CHAPTER 22 – Gauss’s Law



1.	Because the electric field is uniform, the flux through the circle is

		F = ? E · dA = E · A = EA cos q.

	(a)	When the circle is perpendicular to the field lines, the flux is 

			F = EA cos q =  EA = (5.8 ´ 102 N/C)p(0.15 m)2 =         41 N · m2/C.

	(b)	When the circle is at 45° to the field lines, the flux is 

			F = EA cos q =  EA = (5.8 ´ 102 N/C)p(0.15 m)2 cos 45° =         29 N · m2/C.

	(c)	When the circle is parallel to the field lines, the flux is 

			F = EA cos q =  EA = (5.8 ´ 102 N/C)p(0.15 m)2 cos 90° =         0.



2.	Because the electric field is radial, it is perpendicular to the spherical surface just beyond the Earth’s surface.  The field is also constant, so the flux through the sphere is

		F = ? E · dA = – EA = – (150 N/C)4p(6.38 ´ 106 m)2 =      – 7.7 ´ 1016 N · m2/C.

	Note that E and dA are in opposite directions.



3.	All field lines enter and leave the cube, so the net flux is

		Fnet = 0.

	We find the flux through a face from

		F = ? E · dA.

	There are two faces with the field lines perpendicular to the face, say one at x = 0 and one at x = ¬.

	Thus for these two faces we have

		Fx = 0 = – EA = – (6.50 ´ 103 N/C)¬2 =       – (6.50 ´ 103 N/C)¬2;

		Fx = ¬ = + EA = + (6.50 ´ 103 N/C)¬2 =       + (6.50 ´ 103 N/C)¬2.

	For all other faces, the field is parallel to the face, so we have

		Fall others = 0.
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4.	(a)	Because the angle between the electric field and the area 

		varies over the surface of the hemisphere, it would appear 

		that we find the flux by integration.  We see that the same 

		flux must pass through the circular base of the hemisphere, 

		where the field is constant and perpendicular to the surface.  

		Thus we have

			F = EA =       EpR2. 

	(b)	If E is perpendicular to the axis, every field line must enter 

		and leave the surface, so we have

			F = 0.









5.	The total flux is depends only on the enclosed charge:

		F = Q/Å0 ,   or   Q = Å0F  = (8.85 ´ 10–12 C2/N · m2)(1.45 ´ 103 N · m2/C) = 1.28 ´ 10–8 C =      12.8 nC.
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6.	The net flux through each closed surface is 

	determined by the net charge inside.  

	Thus we have

		F1 = (Q – 3Q)/Å0 =      – 2Q/Å0.

		F2 = (Q – 3Q + 2Q)/Å0 =       0.

		F3 = (– 3Q + 2Q)/Å0 =      – Q/Å0.

		F4 = (0)/Å0 =       0.

		F5 = (+ 2Q)/Å0 =      + 2Q/Å0.
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7.	The total electric flux through the surface depends 

	only on the enclosed charge:

		 F = ı E · dA = Q/Å0 .

	The only contributions to the integral are from the 

	faces perpendicular to the electric field.  Over each 

	of these two surfaces, the magnitude of the field is 

	constant, so we have

		 F = E¬A – E0A = (E¬ – E0)A = Q/Å0 ;

		(410 N/C – 560 N/C)(30 m)2 = Q/(8.85 ´ 10–12 C2/N · m2), 

	which gives Q = – 1.2 ´ 10–6 C =       – 1.2 mC.





8.	The total electric flux through the surface depends only on the enclosed charge:

		 F = ı E · dA = Q/Å0 .

	Because the charge is at the center of the cube, we know from symmetry that each of the six faces has the same flux through it:

		Fface  = (1/6)Ftotal =       Q/6Å0 .



9.	If we construct a spherical Gaussian surface just outside the ball, we have

		F	= ı E · dA = Q/Å0 .

	Because the field over the surface has a constant magnitude and is perpendicular to the surface, we have

		ı E · dA = E4pr2 = Q/Å0 ;

		(– 2.75 ´ 102 N/C)4p(3.50 ´ 10–2 m)2 = Q/(8.85 ´ 10–12 C2/N · m2), 

	which gives Q =       – 3.75 ´ 10–11 C.



10.	The charge on the spherical conductor will be uniformly distributed over the surface:

		Q = s 4pr2.

	From the result of Example 22–3 we get

		E = Q/4pÅ0r2 = s 4pr2/4pÅ0r2 = s /Å0.



11.	The field from a long thin wire is radial with a magnitude given by

		E = l/2pÅ0r.

	(a)	At a distance of 5.0 m the field is

			E = (– 2.8 ´ 10–6 C/m)/2p(8.85 ´ 10–12 C2/N · m2)(5.0 m) =      – 1.0 ´ 104 N/C (toward the wire).

	(b)	At a distance of 2.0 m the field is

			E = (– 2.8 ´ 10–6 C/m)/2p(8.85 ´ 10–12 C2/N · m2)(2.0 m) =      – 2.5 ´ 104 N/C (toward the wire).

12.	(a)	The charge on a conducting sphere must be on the surface.  If we construct a spherical Gaussian 

		surface inside the metal sphere, there will be no enclosed charge and thus

			Ea = 0.

	(b)	Because the point is still inside the metal sphere, we have

			Eb = 0.

	(c)	Because the point is outside the metal sphere, the field is radial, given by

			Ec 	= Q/4pÅ0rc2 = (– 3.50 ´ 10–6 C)/4p(8.85 ´ 10–12 C2/N · m2)(3.10 m)2 

				=       – 3.28 ´ 103 N/C (toward the sphere).

