CHAPTER 23 ñ Electric Potential



1.	We find the work done by an external agent from the work-energy principle:

		Wab 	= ?K + ?U = 0 + q(Vb ñ Va) 

				= (ñ 7.0 ¥ 10ñ6 C)(+ 6.00 V ñ 0) =        ñ 4.2 ¥ 10ñ5 J (done by the field).



2.	We find the work done by an external agent from the work-energy principle:

		W	= ?K + ?U = 0 + q(Vb ñ Va) 

			= (1.60 ¥ 10ñ19 C)[(ñ 50 V) ñ (+ 100 V)] =        ñ 2.40 ¥ 10ñ17 J (done by the field).



3.	Because the total energy of the electron is conserved, we have

		?K + ?U = 0,  or  

		?K = ñ q(Vb ñ Va) = ñ (ñ 1.60 ¥ 10ñ19 C)(21,000 V) =        3.4 ¥ 10ñ15 J.



4.	Because the total energy of the electron is conserved, we have

		?K + ?U = 0;  

		?K + q(VB ñ VA) = 0;

		16.4 ¥ 10ñ16 J + (ñ 1.60 ¥ 10ñ19 C)(VB ñ VA) = 0, which gives VB ñ VA =       1.03 ¥ 104 V.

		Plate B       is at the higher potential.



5.	We find the potential difference from the work-energy principle:

		Wab = ?K + ?U = ?K + q(Vb ñ Va) 

		8.00 ¥ 10ñ4 J = 2.10 ¥ 10ñ4 J  + (ñ 8.10 ¥ 10ñ6 C)(Vb ñ Va), 

	which gives Vb ñ Va = ñ 72.8 V,   or        Va ñ Vb = + 72.8 V.



6.	For the uniform electric field between two large, parallel plates, we have

		E = ?V/d;

		1500 V/m = (45 V)/d, which gives d = 3.0 ¥ 10ñ2 m =        3.0 cm.



7.	For the uniform electric field between two large, parallel plates, we have

		E = ?V/d;

		640 V/m = ?V/(11.0 ¥ 10ñ3 m), which gives ?V =        7.04 V.



8.	For the uniform electric field between two large, parallel plates, we have

		E = ?V/d = (110 V)/(5.0 ¥ 10ñ3 m) =         2.2 ¥ 104 V/m.



9.	The maximum charge will produce the electric field that causes breakdown in the air:

		E = Q/4p≈0r2;

		3 ¥ 106 V/m = (9.0 ¥ 109 N ∑ m2/C2)Q/(0.050 m)2, which gives Q = 8 ¥ 10ñ7 C =      0.8 mC.



10.	The electric field at the spherical surface is 

		E = Q/4p≈0r2,

	while the potential of a sphere, with V = 0 at 8, is 

		V = Q/4p≈0r.

	Thus we have r = V/E, so

		rmin = V/Emax = (30,000 V)/(3 ¥ 106 V/m) = 1 ¥ 10ñ2 m =       1 cm.

	At this radius the charge is

		Q = 4p≈0rminV = (1 ¥ 10ñ2 m)(30,000 V)/(9.0 ¥ 109 N ∑ m2/C2) =       3 ¥ 10ñ8 C.







11.	The potential difference between two points in an electric field is found from

		?V = ñ ? E ∑ d¨.

	(a)	For VBA we have
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	(b)	For VCB we have
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	(c)	For VCA we have
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		Note that VCA = VCB + VBA .



12.	The electric field produced by a large plate is uniform with magnitude s/2≈0.  If we take the potential of the plate to be V0 , we find the potential a distance x from the plate by integrating:

		�

		V = V0 ñ (s/2≈0)x.



13.	(a)	The electric field at the spherical surface is 

			E = Q/4p≈0rE2,

		while the potential of a sphere, with V = 0 at 8, is 

			V = Q/4p≈0rE .

		Thus we have V = ErE = (ñ 150 V/m)(6.38 ¥ 106 m) =      ñ 9.6 ¥ 108 V. 

	(b)	The difference in potential between the surface and 8 must be the same, so we add the same 

		constant to both locations:

			V(8) = + 9.6 ¥ 108 V.

	If there is an approximately equal positive charge in the ionosphere, the potential at the surface will be increased by the potential of the positive spherical charge.  Because the radius of the ionospheric charge is greater than rE , its potential will have a positive value with a magnitude less than that found in part (a).  Thus the potential at the surface of the Earth will be negative but with a much smaller magnitude.



14.	(a)	The potential at the surface of a charged sphere in terms of the charge density is

			V = Q/4p≈0r = s 4pr 2/4p≈0r = s r/≈0; 

			500 V = s (0.16 m)/(8.85 ¥ 10ñ12 C2/N ∑ m2), which gives s  =        2.8 ¥ 10ñ8 C/m2.

	(b)	If we form the ratio for the two distances, we have

			V1/V0 = r0/r1 ;

			(10 V)/(500 V) = (0.16 m)/r1 , which gives r1 =       8.0 m.



