between two point charges.  For the Coulomb force to be equal to the weight, we have

		kQ2/R2 = mg;

		(9.0 ´ 109 N · m2/C2)Q2/(6.38 ´ 106 m)2 = (1050 kg)(9.80 m/s2), which gives Q =       6.8 ´ 103 C.



68.	Because a copper atom has 29 electrons, we find the number of electrons in the penny from

		N = [(3.0 g)/(63.5 g/mol)](6.02 ´ 1023 atoms/mol)(29 electrons/atom) = 8.24 ´ 1023 electrons.

	We find the fractional loss from

		?q/q = (5.5 ´ 10–6 C)/(8.24 ´ 1023 electrons)(1.60 ´ 10–19 C/electron) =       4.2 ´ 10–11.



69.	For the electrical attraction to replace gravity, we equate the two forces:

		GmMmE/rME2 = kQ2/rME2;

		(6.67 ´ 10–11 N · m2/kg2)(7.35 ´ 1022 kg)(5.97 ´ 1024 kg) = (9.0 ´ 109 N · m2/C2)Q2, 

	which gives Q =       5.7 ´ 1013 C.



�

70.	From the symmetry we see that the resultant field will be in the 

	y-direction:

		E 	= 2E+ sin q – E– = 2[Q/4pÅ0(r2 + ¬2)][r/(r2 + ¬2)1/2] – 2Q/4pÅ0r2  

			= (2Q/4pÅ0){[r/(r2 + ¬2)3/2] – (1/r2)} 

			=(2Q/4pÅ0){[r3 – (r2 + ¬2)3/2]/r2(r2 + ¬2)3/2} 

			= (2Q/4pÅ0){[1 – (1 + ¬2/r2)3/2]/r2(1 + ¬2/r2)3/2}.

	If r » ¬, we can use the approximation (1 + ¬2/r2)3/2 ˜ 1 + *¬2/r2:

		E ˜ (2Q/4pÅ0){[1 – (1 + *¬2/r2)]/r2(1 + *¬2/r2)} ˜       – 3Q¬2/4pÅ0r4.
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71.	We find the magnitude of the forces between the pairs:

		F12	= kQ1Q2/L2  

			= (9.0 ´ 109 N · m2/C2)(4.0 ´ 10–6 C)(8.0 ´ 10–6 C)/(1.20 m)2 

			= 0.20 N;

		F13	= kQ1Q3/L2  

			= (9.0 ´ 109 N · m2/C2)(4.0 ´ 10–6 C)(6.0 ´ 10–6 C)/(1.20 m)2 

			= 0.15 N;

		F23	= kQ2Q3/L2  

			= (9.0 ´ 109 N · m2/C2)(8.0 ´ 10–6 C)(6.0 ´ 10–6 C)/(1.20 m)2 

			= 0.30 N.

	The directions of the forces are determined from the signs of the charges and are indicated on the diagram.  For the resultant forces, we have

		F1	= (F13 sin 30° – F12 sin 30°) i – (F13 cos 30° + F12 cos  30°) j 

			= (0.15 N sin 30° – 0.20 N sin 30°) i – (0.15 N cos 30° + 0.20 N cos  30°) j 

			= (– 0.025 N) i – (0.30 N) j , with magnitude F1 = [(0.025 N)2 + (0.30 N)2]1/2 = 0.30 N.

	For the direction we have

		tan f1 = (– 0.30 N)/(– 0.025 N) = 12.1, f1 = 265°, so 

		F1 = 0.30 N, 265° from x-axis.

		F2	= (F12 cos 60° – F23) i + (F12 sin 60°) j 

			= (0.20 N cos 60° – 0.30 N) i + (0.20 N sin 60°) j 

			= (– 0.20 N) i + (0.17 N) j , with magnitude F2 = [(0.20 N)2 + (0.17 N)2]1/2 = 0.26 N.

	For the direction we have

		tan f2 = (0.17 N)/(– 0.20 N) = – 0.866, f2 = 139°, so 

		F2 = 0.26 N, 139° from x-axis.