	(d)	Because the point is outside the metal sphere, the field is radial, given by

			Ed 	= Q/4pÅ0rd2 = (– 3.50 ´ 10–6 C)/4p(8.85 ´ 10–12 C2/N · m2)(6.00 m)2 

				=       – 8.75 ´ 102 N/C (toward the sphere).

	(e)	Because the charge on the shell is the same as the charge on the surface of the metal sphere, all of 

		the fields will be        the same.

	(f)	For points inside the nonconducting sphere, only the charge inside a spherical surface with a radius 

		to the point will provide the field:

			E(r = r0) = [(Q/)pr03)()pr3)]/4pÅ0r2 = Qr/4pÅ0r03.

		Thus we have

			Ea 	= (– 3.50 ´ 10–6 C)(0.15 m)/4p(8.85 ´ 10–12 C2/N · m2)(3.00 m)3 

				=      – 1.75 ´ 102 N/C (toward the center).

			Eb 	= (– 3.50 ´ 10–6 C)(2.90 m)/4p(8.85 ´ 10–12 C2/N · m2)(3.00 m)3 

				=      – 3.38 ´ 103 N/C (toward the center).

		At points outside the nonconducting sphere, the field will be the same as before;

			Ec 	= – 3.28 ´ 103 N/C (toward the sphere);

			Ed 	= – 8.75 ´ 102 N/C (toward the sphere).
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13.	For points inside the nonconducting sphere, only the 

	charge inside a spherical surface with a radius to the 

	point will provide the field:

		E(r = r0) = [(Q/)pr03)()pr3)]/4pÅ0r2 = Qr/4pÅ0r03.

	At points outside the nonconducting sphere, the field 

	will be that of a point charge:

		E(r = r0) = Q/4pÅ0r2.

	The magnitude at the surface is

		E 	= Q/4pÅ0rc2 

			= (12.0 ´ 10–6 C)/4p(8.85 ´ 10–12 C2/N · m2)[!(0.150 m)]2 

			= 1.92 ´ 107 N/C.



14.	(a)	Because 1.0 cm « 25 cm, we can approximate the sheet as an infinite sheet, with 

			E 	= s/2Å0 

				= Q/2AÅ0 = (35 ´ 10–9 C)/2(0.25 m)2(8.85 ´ 10–12 C2/N · m2) 

				=      3.2 ´ 104 N/C (away from sheet).

	(b)	Because 20 m » 25 cm, we can approximate the sheet as a point charge, with 

			E 	= (1/4pÅ0)Q/r2 

				= (9.0 ´ 109 N · m2/C2)(35 ´ 10–9 C)/(20 m)2 =       0.79 N/C (away from sheet). 
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15.	From the symmetry of the charge distribution, we know that 

	the electric field must be radial, with a magnitude independent 

	of the direction.  

	(a)	For a spherical Gaussian surface within the spherical 

		cavity, we have

			ı E · dA = E4pr2 = Qenclosed/Å0 = Q/Å0 , so we have

			E 	= (1/4pÅ0)Q/r2 

		 		= (9.0 ´ 109 N · m2/C2)(5.50 ´ 10–6 C)/(0.030 m)2

				=       5.5 ´ 107 N/C (away from center).

	(b)	The point 6.0 cm from the center is inside the conductor, 

		thus the electric field is      0.

	Note that there must be a negative charge of – 5.50 mC on the surface of the cavity and a positive charge of + 5.50 mC on the outer surface of the sphere.



16.	(a)	From symmetry, for points inside the shell of radius r0 , the only field will be that of the point charge:

			Ea = (1/4pÅ0)Q/r2 (r < r0).

	(b)	Inside the conducting shell the electric field is      Eb = 0.

	(c)	From symmetry, for points outside the shell, the field will be radial.  If we were to construct a 

		spherical Gaussian surface, the net enclosed charge is the point charge.  Thus the electric field is

			Ec = (1/4pÅ0)Q/r2 (r > r0).

	(d)	The shell does not affect the field due to Q alone       (except, of course, inside the shell). 

		The charge does affect the shell       by inducing a charge – Q on the inner surface of the shell and a 

		charge + Q on the outer surface of the shell.
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17.	(a)	For a Gaussian surface within the cube just outside the 

		spherical cavity, we have

			ı E · dA = Qenclosed/Å0.

		Because the field must be zero inside a conductor, the 

		integral is zero, so the enclosed charge must be zero.  

		With a charge + 8.00 mC at the center, there must be 

		a charge of       – 8.00 mC       on the surface of the cavity.

	(b)	There can be no free static charge inside the conducting 

		cube.  Because the net charge on the cube is – 7.00 mC, 

		if – 8.00 mC is on the cavity surface, there must be      

			+ 1.00 mC       on the outer surface.
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18.	From symmetry we know that any electric field will be 

	perpendicular to the plates.

	(a)	To find the field between the plates, for a Gaussian surface 

		we choose a cylinder perpendicular to the plates with one 

		end of area A inside a plate (where the field must be zero) 

		and the other end between the plates.  Thus we have

			ı E · dA = Qenclosed/Å0.

			?end1 E · dA + ?end2 E · dA + ?sides E · dA = sA/Å0 ;

			0 + EbetweenA + 0 = sA/Å0 , which gives

			Ebetween = s/Å0 .