15.	(a)	After the connection, if the two spheres were at different potentials, there would be a flow of 

		charge in the wire.  Thus the potentials must be       the same.

	(b)	We assume the spheres are so far apart that the potential of one sphere at the other sphere is 

		essentially zero.  The initial potentials are

			V01 = Q/4p≈0r1 , V02 = 0.

		After the connection, Q2 is transferred to the second sphere, so we have

			V1 = (Q ñ Q2)/4p≈0r1 = V2 = Q2/4p≈0r2 ,   or 

			r2(Q ñ Q2) = r1Q2 , which gives       Q2 = r2Q/(r1 + r2).

16.	The radial electric field of the long wire is

		E = l/2p≈0r.

	We find the potential difference  from
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17.	(a)	The reference level for the potential is V = 0 at r = 8.      (c)

		At points outside the sphere, the electric field is that 

		of a point charge:

			 E = Q/4p≈0r2 , r > r0 .

		Thus the potential when r > r0 is

			V = Q/4p≈0r, r > r0 .

	(b)	The charge density inside the sphere is

			r = Q/)pr03.  

		The electric field at a distance r < r0 is due to the 

		charge inside the sphere with radius r:

			E = (r )pr3)/4p≈0r2 = Qr/4p≈0r03, r < r0 .

		We find the potential by integrating along a radial 

		line from r to r0 :

			�

			V = (Q/8p≈0r0)[3 ñ (r2/r02)], r < r0 .
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18.	(a)	The reference level for the potential is V = 0 at r = 8.      (c)

		At points outside the sphere, the electric field is that 

		of a point charge:

			 E = Q/4p≈0r2 , r > r0 .

		Thus the potential when r > r0 is

			V = Q/4p≈0r, r > r0 .

	(b)	If we let the charge density inside the sphere be rE = br2,

		we relate the constant b to the total charge:

			�

		The electric field at a distance r < r0 is due to the 

		charge inside the sphere with radius r:

			�

		We find the potential by integrating along a radial 

		line from r to r0 :

			�

			V = (Q/16p≈0r0)[5 ñ (r4/r04)], r < r0 .









19.	The field outside the cylinder is the same as that of a long wire.  We find the equivalent linear charge density from the charge on the length L:

		Q = s 2pR0L = lL, which gives l = s 2pR0 . 

	(a)	The radial electric field outside the cylinder is

			E = l/2p≈0r = s 2pR0 /2p≈0r  = s R0 /≈0r .

		We find the potential difference  from

			�

			V = V0 + (sR0/≈0) ln(R0/r),  r > R0 .

	(b)	The electric field inside the cylinder is zero, so the potential inside is constant and equal to the 

		potential at the surface:       V = V0 ,  r < R0 .

	(c)	From the result in part (a) we see that the potential at r = 8 is undefined.       V ? 0      because there 

		would be charge at infinity for an infinite cylinder.

























20.	(a)	In each region the electric field is the same as that of a point charge equal to the net charge 

		within a spherical surface.  Thus we have

			E = (+ Q + !Q)/4p≈0r2 =      3Q/8p≈0r2, r > r2 .

			E = 0, r1 < r < r2        (inside a conductor), which means there is a negative charge ñ !Q on the 

		inner surface; thus a positive charge *Q on the outer surface;

			E = !Q/4p≈0r2 =      Q/8p≈0r2, 0 < r < r1 .

�

	(b)	The reference level for the potential is V = 0 at r = 8.      (e)

		At points outside the spherical conducting shell, the 

		potential is that of a point charge with net charge 

		Q + !Q.  Thus the potential when r > r2 is

			V = (+ Q + !Q)/4p≈0r =       3Q/8p≈0r, r > r2 .

	(c)	The electric field within the spherical conductor is zero, 

		so its potential must be constant and therefore equal to 

		the potential on the surface:

			V = 3Q/8p≈0r2 =       3Q/16p≈0r1 , r1 < r < r2 .

	(d)	The potential inside the hollow region is due to the 

		point charge at the center with an additive constant 

		to make the potential at the inner surface of the 

		conductor the constant potential of the conductor:

			V = !Q/4p≈0r + constant;

			3Q/16p≈0r1 = Q/8p≈0r1 + constant, 

		which gives constant = Q/16p≈0r1 .

		Thus the potential is 

			V = (Q/8p≈0)[(1/r) + (1/2r1)], 0 < r < r1 .















21.	(a)	The potential from the proton is

			V = Q/4p≈0r = (9.0 ¥ 109 N ∑ m2/C2)(1.60 ¥ 10ñ19 C)/(0.50 ¥ 10ñ10 m) =       29 V.