		F3	= (F23  – F13 cos 60°) i + (F13 sin 60°) j 

			= (0.30 N – 0.15 N cos 60°) i + (0.15 N sin 60°) j 

			= (0.225 N) i + (0.13 N) j , with magnitude F1 = [(0.225 N)2 + (0.13 N)2]1/2 = 0.26 N.

	For the direction we have

		tan f3 = (0.13 N)/(0.225 N) = 0.577, f3 = 30°, so 

		F3 = 0.26 N, 30° from x-axis.



72.	The weight must be balanced by the force from the electric field:

		mg = qE;

		(1.67 ´ 10–27 kg)(9.80 m/s2) = (1.60 ´ 10–19 C)E, which gives E =      1.02 ´ 10–7 N/C (up).





�

73.	The directions of the individual fields will be along the diagonals of 

	the square, as shown.  All distances are the same.  We find the 

	magnitudes of the individual fields:

		E1	= kQ1/(L/v2)2 = 2kQ1/L2 

			= 2(9.0 ´ 109 N · m2/C2)(1.0 ´ 10–6 C)/(0.35 m)2 = 1.47 ´ 105 N/C.

		E2	= kQ2/(L/v2)2 = 2E1 = 2(1.47 ´ 105 N/C) = 2.94 ´ 105 N/C.

		E3	= kQ3/(L/v2)2 = 3E1 = 3(1.47 ´ 105 N/C) = 4.41 ´ 105 N/C.

		E4	= kQ4/(L/v2)2 = 4E1 = 4(1.47 ´ 105 N/C) = 5.88 ´ 105 N/C.

	We simplify the vector addition by using the xy-coordinate system shown.  For the components of the resultant field we have

		Ex = E4 – E2 = 5.88 ´ 105 N/C – 2.94 ´ 105 N/C = 2.94 ´ 105 N/C;

		Ey = E3 – E1 = 4.41 ´ 105 N/C – 1.47 ´ 105 N/C = 2.94 ´ 105 N/C.

	Thus we see that the resultant will be in the y¢-direction:

		E = 2Ex cos 45° = 2(2.94 ´ 105 N/C) cos 45° =      4.2 ´ 105 N/C up. 



74.	The attractive Coulomb force provides the centripetal acceleration of the electron:

		ke2/r2 = mv2/r,   or   r = ke2/mv2;

		r = (9.0 ´ 109 N · m2/C2)(1.60 ´ 10–19 C)2/(9.11 ´ 10–31 kg)(1.1 ´ 106 m/s)2 =        2.1 ´ 10–10 m.
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75.	Because the charges have the same sign, they repel each other. 

	The force from the third charge must balance the repulsive force 

	for each charge, so the third charge must be positive and between 

	the two negative charges.  For each of the negative charges, we have

		Q0 :	kQ0Q/x2 = kQ0(4Q0)/¬2,   or   ¬2Q = 4x2Q0 ;

		4Q0 :	k4Q0Q/(¬– x)2 = kQ0(4Q0)/¬2,   or   ¬2Q = (¬ – x)2Q0 .

	Thus we have

		4x2 = (¬ – x)2, which gives x = –¬, + 0.333¬.

	Because the positive charge must be between the charges, it must be 0.333¬ from Q0.  When we use this value in one of the force equations, we get

		Q = 4(0.333¬)2Q0/¬2 = 0.444Q0.

	Thus we place a charge of      0.444Q0 , 0.333¬ from Q0.

	Note that the force on the middle charge is also zero.
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76.	Because the charge moves in the direction of the electric field, 

	it must be       positive.

	We find the angle of the string from the dimensions:

		cos q = (0.43 m)/(0.55 m) = 0.782,   or   q = 38.6°.

	Because the charge is in equilibrium, the resultant force is zero.  

	We see from the force diagram that

		tan q = QE/mg;

		tan 38.6° = Q(10,000 N/C)/(1.0 ´ 10–3 kg)(9.80 m/s2), 

	which gives Q =       7.8 ´ 10–7 C.
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77.	Because the charges have opposite signs, the location where the electric 

	field is zero must be outside the two charges, as shown.  