	(b)	To find the field outside the plates, for a Gaussian surface 

		we choose a cylinder perpendicular to the plates with one 

		end of area A between the plates (where we know the field) 

		and the other end outside the plates.  Thus we have

			ı E · dA = Qenclosed/Å0.

			?end1 E · dA + ?end2 E · dA + ?sides E · dA = – sA/Å0 ;

			– EbetweenA + EoutsideA + 0 = – sA/Å0 ;

			– sA/Å0 + EoutsideA + 0 = – sA/Å0 , which gives

			Eoutside = 0.

	(c)	If the plates were nonconductors, the fields from each plate would be the same, so the results will 

		be       unaffected.       Note that the field inside the plates would change.
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19.	Each positive plate produces an electric field directed 

	away from the plate with a magnitude 

		E+ = s/2Å0 .

	(a)	Between the plates, the two fields are in opposite

		directions, so we have

			Ebetween	= E+ – E+ = (s/2Å0) – (s/2Å0) =       0.

	(b)	Outside the plates, the two fields are in the same 

		direction, so we have

			Eoutside = E+ + E+ = (s/2Å0) + (s/2Å0) =       s/Å0 .

	(c)	If the plates were nonconductors, the fields from each plate 

		would be the same, so the results will be       unaffected.       

		Note that the field inside the plates would change.







20.	Because 3.0 cm « 1.0 m, we can consider the plates to be infinite in size, with no edge effects.

	From Problem 18, the electric field between the plates depends only on the charge density:

		E = s/Å0 = Q/AÅ0;

		100 N/C = Q/(1.0 m)2(8.85 ´ 10–12 C2/N · m2), which gives Q =       8.85 ´ 10–10 C.
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21.	(a)	In the region where r < r1 , we are inside both spherical 

		shells, so there will be no charge inside a Gaussian 

		surface and we must have

			r < r1 ;  E = 0.

	(b)	In the region where r1 < r < r2 , we are outside the inner 

		shell, so it looks like a point charge; we are inside the 

		outer shell, so it contributes no field: 

			r1 < r < r2 ;   E = q1/4pÅ0r2 = s14pr12/4pÅ0r2 =       s1r12/Å0r2.

	(c)	In the region where r > r2 , we are outside both shells, 

		so each one looks like a point charge:

			r > r2 ;  E = (q1 + q2)/4pÅ0r2 = (s14pr12 + s24pr22)/4pÅ0r2 =       (s1r12 + s2r22)/Å0r2.

	(d)	To have a zero field in the region where r > r2 , we have

			s1r12 + s2r22 = 0,   or       s2/s1 = – (r1/r2)2.

	(e)	To have a zero field in the region where r1 < r < r2 , we have       s1 = 0.
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22.	From the symmetry of the charge distribution, we know that the 

	electric field must be radial, with a magnitude independent of the 

	direction.  For a Gaussian surface we choose a sphere of radius r.   

	On this surface, the field has a constant magnitude and E and dA 

	are parallel, so we have E · dA = E dA.  The charge density is 

		r = Q/[)p(r03 – r13)].

	(a)	For the region where r < r1 ,  there is no charge inside the 

		Gaussian surface, so we have

			E = 0; r < r1.

	(b)	For the region where r1 < r < r0 , we apply Gauss’s law:

			ı E ·  dA = EA = Qenclosed/e0;

			E4pr2 = r)p(r3 – r13)/Å0 ,  which gives

			E = r)p(r3 – r13)/4pÅ0r2 =       Q(r3 – r13)/4pÅ0(r03 – r13)r2; r1 < r < r0 .

	(c)	For the region where r > r0 , the electric field is that of a point charge; 

			E = Q/4pÅ0r2; r > r0 .
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23.	From the symmetry of the charge distribution, we know that the 

	electric field must be radial, with a magnitude independent of 

	the direction.  The charge density of the sphere is 

		r = Q/[)p(r03 – r13)].

	We can add the field of the point charge at the center to the 

	fields found in Problem 22:

	(a)	For the region where r < r1 ,  the electric field is that of 

		the point charge at the center:

			E = q/4pÅ0r2; r < r1.

	(b)	For the region where r1 < r < r0 , we add the two fields:

			E 	= Q(r3 – r13)/4pÅ0(r03 – r13)r2 + q/4pÅ0r2 

				=       (1/4pÅ0)[Q(r3 – r13) + q(r03 – r13)]/(r03 – r13)r2; r1 < r < r0 .

	(c)	For the region where r > r0 , the electric field is that of a point charge equal to the total charge: 

			E = (q + Q)/4pÅ0r2; r > r0 .
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24.	(a)	For the region where r1 < r < r0 , which is inside the conductor, 

		the electric field must be zero.  Thus the net charge inside a 

		Gaussian surface must be zero, so the charge on the inner surface 

		of the shell is      – q.

	(b)	Because the net charge on the shell is Q, we have

			Qouter + Qinner = Q,   or   Qouter = Q – (– q) =        Q + q.

	(c)	For the region where r < r1 ,  the electric field is that of 

		the point charge at the center:

			E = q/4pÅ0r2; r < r1.

	(d)	For the region where       r1 < r < r0 , E = 0.

	(e)	For the region where r > r0 , the electric field is that of a point charge equal to the total charge: 

			E = (q + Q)/4pÅ0r2; r > r0 .



25.	(a)	For points inside the shell, the field will be due to the point charge only:

			E(r < r0) = q/4pÅ0r2.