	(b)	We find the potential energy of the electron from

			U = qV = (ñ 1 e)(29 V) =       ñ 29 eV (ñ 4.6 ¥ 10ñ18 J).



22.	We find the charge from

		V = Q/4p≈0r;

		125 V = (9.0 ¥ 109 N ∑ m2/C2)Q/(15 ¥ 10ñ2 m), which gives Q = 2.1 ¥ 10ñ9 C =      2.1 nC.





�

23.	We find the electric potentials of the stationary charges 

	at the initial and final points:

		Va 	= (1/4p≈0)[(Q1/r1a) + (Q2/r2a)] 

			= (9.0 ¥ 109 N ∑ m2/C2){[(25 ¥ 10ñ6 C)/(0.030 m)] + [(25 ¥ 10ñ6 C)/(0.030 m)]} = 1.50 ¥ 107 V.

		Vb 	= (1/4p≈0)[(Q1/r1b) + (Q2/r2b)] 

			= (9.0 ¥ 109 N ∑ m2/C2){[(25 ¥ 10ñ6 C)/(0.040 m)] + [(25 ¥ 10ñ6 C)/(0.020 m)]} = 1.69 ¥ 107 V.

	Because there is no change in kinetic energy, we have

		Wa Æ b	= ?K + ?U = 0 + q(Vb ñ Va) 

				= (0.10 ¥ 10ñ6 C)(1.69 ¥ 107 V ñ 1.50 ¥ 107 V) =      + 0.19 J.
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24.	(a)	The electric field will be zero when the fields 

		from the two charges have the same magnitude and 

		are in opposite directions, so the point must be outside 

		the two charges:

			E1 = E2 ;

			(1/4p≈0)(Q1/r12) = (1/4p≈0)(Q2/r22);

			(3.0 mC)/x2 = (2.0 mC)/(x ñ 4.0 cm)2, which gives x = 2.2 cm, 21.8 cm

		Because the point must be outside, the point is 

			22 cm from the positive charge and 18 cm from the negative charge.

	(b)	The potential is a scalar that depends only on the distance.  The potential for two charges is

			V = (1/4p≈0)[(Q1/r1) + (Q2/r2)].

		If the potential is 0 at a point x, we have

			0 = (1/4p≈0){[(3.0 mC)/ΩxΩ] + [(ñ 2.0 mC)/Ω(x ñ 4.0 cm)Ω]}, 

		which gives 2.0ΩxΩ = 3.0|(x ñ 4.0 cm)|. 

		For a point between the two charges, we have

			2.0x = 3.0(4.0 cm ñ x1), which gives        x1 = 2.4 cm from positive charge. 

		For a point outside the two charges, we have

			2.0x = 3.0(x2 ñ 4.0 cm), 

		which gives        x2 = 12.0 cm from the positive charge and 8.0 cm from the negative charge. 



25.	When the proton is accelerated by a potential difference, it acquires a kinetic energy:

		K = QpVaccel .

	If it is far from the silicon nucleus, the potential is zero.  The proton will slow as it approaches the positive charge of the nucleus, because the potential produced by the silicon nucleus is increasing.  At the protonís closest point the kinetic energy will be zero.  We find the required accelerating potential from

		?K + ?U = 0;  

		0 ñ K + Qp(VSi ñ 0) = 0,  or  QpVaccel  = QpQSi/4p≈0(rp + rSi);

		Vaccel  	= (9.0 ¥ 109 N ∑ m2/C2)(14)(1.60 ¥ 10ñ19 C)/(1.2 ¥ 10ñ15 m + 3.6 ¥ 10ñ15 m) 

				= 4.2 ¥ 106 V =        4.2 MV.
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26.	(a)	We find the electric potentials at the two points:

			Va 	= Q/4p≈0ra

				= (9.0 ¥ 109 N ∑ m2/C2)(ñ 3.8 ¥ 10ñ6 C)/(0.70 m) 

				= ñ 4.89 ¥ 104 V.

			Vb 	= Q/4p≈0rb 

				= (9.0 ¥ 109 N ∑ m2/C2)(ñ 3.8 ¥ 10ñ6 C)/(0.80 m) 

				= ñ 4.28 ¥ 104 V.

		Thus the difference is

			Vba = Vb ñ Va = ñ 4.28 ¥ 104 V ñ (ñ 4.89 ¥ 104 V) =      + 6.1 ¥ 103 V.

	(b)	We find the electric fields at the two points:

			Ea	= Q/4p≈0ra2 

				= (9.0 ¥ 109 N ∑ m2/C2)(ñ 3.8 ¥ 10ñ6 C)/(0.70 m)2 

				= 6.98 ¥ 104 N/C toward Q (down).

			Eb	= Q/4p≈0rb2 

				= (9.0 ¥ 109 N ∑ m2/C2)(ñ 3.8 ¥ 10ñ6 C)/(0.80 m)2 

				= 5.34 ¥ 104 N/C toward Q (right).