	The fields from the two charges must balance:

		kQ1/x2 = kQ2/(x – L)2;

		(1.85 ´ 10–5 C)/x2 = (7.65 ´ 10–6 C)/(x – 2.00 m)2, 

	which gives x = 1.22 m, 5.60 m.

	Because 1.22 m is between the charges, the location is      

		5.60 m from the positive charge, and 3.60 m from the negative charge.
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78.	We find the force between the groups by finding the force on the CO 

	group from the HN group.  A convenient numerical factor will be

		ke2/(10–9 m/nm)2 

			= (9.0 ´ 109 N · m2/C2)(1.60 ´ 10–19 C)2/(10–9 m/nm)2 

			= 2.30 ´ 10–10 N · nm2.

	For the forces on the atoms, we have

		FO 	= kQO{[QH/(L – d2)2] – (QN/L2)} = ke2fO fH{[1/(L – d2)2] – (1/L2)}

			= (2.30 ´ 10–10 N · nm2)(0.40)(0.20){[1/(0.28 nm – 0.10 nm)2] – [1/(0.28 nm)2]} = 3.33 ´ 10–10 N.

		FC 	= kQC{[QN/(L + d1)2] – QH/(L + d1 – d2)2]} = ke2fC fN{[1/(L + d1)2] – [1/(L + d1 – d2)2]}

			= (2.30 ´ 10–10 N · nm2)(0.40)(0.20){[1/(0.28 nm + 0.12 nm)2] – [1/(0.28 nm + 0.12 nm – 0.10 nm)2]} 

			= – 8.94 ´ 10–11 N.

	Thus the net force is

		F = FO + FC = 3.33 ´ 10–10 N – 8.94 ´ 10–11 N =       2.4 ´ 10–10 N (attraction).



79.	(a)	The acceleration of the electron, and thus the force produced by the electric field, must be 

		opposite its velocity.  Because the electron has a negative charge, the direction of the electric field 

		will be opposite that of the force, so the direction of the electric field is      

			in the direction of the velocity, to the right.

	(b)	Because the field is constant, the acceleration is constant, so we find the required acceleration from

			v2 = v02 + 2ax;

			0 = (2.0 ´ 106 m/s)2 + 2a(0.054 m), which gives a = – 3.70 ´ 1013 m/s2.

		We find the electric field from

			F = qE = ma;

			(– 1.60 ´ 10–19 C)E = (9.11 ´ 10–31 kg)(– 3.70 ´ 1013 m/s2), which gives E =       2.1 ´ 102 N/C.
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80.	(a)	To estimate the force between a thymine and an 

		adenine, we assume that only the atoms with an 

		indicated charge make a contribution.  Because 

		all charges are fractions ofthe electronic charge, 

		we let 

			QH = QN = f1e, and  QO = QC = f2e.  

		A convenient numerical factor will be

			ke2/(10–10 m/Å)2 

				= (9.0 ´ 109 N · m2/C2)(1.60 ´ 10–19 C)2/

										(10–10 m/Å)2

				= 2.30 ´ 10–8 N · Å2.

		For the first contribution we find the force for the bond of 

		the oxygen on the thymine with the H-N pair on the 

		adenine.  From Newton's third law, we know that the 

		force on one must equal the force on the other.  

		We find the attractive force on the oxygen:

			FO 	= kQO{[QH/(L1 – a)2] – (QN/L12)}

				= ke2f2 f1{[1/(L1 – a)2] – (1/L12)}

				= (2.30 ´ 10–8 N · Å2)(0.4)(0.2){[1/(2.80 Å – 1.00 Å)2] – [1/(2.80 Å)2]} = 3.33 ´ 10–10 N.

		For the force for the lower bond of the H-N pair on the thymine with the nitrogen on the adenine, 

		we find the attractive force on the nitrogen:

			FN 	= kQN{[QH/(L2 – a)2] – (QN/L22)} = ke2f1 f1{[1/(L2 – a)2] – (1/L22)}

				= (2.30 ´ 10–8 N · Å2)(0.2)(0.2){[1/(3.00 Å – 1.00 Å)2] – [1/(3.00 Å)2]} = 1.28 ´ 10–10 N.