	(b)	At points outside the shell, the field will be that of an equivalent point charge equal to the 

		total charge:      E(r > r0) = (q + Q)/4pÅ0r2.

	(c)	If q = Q, we have      E(r < r0) = Q/4pÅ0r2;   E(r > r0) = 2Q/4pÅ0r2.

	(d)	If q = – Q, there is no change inside, so we have      E(r < r0) = – Q/4pÅ0r2;   E(r > r0) = 0.

		Thus there will be a field only inside the cavity.



26.	We find the radius as a function of time from

		r = r0 + (?r/?t)t = r0 + (r0/T)t = r0(1 + t/T).

	From the symmetry of the charge distribution, we know that the electric field must be radial, away from the center of the balloon, with a magnitude independent of the direction.  

	(a)	Just outside the charged surface, the electric field is 

			E = s/Å0 = Q/4pr2Å0 =       Q/4pÅ0r02(1 + t/T)2.

	(b)	Because the radius of the balloon never becomes 4r0 , in the region outside the balloon the electric 

		field is that of a point charge;  

			E = Q/4pÅ0r2 = Q/4pÅ0(4r0)2 =       Q/64pÅ0r02.
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27.	From the symmetry of the charge distribution, for points far 

	from the ends and not too far from the shell, we know that the 

	electric field must be radial, away from the axis of the cylinder, 

	with a magnitude independent of the direction.  For a Gaussian 

	surface we choose a cylinder of length ¬ and radius r, centered on 

	the axis.  On the ends of this surface, the electric field is not 

	constant but E and dA are perpendicular, so we have E · dA = 0.  

	On the curved side, the field has a constant magnitude and 

	E and dA are parallel, so we have E · dA = E dA.

	(a)	For the region where r > R0 , the charge inside the 

		Gaussian surface is Q = s 2pR0¬.

		For Gauss’s law we have

			ı E ·  dA = ?ends E ·  dA + ?side E ·  dA = Qenclosed/Å0 ;

			0 + E2pr¬ = s 2pR0¬/Å0 , or        E = sR0/Å0r;  r > R0 .

	(b)	For the region where r < R0 , the charge inside the 

		Gaussian surface is Q = 0, so we have

			E = 0 for r < R0.

	(c)	We find the equivalent linear charge density from

			Q = s 2pR0L = leqL, which gives leq = s 2pR0.

		If we treat the cylinder as a line of charge, the field is

			E = 2leq/4pÅ0r = 2(s 2pR0)/4pÅ0r = sR0/Å0r; which is the      same       as the result for part (a). 
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28.	From the symmetry of the charge distribution, for points far 

	from the ends and not too far from the shell, we know that 

	the electric field must be radial, away from the axis of the 

	cylinder, with a magnitude independent of the direction.  

	For a Gaussian surface we choose a cylinder of length ¬ and 

	radius r, centered on the axis.  On the ends of this surface, the 

	electric field is not constant but E and dA are perpendicular, 

	so we have E · dA = 0.  On the curved side, the field has a 

	constant magnitude and E and dA are parallel, so we have 

	E · dA = E dA.

	(a)	For the region where r > R0 , the charge inside the Gaussian surface is Q = rEpR02¬.

		For Gauss’s law we have

			ı E ·  dA = ?ends E ·  dA + ?side  ·  dA = Qenclosed/Å0 ;

			0 + E2pr¬ = rEpR02¬/Å0 , or         E = rER02/2Å0r;  r > R0 .

	(b)	For the region where r < R0 , the charge inside the Gaussian surface is Q = rEpr2¬, so we have

			ı E ·  dA = ?ends E ·  dA + ?side E ·  dA = Qenclosed/Å0 ;

			0 + E2pr¬ = rEpr2¬/Å0 , or         E = rEr/2Å0;  r < R0 .



�

29.	From the symmetry of the charge distribution, for points far 

	from the ends and not too far from the outer shell, we know 

	that the electric field must be radial, away from the axis of 

	the cylinders, with a magnitude independent of the direction. 

	For a Gaussian surface we choose a cylinder of length ¬ and 

	radius r, centered on the axis.  On the ends of this surface, the 

	electric field is not constant but E and dA are perpendicular, 

	so we have E · dA = 0.  On the curved side, the field has a 

	constant magnitude and E and dA are parallel, so we have 

	E · dA = E dA.  

	(a)	For the region where r < R1 ,  there is no charge inside the Gaussian surface, so we have

			E = 0; r < R1.

	(b)	For the region where R1 < r < R2 , the charge inside the Gaussian surface is Qenclosed = (Q/L)¬.

		For Gauss’s law we have

			ı E ·  dA = ?ends E ·  dA + ?side E ·  dA = Qenclosed/Å0 ;

			0 + E2pr¬ = (Q/L)¬/Å0 , or         E = Q/2pÅ0Lr;  R1 < r < R2 .

	(c)	For the region where r > R2 , the charge inside the Gaussian surface is Qenclosed = (Q/L)¬ – (Q/L)¬.

		Thus there is no net charge inside the Gaussian surface, so we have

			E = 0; r > R2 .

	(d)	The velocity of the electron moving in a circular orbit is perpendicular to the electric field so 

		the force is toward the axis and provides the centripetal acceleration:

			eE = mv2/r.

		The kinetic energy is

			K = !mv2 = !eEr = !e(Q/2pÅ0Lr)r =      eQ/4pÅ0L.

		Note that this is the kinetic energy for any orbit between the shells.