		As shown on the vector diagram, we find the direction of Eb ñ Ea from

			tan q = Ea/Eb = (6.98 ¥ 104 N/C)/(5.34 ¥ 104 N/C) = 1.307,  or  q =       53∞ N of E.

		We find the magnitude from

			ΩEb ñ EaΩ = Eb/cos q = (5.34 ¥ 104 N/C)/cos 53∞ =      8.8 ¥ 104 N/C.

27.	When the electron is far away, the potential from the fixed charge is zero.  

	Because energy is conserved, we have

		?K + ?U = 0;  

		!mv2 ñ 0 + (ñ e)(0 ñ V) = 0,   or   

		!mv2 = ñ e(kQ/r)

		!(9.11 ¥ 10ñ31 kg)v2 = ñ (1.60 ¥ 10ñ19 C)(9.0 ¥ 109 N ∑ m2/C2)(ñ 0.125 ¥ 10ñ6 C)/(0.725 m), 

	which gives v =        2.33 ¥ 107 m/s.



28.	We find the electric potential energy of the system by considering one of the charges to be at the potential created by the other charge.  This will be zero when they are far away.  Because the masses are equal, the speeds will be equal.  From energy conservation we have

		?K + ?U = 0;  

		!mv2 + !mv2 ñ 0 + Q(0 ñ V) = 0,   or   

		2(!mv2) = mv2 = Q(kQ/r) = kQ2/r;

		(1.0 ¥ 10ñ6 kg)v2 = (9.0 ¥ 109 N ∑ m2/C2)(7.5 ¥ 10ñ6 C)2/(0.055 m), 

	which gives v =        3.0 ¥ 103 m/s.
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29.	We find the electric potentials from the charges at the two points:

		VA	= (1/4p≈0){(+ q/b) + [ñ q/(d ñ b)]} 

				= (1/4p≈0)q{(1/b) ñ [1/(d ñ b)]} = (1/4p≈0)q(d ñ 2b)/b(d ñ b).

		VB		= (1/4p≈0){[+ q/(d ñ b)] + (ñ q/b)} 

				= (1/4p≈0)q{[1/(d ñ b)] ñ (1/b)} = (1/4p≈0)q(2b ñ d)/b(d ñ b).

	Thus we have

		VBA 	= VB ñ VA = [(1/4p≈0)q(2b ñ d)/b(d ñ b)] ñ [(1/4p≈0)q(d ñ 2b)/b(d ñ b)] 

				=       (1/2p≈0)q(2b ñ d)/b(d ñ b).

	Note that VBA is negative and, as expected, VBA = 0 when b = !d.



�

30.	For the potential at point A we have

			VA	= (1/4p≈0)(Q1/L + Q2/Lv2 + Q3/L )

				= (Q/4p≈0)(3/L + 1/Lv2 ñ 2/L)

				=       (1 + 1/v2)Q/4p≈0L.
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31.	We choose a ring of radius r and width dr for a differential 

	element, with charge dq = s 2pr dr.  The potential of this 

	element on the axis a distance x from the ring is

		dV 	= dq/4p≈0(x2 + r2)1/2 

			= s 2pr dr/4p≈0(x2 + r2)1/2 = s r dr/2≈0(x2 + r2)1/2.

	We integrate to get the potential:

		�EMBED Word.Picture.8���









�



32.	We choose a differential element of the rod at position x¢, 

	length dx¢, and charge dq = l dx¢ = (Q/2L) dx¢.  From the 

	diagram, we see that r2 = x¢2 + y2.  The potential on the 

	y-axis from the differential element is

		dV = (1/4p≈0) dq/r  = (Q/2L) dx¢/4p≈0r .  

	The potential from the rod is 

		�EMBED Word.Picture.8���

	Note that we have used a length of 2L for the rod.
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33.	We choose a differential element of the rod at position x¢, 

	length dx¢, and charge dq = l dx¢ = (Q/2L) dx¢.  From the 

	diagram, we see that r = x ñ x¢.  The potential on the 

	x-axis from the differential element is

		dV = (1/4p≈0) dq/r  = (Q/2L) dx¢/4p≈0r .  

	The potential from the rod is 
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	Note that we have used a length of 2L for the rod.
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34.	We choose a differential element of the rod at position x¢, 

	length dx¢, and charge dq = l dx¢ = ax¢ dx¢. 

	(a)	From the diagram, we see that r2 = x¢2 + y2.  The potential 

		on the y-axis from the differential element is

			dV = (1/4p≈0) dq/r  = ax¢ dx¢/4p≈0r .  

		The potential from the rod is 

			�EMBED Word.Picture.8���

		This is expected because the potential from the negative charge on the left half of the rod is 

		balanced by the potential from the positive charge on the right half of the rod.