		There will be a repulsive force between the oxygen of the first bond and the nitrogen of the second 

		bond.  To find the separation of the two, we note that the distance between the two nitrogens of the 

		adenine, which is approximately perpendicular to L1, is 2a cos 30° = 1.73a.  We find the magnitude 

		of this force from

			FO-N 	= kQO{QN/[L12 + (1.73a)2]} = ke2f2 f1{1/[L12 + (1.73a)2]} 

					= (2.30 ´ 10–8 N · Å2)(0.4)(0.2){1/[(2.80 Å)2 + (1.73 Å)2]} = 1.7 ´ 10–10 N.

		We find the angle that this force makes with the line of the other bonds from

			tan q = 1.73a/L1 = 1.73 Å/2.80 Å= 0.62,  or  q = 32°.

		Thus the component that contributes to the bond is (1.7 ´ 10–10 N) cos 32° = 1.4 ´ 10–10 N.

		The other contribution will be from the carbon atom on the thymine.  Because the distance is 

		slightly greater and there will be attraction to the nitrogens and repulsion from the hydrogen, we 

		neglect this contribution.  

		Thus the estimated net bond is 3.33 ´ 10–10 N + 1.28 ´ 10–10 N – 1.4 ´ 10–10 N       ˜ 3 ´ 10–10 N.

	(b)	To estimate the net force between a cytosine and a guanine, we note that there are two oxygen bonds, 

		one nitrogen bond, and one repulsive O-N force.  We neglect the other forces because they involve 

		cancellation from the involvement of both hydrogen and nitrogen.  If we ignore the small change in 

		distances, we have

			2(3.33 ´ 10–10 N) + 1.28 ´ 10–10 N – 1.4 ´ 10–10 N      ˜ 7 ´ 10–10 N.

	(c)	The total force for the DNA molecule is

			(3 ´ 10–10 N + 7 ´ 10–10 N)(105 pairs)      ˜ 10–4 N.



















81.	The vertical acceleration produced by the electric field is

		ay = – qE/m.

	The horizontal velocity is constant, so we find the time for the electron to arrive at the top plate from

		x = v0xt;  or  t = !L/v0 cos q0.

	The vertical velocity of the electron must be zero at this time, so we have

		vy = v0y + ayt;

		0 = v0 sin q0 + ay(!L/v0 cos q0),   or   ay = – 2(v02/L) sin q0 cos q0.

	For the vertical motion we have

		y = v0yt + !ayt2;

		!H = (v0 sin q0)(!L/v0 cos q0) + ![– 2(v02/L) sin q0 cos q0](!L/v0 cos q0)2;

		H = L tan q0 – !(L tan q0),   or  

		tan q0 = 2H/L = 2(0.010 m)/(0.060 m) = 0.333,       q0 = 18°.
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82.	We find the electric field at the location of Q1 due to the plates and Q2. 

	For the field of Q2 we have

		E2	= kQ2/x2 

			= (9.0 ´ 109 N · m2/C2)(1.3 ´ 10–6 C)/(0.34 m)2 

			= 1.01 ´ 105 N/C (left).

	The field from the plates is to the right, so we have

		Enet 	= Eplates – E2

			= 73,000 N/C – 1.01 ´ 105 N/C = – 2.8 ´ 104 N/C (left).

	For the force on Q1 , we have

		F1 = Q1Enet  = (– 6.7 ´ 10–6 C)(– 2.8 ´ 104 N/C) =       + 0.19 N (right).



83.	The angular frequency of the SHM is

		w = (k/m)1/2 = [(126 N/m)/(0.800 kg)]1/2 = 12.5 s–1.

	If we take down as positive, with respect to the equilibrium position, the ball will start at maximum displacement, so the position as a function of time is

		x = A cos(wt) = (0.0500 m) cos [(12.5 s–1)t].

	Because the charge is negative, the electric field at the table will be up and the distance from the table is

		r = H – x = 0.150 m – (0.0500 m) cos [(12.5 s–1)t].