30.	(a)	From the result for part (c) of Problem 29 we see that E = 0 for       any Q      as long as there are 

		equal and opposite charges on the shells.

	(b)	From the result for part (b) of Problem 29 we see that in the region between the shells we will have 

		E = 0 if      Q = 0.  

		Note that E = 0 also if L ® 8, but this means essentially zero charge density.
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31.	From the symmetry of the charge distribution, for points far 

	from the ends and not too far from the outer shell, we know 

	that the electric field must be radial, away from the axis of 

	the cylinders, with a magnitude independent of the direction. 

	For a Gaussian surface we choose a cylinder of length ¬ and 

	radius r, centered on the axis.  On the ends of this surface, the 

	electric field is not constant but E and dA are perpendicular, 

	so we have E · dA = 0.  On the curved side, the field has a 

	constant magnitude and E and dA are parallel, so we have 

	E · dA = E dA.  

	(a)	A point 3.0 cm from the axis is inside the inner shell.  

		For the region where r < R1 ,  there is no charge inside the Gaussian surface, so we have

			E = 0; r = 3.0 cm.

	(b)	A point 6.0 cm from the axis is between the shells.  For the region where R1 < r < R2 , the charge 

		inside the Gaussian surface is Qenclosed = (Q1/L)¬.  For Gauss’s law we have

			ı E ·  dA = ?ends E ·  dA + ?side E ·  dA = Qenclosed/Å0 ;

			0 + E2pr¬ = (Q1/L)¬/Å0 , so 

			E 	= Q1/2pÅ0Lr 

				= (– 3.8 ´ 10–6 C)/2p(8.85 ´ 10–12 C2/N · m2)(5.0 m)(0.060 m) 

				=       – 2.3 ´ 105 N/C (toward the axis), r = 6.0 cm.

	(c)	A point 12.0 cm from the axis is outside the shells.  For the region where r > R2 , the charge 

		inside the Gaussian surface is Qenclosed = [(Q1/L) + (Q2/L)]¬.  For Gauss’s law we have

			ı E ·  dA = ?ends E ·  dA + ?side E ·  dA = Qenclosed/Å0 ;

			0 + E2pr¬ = [(Q1/L) + (Q2/L)]¬/Å0  ,  so 

			E 	= (Q1 + Q2)/2pÅ0Lr 

				= [(– 3.8 ´ 10–6 C) + (+ 3.2 ´ 10–6 C)]/2p(8.85 ´ 10–12 C2/N · m2)(5.0 m)(0.120 m)  

				=       – 1.8 ´ 104 N/C (toward the axis), r = 12.0 cm.



32.	(a)	The inward electric field will produce a force on the electron out along a radial line.  

		The work done by this variable force will increase the kinetic energy of the electron:

			!mv2 – 0 = ?F dr = ? – eE dr.

		When we use the result from part (b) of Problem 31 and integrate, we get

			�

			v = 5.3 ´ 107 m/s.

	(b)	The velocity of the proton moving in a circular orbit is perpendicular to the electric field so 

		the force is toward the axis and provides the centripetal acceleration:

			+ eE = mv2/r.

		We use the result for E from part (b) of Problem 31:

			(1.60 ´ 10–19 C)(2.3 ´ 105 N/C) = (1.67 ´ 10–27 kg)v2/(0.060 m), which gives v =      1.1 ´ 106 m/s.
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33.	From the symmetry of the charge distribution, for points far 

	from the ends and not too far from the shell, we know that 

	the electric field must be radial, away from the axis of the 

	cylinders, with a magnitude independent of the direction.  

	For a Gaussian surface we choose a cylinder of length ¬ and 

	radius r, centered on the axis.  On the ends of this surface, the 

	electric field is not constant but E and dA are perpendicular, 

	so we have E · dA = 0.  On the curved side, the field has a 

	constant magnitude and E and dA are parallel, so we have 

	E · dA = E dA.

	(a)	For the region where r < R1 , the charge inside the Gaussian surface is 

			Q = rEpr2¬, so we have

			ı E ·  dA = ?ends E ·  dA + ?side E ·  dA = Qenclosed/Å0 ;

			0 + E2pr¬ = rEpr2¬/Å0 , or         E = rEr/2Å0;  r < R1 .

	(b)	For the region where R1 < r < R2 , the charge inside the Gaussian surface is 

			Qenclosed = rEpR12¬, so we have

			ı E ·  dA = ?ends E ·  dA + ?side E ·  dA = Qenclosed/Å0 ;

			0 + E2pr¬ = rEpR12¬/Å0 , or         E = rER12/2Å0r;  R1 < r < R2 .

	(c)	For the region where R2 < r < R3 , the charge inside the Gaussian surface is 

			Qenclosed = rEpR12¬ + rEp(r2 – R22)¬, so we have

			ı E ·  dA = ?ends E ·  dA + ?side E ·  dA = Qenclosed/Å0 ;

			0 + E2pr¬ = [rEpR12¬ + rEp(r2 – R22)¬]/Å0 , or         E = rE(r2 + R12 – R22)/2Å0r;  R2 < r < R3 .

	(d)	For the region where r > R3 , the charge inside the Gaussian surface is 

			Qenclosed = rEpR12¬ + rEp(R32 – R22)¬, so we have

			ı E ·  dA = ?ends E ·  dA + ?side E ·  dA = Qenclosed/Å0 ;

			0 + E2pr¬ = [rEpR12¬ + rEp(R32 – R22)¬]/Å0 , or         E = rE(R32 + R12 – R22)/2Å0r;  r > R3 .