	(b)	From the diagram, we see that r = x ñ x¢.  The potential on the x-axis from the differential 

		element is

			dV = (1/4p≈0) dq/r  = ax¢ dx¢/4p≈0r . 

		The potential from the rod is 

			�EMBED Word.Picture.8���

	Note that we have used a lengh of 2L for the rod.
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35.	We choose a ring of radius r and width dr for a differential 

	element, with charge dq = s 2pr dr.  The potential of this 

	element on the axis a distance x from the ring is

		dV 	= dq/4p≈0(x2 + r2)1/2 

			= s 2pr dr/4p≈0(x2 + r2)1/2 = ar3 dr/2≈0(x2 + r2)1/2.

	We integrate to get the potential:
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36.	
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37.	The field from the plate is uniform, with a magnitude given by E = s/2≈0.  The equipotential surfaces will be flat surfaces equally spaced.  We find their separation from

		E = ?V/d;

		(0.55 ¥ 10ñ6 C/m2)/2(8.85 ¥ 10ñ12 C2/N ∑ m2) = (100 V)/d, which gives d = 3.2 ¥ 10ñ3 m =        3.2 mm.



38.	The potential outside a charged sphere is 

		V = Q/4p≈0r, with the potential at the surface being V0 = Q/4p≈0r0 .

	Thus the equipotential surfaces outside a charged sphere are spherical surfaces, with the higher potentials being closer to the charged sphere.

	(a)	For the first equipotential surface we have

			V0 ñ V1 = Q/4p≈0r0 ñ Q/4p≈0r1 = 100 V;

			(0.50 ¥ 10ñ6 C)/4p(8.85 ¥ 10ñ12 C2/N ∑ m2)[(1/0.30 m) ñ (1/r1)] = 100 V, 

		which gives      r1 = 0.302 m.

	(b)	For the tenth equipotential surface we have

			V0 ñ V10 = Q/4p≈0r0 ñ Q/4p≈0r10 = 10(100 V);

			(0.50 ¥ 10ñ6 C)/4p(8.85 ¥ 10ñ12 C2/N ∑ m2)[(1/0.30 m) ñ (1/r10)] = 10(100 V), 

		which gives      r10 = 0.32 m.

	(c)	For the 100th equipotential surface we have

			V0 ñ V100 = Q/4p≈0r0 ñ Q/4p≈0r100 = 100(100 V);

			(0.50 ¥ 10ñ6 C)/4p(8.85 ¥ 10ñ12 C2/N ∑ m2)[(1/0.30 m) ñ (1/r100)] = 100(100 V), 

		which gives      r100 = 0.90 m.

	Note that the equipotential surfaces get farther apart at greater distances.



39.	(a)	We find the dipole moment from

			p = eL = (1.60 ¥ 10ñ19 C)(0.53 ¥ 10ñ10 m) =      8.5 ¥ 10ñ30 C ∑ m.

	(b)	The dipole moment will point from the electron toward the proton.  As the electron revolves about 

		the proton, the dipole moment will spend equal times pointing in any direction.  Thus the average 

		over time will be      zero. 
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40.	With the dipole pointing along the axis, the potential at a 

	point a distance r  far from the dipole which makes an angle q 

	with the axis is 

		V 	= (p cos q)/4p≈0r2 

			= (9.0 ¥ 109 N ∑ m2/C2)(4.8 ¥ 10ñ30 C ∑ m)(cos q)/(1.1 ¥ 10ñ9 m)2 

			= (0.0357 V) cos q.

	(a)	Along the axis, q = 0, so we have

			V 	= (p cos q)/4p≈0r2 

				= (0.0357 V) cos 0∞ =      0.036 V.

	(b)	Above the axis near the positive charge, q = 45∞, so we have

			V 	= (p cos q)/4p≈0r2 

				= (0.0357 V) cos 45∞ =      0.025 V.

	(c)	Above the axis near the negative charge, q = 135∞, so we have

			V 	= (p cos q)/4p≈0r2 

				= (0.0357 V) cos 135∞ =      ñ 0.025 V.



41.	(a)	With the distance measured from the center of the dipole, we find the potential from each charge:

			VO	= QO/4p≈0rO

				= (9.0 ¥ 109 N ∑ m2/C2)(ñ 6.6 ¥ 10ñ20 C)/(9.0 ¥ 10ñ10 m ñ 0.6 ¥ 10ñ10 m) = ñ 0.707 V.

			VC	= QC/4p≈0rC

				= (9.0 ¥ 109 N ∑ m2/C2)(+ 6.6 ¥ 10ñ20 C)/(9.0 ¥ 10ñ10 m + 0.6 ¥ 10ñ10 m) = + 0.619 V.

		Thus the total potential is

			V = VO + VC = ñ 0.707 V + 0.619 V =      ñ 0.088 V.