	The electric field is

		E 	= kQ/r2 = (9.0 ´ 109 N · m2/C2)(3.00 ´ 10–6 C)/{0.150 m – (0.0500 m) cos [(12.5 s–1)t]}2 

			=       (1.08 ´ 107 N/C)/{3.00 –  cos [(12.5 s–1)t]}2 up.



84.	We consider the forces on one ball.  (The other will be the same except 
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	for the reversal.)  The separation of the charges is 

		r = 2L sin 30° = 2(0.75 m) sin 30° = 0.75 m.

	From the equilibrium force diagram, we have

		tan q = F/mg = [k(!Q)(!Q)/r2]/mg;

		tan 30° = #(9.0 ´ 109 N · m2/C2)Q2/

							(0.75 m)2(22 ´ 10–3 kg)(9.80 m/s2),

	which gives Q = 5.6 ´ 10–6 C =      5.6 mC.
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85.	The magnitudes of the electric fields of the 

	three plates are

		E1 	= s1/2Å0 

			= (0.50 ´ 10–6 C/m2)/2(8.85 ´ 10–12 C2/N · m2) 

			= 2.82 ´ 104 N/C;

		E2 	= s2/2Å0 

			= (0.10 ´ 10–6 C/m2)/2(8.85 ´ 10–12 C2/N · m2) 

			= 5.65 ´ 103 N/C;

		E3 	= s3/2Å0 

			= (0.35 ´ 10–6 C/m2)/2(8.85 ´ 10–12 C2/N · m2) 

			= 1.98 ´ 104 N/C.

	The directions of the fields at each of the points are indicated on the diagram.  The total fields are

		EA = E1 – E2 + E3 = 2.82 ´ 104 N/C – 5.65 ´ 103 N/C + 1.98 ´ 104 N/C =      4.2 ´ 104 N/C (right);

		EB = – E1 – E2 + E3 = – 2.82 ´ 104 N/C – 5.65 ´ 103 N/C + 1.98 ´ 104 N/C =      – 1.4 ´ 104 N/C (left);

		EC = – E1 + E2 + E3 = – 2.82 ´ 104 N/C + 5.65 ´ 103 N/C + 1.98 ´ 104 N/C =      – 2.8 ´ 103 N/C (left);

		ED = – E1 + E2 – E3 = – 2.82 ´ 104 N/C + 5.65 ´ 103 N/C – 1.98 ´ 104 N/C =      – 4.2 ´ 104 N/C (left).



86.	The charge of all the electrons is

		Qelectrons = [(15 kg)(103 g/kg)/(27 g/mol)](6.02 ´ 1023 atoms/mol) ´

							(13 electrons/atom)(– 1.60 ´ 10–19 C/electron) =       – 7.0 ´ 108 C.

	Because there are an equal number of protons, the net charge of the bar is       0.



87.	Because the charges have opposite signs, the location where the electric 
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	field is zero must be outside the two charges, as shown.  

	The fields from the two charges must balance:

		kQ1/(d + x)2 = kQ2/x2;

		Q/(d + x)2 = Q/2x2,   or   d + x = ± xv2.

	which gives x = d/(v2 – 1), – d/(v2 + 1),    or    x = d(1 + v2), d(1 – v2),

	Because d(1 – v2) is between the charges, the location is      

		d(1 + v2) from the negative charge, and d(2 + v2) from the positive charge.

	Other than at infinity, there is no place, not on the x-axis, where the vectors sum to zero.



88.	(a)	The electric field from the long wire is

			E 	= 2l/4pÅ0r 

				= 2(9.0 ´ 109 N · m2/C2)(0.14 ´ 10–6 C/m)/r 

				=     (2.5 ´ 103 N · m/C)/r, radially away from the wire.

	(b)	This field produces a force on the electron toward the wire that provides the centripetal 

		acceleration of the electron:

			eE =  2el/4pÅ0r = mv2/r,   or  

			v 	= (eEr/m)1/2 

				= [(1.60 ´ 10–19 C)(2.5 ´ 103 N · m/C)/(9.11 ´ 10–31 kg)]1/2 =      2.1 ´ 107 m/s.

		Note that this is independent of r.
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