	(e)	For the given data we have

			E 	= (15 ´ 10–6 C/m3)r/2(8.85 ´ 10–12 C2/N · m2) = (8.5 ´ 105 N/C · m)r, r < R1 ;

			E 	= (8.5 ´ 105 N/C · m)(0.050 m)2/r = (2.1 ´ 103 N · m/C)/r, R1 < r < R2 ;

			E 	= (8.5 ´ 105 N/C · m)[r2 + (0.050 m)2 – (0.100 m)2]/r 

				= (8.5 ´ 105 N/C · m)[r2 – 0.0075 m2]/r, R2 < r < R3 ;

			E 	= (8.5 ´ 105 N/C · m)[(0.150 m)2 + (0.050 m)2 – (0.100 m)2]/r = (1.3 ´ 104 N · m/C)/r, r > R3 .



		�















�

34.	From the symmetry of the charge distribution, we know that the 

	electric field must be radial, with a magnitude independent of the 

	direction.  For a Gaussian surface we choose a sphere of radius r.   

	On this surface, the field has a constant magnitude and E and dA 

	are parallel, so we have E · dA = E dA.  

	(a)	For the region where r < r1 ,  there is no charge inside the 

		Gaussian surface, so we have

			E = 0; r < r1.

	(b)	For the region where r1 < r < r0 , we find the enclosed charge 

		by integrating:

			�

		We apply Gauss’s law:

			ı E ·  dA = EA = Qenclosed/e0;

			E4pr2 = 2pr0r1(r2 – r12)/Å0,  which gives      E = r0r1(r2 – r12)/2Å0r2; r1 < r < r0 .

	(c)	For the region where r > r0 , the enclosed charge is the total charge on the sphere:

			�

		We apply Gauss’s law:

			ı E ·  dA = EA = Qenclosed/e0 ;

			E4pr2 = 2pr0r1(r02 – r12)/Å0 ,  which gives      E = r0r1(r02 – r12)/2Å0r2; r > r0 .

	(d)	

		�



�

35.	On the ends of the cylinder the electric field will vary in 

	magnitude and direction.  Thus we must integrate to find 

	the flux through the ends.  We choose a circular ring of 

	radius y and thickness dy.  From the diagram we see that 

		R0 = r cos q,   

		y = R0 tan q,   

		dy = R0 sec2 q dq = (R0/cos2 q) dq.

	The flux through one end is

		�

	The total flux through the closed surface is Q/Å0 , so the flux through the curved sides is

		Fsides 	= Ftotal – 2Fend 

				= (Q/Å0) – 2(Q/2Å0)[1 – 1/v2) =       Q/Å0v2.

�

36.	Because the slab is very large, we know from symmetry that the 

	field must be perpendicular to the slab, with a constant magnitude 

	for a constant distance from the center.  If rE is positive, the field 

	will be away from the center.  For a Gaussian surface we choose a 

	cylinder of length 2x and area A, centered on the axis.  On the 

	curved side of this surface, the electric field is not constant but 

	E and dA are perpendicular, so we have E · dA = 0.  On the 

	ends, the field has a constant magnitude and E and dA are 

	parallel, so we have 

		E · dA = E dA.

	(a)	To find the field inside the slab, we use the fact that the 

		field will be away from the center.  If we place our Gaussian 

		cylinder so that one end is at x, with x < !d, and the other end 

		is at – x, the fields at each end will be directed out of the 

		Gaussian surface and have the same magnitude.  

	When we apply Gauss’s law, we have

			ı E ·  dA = ?ends E ·  dA + ?side E ·  dA = Qenclosed/Å0 ;

			2EA + 0 = rE2xA/Å0 , or         E = rEx/Å0;  ½x½< !d .

	(b)	To find the field outside the slab, we use the fact that the field will be away from the slab.  If we 

		place our Gaussian cylinder so that one end is at x, with x > !d, and the other end is at – x, the 

		fields at each end will be directed out of the Gaussian surface and have the same magnitude.  

		When we apply Gauss’s law, we have

			ı E ·  dA = ?ends E ·  dA + ?side E ·  dA = Qenclosed/Å0 ;

			2EA + 0 = rEAd/Å0 , or         E = rEd/2Å0;  ½x½ > !d (away from slab).



37.	The gravitational field is

		�

	If we compare this to the electric field,

		�

	we see that E ® g, Q ® – M, and Å0 ® 1/4pG.  If we make these substitutions in Gauss’s law for the electric field, we have

		F = ı E · dA = Q/Å0  ®  F = ı g · dA = – M/(1/4pG) = – 4pGM.

	Thus        ı g · dA = – 4pGM      is Gauss’s law for the gravitational field, where M is the enclosed mass.



38.	(a)	For a conducting spherical surface, the radial electric field just outside the surface is

			E = s/Å0  = Q/4prE2Å0 ;

			– 150 N/C = Q/4p(6.38 ´ 106 m)2(8.85 ´ 10–12 C2/N · m2), which gives Q =      – 6.8 ´ 105 C.

	(b)	The surface density of electrons is

			n 	= Q/e4prE2 = Å0E/e 

				= (8.85 ´ 10–12 C2/N · m2)(150 N/C)/(1.60 ´ 10–19 C/electron) =      8.3 ´ 109 electrons/m2.



�

39.	The flux through a Gaussian surface depends on the enclosed charge. 

	Because the field is parallel to the y-axis, the only faces that will 

	have flux through them are the ones perpendicular to the y-axis.  