	(b)	The percent error introduced by the dipole approximation is

			% error = (100)(0.089 V ñ 0.088 V)/(0.088 V) =        1%.
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42.	Because the field is uniform, the magnitudes of the forces on the charges 

	of the dipole will be equal:

		F+ = Fñ = QE.

	If the separation of the charges is ¨, the dipole moment will be p = Q¨.  

	If we choose the center of the dipole for the axis of rotation, both forces 

	create a CCW torque with a net torque of 

		t = F+(!¨) sin f + Fñ(!¨) sin f = 2QE(!¨) sin f = pE sin f.

	Because the forces are in opposite directions, the net force is       zero.

	If the field is nonuniform, there would be a torque produced by the average 

	field.  The magnitudes of the forces would not be the same, so there would 

	be a       resultant force       that would cause a translation of the dipole. 
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43.	(a)	Because p1 = p2 , from the vector addition we have

			p = 2p1 cos (!f) = 2qL cos (!f);

			6.1 ¥ 10ñ30 C ∑ m = 2q(0.96 ¥ 10ñ10 m) cos [!(104∞)], 

		which gives q =       5.2 ¥ 10ñ20 C.

	(b)	We find the potential by adding the potentials from the two dipoles:

			V = V1 + V2 = p1 cos(q ñ !f)/4p≈0r2 + p2 cos(q + !f)/4p≈0r2 

				= (p1/4p≈0r2)[cos(q ñ !f) + cos(q + !f)].

		When we use a trigonometric identity and the above result for p we get

			V = (p1/4p≈0r2)(2 cos q  cos !f) = p cos q /4p≈0r2.









44.	The potential gradient is the negative of the electric field:

		dV/dr 	= ñ E = ñ Q/4p≈0r2 

				= ñ (9.0 ¥ 109 N ∑ m2/C2)(92)(1.60 ¥ 10ñ19 C)/(7.5 ¥ 10ñ15 m)2 =      ñ 2.4 ¥ 1021 V/m. 



45.	The electric field is the negative of the potential gradient:

		E = ñ dV/dr = ñ (Q/4p≈0)[d(1/r)/dr] = ñ (Q/4p≈0)(ñ 1/r2) = Q/4p≈0r2.



46.	From the spatial dependence of the electric potential, V(x, y, z) = ay/(b2 + y2), we find the 

	components of the electric field from the partial derivatives of V:

		Ex = ñ ∂V/∂x = 0;

		Ey = ñ ∂V/∂y = ñ a/(b2 + y2) ñ ay(ñ 2y)/(b2 + y2)2 = a(y2 ñ b2)/(b2 + y2)2 .

		Ez = ñ ∂V/∂z = 0.

	We can write the electric field:        E = a(y2 ñ b2)/(b2 + y2)2j .



47.	From the spatial dependence of the electric potential, V(x, y, z) = y2 + 2xy ñ 4xyz, we find the 

	components of the electric field from the partial derivatives of V:

		Ex = ñ ∂V/∂x = ñ (2y ñ 4yz);

		Ey = ñ ∂V/∂y = ñ (2y + 2x ñ 4xz);

		Ez = ñ ∂V/∂z = ñ (ñ 4xy).

	We can write the electric field:        E = 2y(2z ñ 1)i ñ 2(y + x ñ 2xz)j + (4xy)k.



48.	(a)	From Problem 32 the potential along the y-axis is

			�

		We find the y-component of E from

			�

		We know from the symmetry that the electric field will be along the y-axis, so we have

			E = Q/4p≈0y(L2 + y2)1/2j.

		Note that we get the expression for a point charge when y ª L.

	(b)	From Problem 33 the potential along the x-axis is

			�

		We find the x-component of E from

			�

		We know from the symmetry that the electric field will be along the x-axis, so we have

			E = Q/4p≈0(x2 ñ L2)i.

		Note that we get the expression for a point charge when x ª L.



49.	(a)	We find the potential energy of the system of two protons from the energy of one proton in the 

		potential produced by the other proton:

			U 	= qV = q(q/4p≈0d) 

				= (+ 1 e)(9.0 ¥ 109 N ∑ m2/C2)(1.60 ¥ 10ñ19 C)/(15 ¥ 10ñ15 m) =       9.6 ¥ 104 eV.

	(b)	For the new separation we have

			U 	= qV = q(q/4p≈0r) 

				= (+ 1 e)(9.0 ¥ 109 N ∑ m2/C2)(1.60 ¥ 10ñ19 C)/(7.5 ¥ 10ñ15 m) =       1.9 ¥ 105 eV.





50.	We find the work required to bring the three electrons in from infinity by bringing them in successively.  Because there is no potential before the electrons are brought in, for the first electron we have

		W1 = (ñ e)V0 = 0.

	When we bring in the second electron, there will be a potential from the first:

		W2 = (ñ e)V1 = (ñ e)(ñ e)/4p≈0r12 = e2/4p≈0d.

	When we bring in the third electron, there will be a potential from the first two:

		W3 = (ñ e)V2 = (ñ e){[(ñ e)/4p≈0r13] + [(ñ e)/4p≈0r23]} = 2e2/4p≈0d.

	The total work required is

		W	= W1 + W2 + W3 = (e2/4p≈0d) + (2e2/4p≈0d) = 3e2/4p≈0d

			= 3(9.0 ¥ 109 N ∑ m2/C2)(1.60 ¥ 10ñ19 C)2/(1.0 ¥ 10ñ10 m) =       6.9 ¥ 10ñ18 J       = 43 eV.



51.	Because the total energy of the helium nucleus is conserved, we have

		?K + ?U = 0;  

		?K + q?V = 0;

		48 ¥ 103 eV + [(3.2 ¥ 10ñ19 C)/(1.60 ¥ 10ñ19 C/e)]?V; which gives ?V =       ñ 2.4 ¥ 104 V.

	The negative sign means the helium nucleus gains kinetic energy by going to a lower potential.



52.	The data given are the kinetic energies, so we find the speed from

	(a)	Ke = !mve2; 

		(3.5 ¥ 103 eV)(1.60 ¥ 10ñ19 J/eV) = !(9.11 ¥ 10ñ31 kg)ve2, which gives ve =        3.5 ¥ 107 m/s.

	(b)	Kp = !mvp2; 

		(3.5 ¥ 103 eV)(1.60 ¥ 10ñ19 J/eV) = !(1.67 ¥ 10ñ27 kg)vp2, which gives vp =        8.1 ¥ 105 m/s.
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53.	(a)	We find the potential energy from the work required to 

		bring the four charges in from infinity by bringing them 

		in successively.  Because there is no potential before the 

		charges are brought in, for the first charge we have

			W1 = Q1V0 = 0.

		When we bring in the second charge, there will be a 

		potential from the first:

			W2 = Q2V1 = Q2Q1/4p≈0r12 = Q1Q2/4p≈0r12 .

		When we bring in the third charge, there will be a 

		potential from the first two:

			W3 = Q3V2 = Q3[(Q1/4p≈0r13) + (Q2/4p≈0r23)] = Q1Q3/4p≈0r13 + Q2Q3/4p≈0r23 .

		When we bring in the fourth charge, there will be a 

		potential from the first three:

			W4 	= Q4V3 = Q4[(Q1/4p≈0r14) + (Q2/4p≈0r24) + (Q3/4p≈0r34)] 

					= Q1Q4/4p≈0r14 + Q2Q4/4p≈0r24 + Q3Q4/4p≈0r34 .

		The electrostatic potential energy is the total work:

			U	= W1 + W2 + W3 + W4 

				=       (1/4p≈0)(Q1Q2/r12 + Q1Q3/r13 + Q1Q4/r14 + Q2Q3/r23 + Q2Q4/r24 + Q3Q4/r34).

	(b)	From the result for part (a) we see that we have a term for each pair of charges.  Adding a fifth 

		charge will result in four more terms:

			U = (1/4p≈0)(Q1Q2/r12 + Q1Q3/r13 + Q1Q4/r14+ Q1Q5/r15 + Q2Q3/r23 + Q2Q4/r24 + 

											Q2Q5/r25 + Q3Q4/r34 + Q3Q5/r35 + Q4Q5/r45).



54.	We find the speed from

		K = !mv2; 

		(5.53 ¥ 106 eV)(1.60 ¥ 10ñ19 J/eV) = !(6.64 ¥ 10ñ27 kg)v2, which gives v =        1.63 ¥ 107 m/s.





55.	(a)	The kinetic energy of the electron (q = ñ e) is

			Ke = ñ qVBA = ñ (ñ e)VBA = eVBA .

		The kinetic energy of the proton (q = + e) is

			Kp = ñ qVAB = ñ (+ e)(ñ VBA) = eVBA =       2.0 keV.

	(b)	We find the ratio of their speeds, starting from rest, from

			!meve2 = !mpvp2,   or   ve/vp = (mp/me)1/2 = [(1.67 ¥ 10ñ27 kg)/(9.11 ¥ 10ñ31 kg)]1/2 =      42.8.
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56.	(a)	For the potential energy of the four charges we have

			U	= (1/4p≈0)(Q1Q2/r12 + Q1Q3/r13 + Q1Q4/r14 + 

								Q2Q3/r23 + Q2Q4/r24 + Q3Q4/r34)

				= (Q2/4p≈0)(1/b + 1/bv2 + 1/b + 1/b + 1/bv2 + 1/b)

				=       (4 + v2)Q2/4p≈0b .