	Thus we have

		ı E ·  dA = ?y = ¬  E ·  dA + ?y = 0 E ·  dA = Qenclosed/Å0 ;

		(a + b¬)¬2 – (a + 0)¬2 = Qenclosed/Å0 , which gives       Qenclosed = Å0b¬3.







�

40.	(a)	We find the value of b by integrating to get the total 

		charge, with a spherical shell as the differential element:

			�       b = Q/pr04.

	(b)	To find the field inside the sphere, we choose a Gaussian 

		surface of radius r < r0.  We find the charge within this 

		surface by integrating:

			�

		When we apply Gauss’s law, we have

			ı E ·  dA = EA = Qenclosed/Å0 ;

			E4pr2 = Q(r4/r04)/Å0,  which gives      E = Qr2/4pÅ0r04;  r < r0 .

	(c)	To find the field outside the sphere, we choose a Gaussian 

		surface of radius r > r0.  The charge within this surface is the 

		total charge, so we have

			ı E ·  dA = EA = Qenclosed/Å0 ;

			E4pr2 = Q/Å0,  which gives      E = Q/4pÅ0r2;  r > r0 .

�



41.	The flux through a Gaussian surface depends on the enclosed 

	charge.  For the sphere with a radius of 1.00 m, the only 

	charge inside is the one at the origin, so we have

		F 	= Qenclosed/Å0 = Q1/Å0 

			= (+ 3.50 ´ 10–9 C)/(8.85 ´ 10–12 C2/N · m2) 

			=      3.95 ´ 102 N · m2/C.

	For the sphere with a radius of 2.00 m, both charges are 

	inside the surface, so we have

		F 	= Qenclosed/Å0 = (Q1+ Q2)Å0 

			= (+ 3.50 ´ 10–9 C – 5.00 ´ 10–9 C)/(8.85 ´ 10–12 C2/N · m2) 

			=      – 1.69 ´ 102 N · m2/C.









42.	(a)	The flux through any closed surface containing the charge must be the same, so the flux through 

		the larger sphere is       + 500 N · m2/C.

	(b)	The flux through a Gaussian surface depends on the enclosed charge:  

			F = Qenclosed/Å0 = Q/Å0 ;

			+ 500 N · m2/C = Q/(8.85 ´ 10–12 C2/N · m2), which gives Q = + 4.43 ´ 10–9 C =       + 4.43 nC.
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43.	(a)	Because there is no charge within the sphere, every field line 

		will enter and leave the sphere, so the net flux through 

		the sphere is      0.

	(b)	The maximum electric field will be at the point on the sphere 

		closest to the point charge, the top of the sphere:

			Emax = Q/4pÅ0(!r0)2 = Q/pÅ0r02.

		The minimum electric field will be at the point on the sphere 

		farthest from the point charge, the bottom of the sphere:

			Emin = Q/4pÅ0((r0)2 = Q/25pÅ0r02.

		Thus the range of values is      Q/25pÅ0r02 = E = Q/pÅ0r02.

	(c)	The electric field is       not perpendicular       at all points.  

		It is perpendicular only at the top and bottom of the sphere.  

		At some points it is almost parallel to the surface of the sphere.

	(d)	The electric field is not perpendicular or constant over the surface of the sphere.  

		Gauss’s law is       not useful       for obtaining E because a Gaussian surface cannot be chosen that 

		simplifies the integral for the flux.  





�

44.	The uniform fields from each of the three sheets are indicated 

	on the diagram.  We take the positive direction upward.  

	The force on each sheet is produced by the net electric field from 

	the other two sheets:

		FI/A 	= sI(– EII + EIII) = sI(– sII + sIII)/2Å0 

				= (9.0 ´ 10–9 C/m2)(– 2.0 ´ 10–9 C/m2 + 5.0 ´ 10–9 C/m2)/

									                2(8.85 ´ 10–12 C2/N · m2) 

				=      1.5 ´ 10–6 N/m2 (up).

		FII/A 	= sII(– EI + EIII) = sII(– sI + sIII)/2Å0 

				= (– 2.0 ´ 10–9 C/m2)(– 9.0 ´ 10–9 C/m2 + 5.0 ´ 10–9 C/m2)/

									                 2(8.85 ´ 10–12 C2/N · m2) 

				=      4.5 ´ 10–7 N/m2 (up).

		FIII/A 	= sIII(– EI + EII) = sIII(– sI + sII)/2Å0 

				= (5.0 ´ 10–9 C/m2)(– 9.0 ´ 10–9 C/m2 + 2.0 ´ 10–9 C/m2)/

									               2(8.85 ´ 10–12 C2/N · m2) 

				=      – 2.0 ´ 10–6 N/m2 (down).





































45.	(a)	We determine the constant A by finding the total negative charge:

			�

		If we change variable to x = r/a0 , we have

			�

			A = e/pa03.

		We do a similar integration to find the charge inside a sphere with radius a0 :

			�

		Thus the negative charge is

			Q = {[5/(2.718)2] – 1}e = – 0.323e.

		Thus the net charge is

			Qnet = – 0.323e + e =       0.677e = + 1.08 ´ 10–19 C.

		Note that we have used exp for the exponential to avoid confusion with the charge e.

	(b)	The electric field at r = a0 will be due to the positive charge + e and the negative charge within a0 :

			Eb 	= Qnet/4pÅ0a02  

				= (+ 1.08 ´ 10–19 C)(9.0 ´ 109 N · m2/C2)/(0.53 ´ 10–10 m)2 =       3.5 ´ 1011 N/C.





�

46.	(a)	The field from a large plate, not near the edge, is 

		perpendicular to the plate and uniform:  E = s/2Å0 .

		For regions outside the slab, it can be considered an 

		infinite number of plates.  We can find the equivalent 

		surface density by considering the charge in the slab 

		with an area A:

			Qslab = sslabA = rEAd,  or  sslab = rEd.

		The electric field to the left of the plate is

			Ea 	= Eplate + Eslab 

				= s/2Å0 + sslab/2Å0 =       (s + rEd)/2Å0 (left).

	(b)	The electric field to the right of the plate is

			Eb 	= Eplate + Eslab 

				= s/2Å0 + sslab/2Å0 =       (s + rEd)/2Å0 (right).

	(c)	To find the field inside the slab, we choose a cylinder for the Gaussian surface with one end of 

		area A inside the slab parallel to the plate and the other end of area A to the left of the plate.  

		The cylinder is a distance x inside the slab.  When we apply Gauss’s law, we have

			ı E ·  dA = ?ends E ·  dA + ?sideE ·  dA = Qenclosed/Å0 ;

			EaA + EcA + 0 = (sA + rExA)/Å0 ;

			(s + rEd)/2Å0 + Ec = (s + rEx)/Å0 , so         Ec = [s + rE(2x – d)]/2Å0 (right).
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47.	From symmetry, we know that the field inside a uniformly charged 

	sphere must be radial and depends only on the distance from the 

	center.  At a distance r from the center, r = r0 , only the charge inside 

	a spherical surface with a radius r will provide the field:

		E(r = r0) = Qenclosed/4pÅ0r2 = )pr3rE/4pÅ0r2 = rEr/3Å0 .

	We create the cavity by adding to the original sphere, with charge 

	density rE , a sphere with charge density – rE and radius !r0 , centered 

	at C.  At any point the total field will be the sum of the fields from 

	the two spheres, which we label E+ and E– .

	(a)	At the point A we have

			EA = E+ + E– = 0 – [– rE(!r0)/3Å0] =       rEr0/6Å0 (right).

	(b)	At the point B the cavity can be treated as a point charge, so we have

			EB = E+ + E– = – rEr0/3Å0 – [– rE)p(!r03)/4pÅ0(*r0)2] =       – 17rEr0/54Å0 (left).

	By considering other points in the cavity, it can be shown that the field inside the cavity is uniform.





48.	For a charged spherical surface, the radial electric field just outside the surface is

		E = s/Å0  = Q/4pÅ0r2;

		3 ´ 106 N/C = Q/4p(8.85 ´ 10–12 C2/N · m2)(0.375 ´ 10–2 m)2, which gives Q = 5 ´ 10–9 C =      5 nC.







�



49.	The positive sheet produces an electric field directed 

	away from the plate with a magnitude 

		E1 = s1/2Å0 .

	The negative sheet produces an electric field directed 

	toward the plate with a magnitude 

		E3 = s3/2Å0 .

	(a)	Because charges are free to move in a conductor, 

		the field inside the middle sheet is      0.

	(b)	Between the left and middle sheets, the two fields 

		are in the same direction, so we have

			Eb 	= E1 + E3 = (s1/2Å0) + (s3/2Å0) = (s1 + s3)/2Å0 

				= (5.00 ´ 10–6 C/m2 + 5.00 ´ 10–6 C/m2)/2(8.85 ´ 10–12 C2/N · m2) =       5.65 ´ 105 N/C (right).

	(c)	Between the middle and right sheets, the two fields are in the same direction, so we have

			Eb 	= E1 + E3 = (s1/2Å0) + (s3/2Å0) = (s1 + s3)/2Å0 

				= (5.00 ´ 10–6 C/m2 + 5.00 ´ 10–6 C/m2)/2(8.85 ´ 10–12 C2/N · m2) =       5.65 ´ 105 N/C (right).

	(d)	To find the charge density on the surface of the left side of the middle sheet, we choose a 

		cylinder for the Gaussian surface with one end of area A inside the sheet and the other end of 

		area A between the left and middle sheets.  When we apply Gauss’s law, we have

			ı E ·  dA = ?ends E ·  dA + ?side E ·  dA = Qenclosed/Å0 ;

			– EbA + 0 +  0 = sleftA/Å0 ; 

			– (s1 + s3)/2Å0 = sleft/Å0 , so sleft = – (5.00 ´ 10–6 C/m2 + 5.00 ´ 10–6 C/m2)/2 =      – 5.00 ´ 10–6 C/m2.

	(e)	Because the middle sheet has no net charge, the charge density on the right side must be

			sright = – sleft =       + 5.00 ´ 10–6 C/m2.
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50.	We find the net charge inside the cube by finding the flux through each 

	face of the cube.  Because the electric field has only x- and y-components, 

	we know that

		Fz = 0 = ? E · dA = 0;   Fz = a = ? E · dA = 0.

	For the other sides we choose a horizontal strip of height dz for a 

	differential element and integrate to find the flux:

		�

		�

		�

	For the total flux through the surface of the cube we have

		Ftotal 	= Fx = 0 + Fx = a + Fy = 0 + Fy = a + Fz = 0 + Fz = a 

				= – *E0a2 + *E0a2 – !E0a2 + !E0a2 + 0 + 0 = 0.

	Thus there is       no net charge       inside the cube.
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