	(b)	We find the potential energy with a charge at the center 

		from the potential of the four charges at the center:

			UC = (+ Q)4Q/4p≈0(b/v2) =       v2Q2/p≈0b.

	(c)	To test for stability, we find the potential energy change 

		when the charge at the center is displaced slightly 

		toward one of the corners.  If the displacement is d ´ b, we have

			U 	= (+ Q/4p≈0){2Q/[(b/v2)2 + d2]1/2 + Q/[(b/v2) + d] + Q/[(b/v2) ñ d]} 

				= (v2Q2/4p≈0b){2/[1 + (v2d/b)2]1/2 + 1/[1 + (v2d/b)] + 1/[1 ñ (v2d/b)]} 

				= (v2Q2/4p≈0b){2/[1 + (v2d/b)2]1/2 + 2/[1 ñ (v2d/b)2]} 

		If we use the approximation (1 ± x)ñn ò 1 ó nx, we get

			U 	ò (v2Q2/2p≈0b){[1 ñ !(v2d/b)2] + [1 + (v2d/b)2]} 

				= (v2Q2/2p≈0b)[1 ñ (d/b)2 + 1 + 2(d/b)2] = (v2Q2/p≈0b)[1 + !(d/b)2].

		Thus we see that U > UC , so work would have to be done to move the fifth charge away from the 

		center.  The fifth charge is in      stable      equilibrium

	(d)	Because the potential at the center from the charges at the four corners does not change, 

		the potential energy of the fifth charge will be

			UC = (ñ Q)4Q/4p≈0(b/v2) =       ñ v2Q2/p≈0b.

		If we again consider a small displacement from the center, the new potential energy will be

			U = ñ (v2Q2/p≈0b)[1 + !(d/b)2].

		Thus U < UC , so the charge will acquire kinetic energy if it moves away from the 

		center.  The fifth charge is in      unstable      equilibrium.

		The maximum kinetic energy will be acquired when the fifth charge reaches one of the corners.  

		Because the potential goes to 8 there, the maximum kinetic energy would be      8.

		This is due to the idealization of point charges.
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57.	(a)	For the potential energy of the four charges we have

			U	= (1/4p≈0)(Q1Q2/r12 + Q1Q3/r13 + Q1Q4/r14 + 

								Q2Q3/r23 + Q2Q4/r24 + Q3Q4/r34)

				= (Q2/4p≈0)[ñ 1/b + 1/bv2 ñ 1/b ñ 1/b + 1/bv2 ñ 1/b]

				=       (ñ 4 + v2)Q2/4p≈0b .

	(b)	We find the potential energy with a charge at the center 

		from the potential of the four charges at the center:

			UC 	= (+ Q)(Q/4p≈0)[ñ 1/(b/v2) + 1/(b/v2) ñ 

										1/(b/v2) + 1/(b/v2)] 

				=       0.

		Note that the stability questions are much more complex.  Along the lines through the center 

		perpendicular to the sides the potential is zero, so displacement in these directions corresponds to 

		neutral equilibrium.  Motion along a diagonal toward a charge of the same sign will be stable, 

		while motion along a diagonal toward the opposite sign will be unstable.



58.	We consider adding an infinite number of differential charges dq to the sphere.  When we add dq to the sphere when it has a charge q, the potential energy of the system increases by 

		dU = V dq = (q/4p≈0r) dq.

	We add (integrate) to find the total potential energy:

		�EMBED Word.Picture.8���



59.	The charge density of the sphere is rE = Q/)pr03.  To find the total potential energy of the sphere, we consider it to be made up of differential shells and add (integrate) the work required to bring each shell in from infinity.  If a sphere of radius r  < r0 with charge q has been formed, the potential at the surface is 

		V = (1/4p≈0)(q/r ) = (1/4p≈0)(rE)pr 3/r ) = rEr 2/3≈0 .

	The work to bring the charge of the next shell, dq = rE4pr 2 dr , in from infinity is

		dW = dq V = (rE4pr 2 dr )(rEr 2/3≈0) = rE24pr 4 dr /3≈0.

	The total work and thus the total potential energy stored is

		�EMBED Word.Picture.8���



60.	We find the rms speed from

		K = !mvrms2 = *kT;

		(9.11 ¥ 10ñ31 kg)v3002 = 3(1.38 ¥ 10ñ23 J/K)(300 K), which gives v300 =       1.17 ¥ 105 m/s.

		(9.11 ¥ 10ñ31 kg)v25002 = 3(1.38 ¥ 10ñ23 J/K)(2500 K), which gives v2500 =       3.37 ¥ 105 m/s.
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61.	We find the horizontal velocity of the electron as it enters 

	the electric field from the accelerating voltage:

		!mv02 = eV;

		!(9.11 ¥ 10ñ31 kg)v02 = (1.60 ¥ 10ñ19 C)(15 ¥ 103 V), 

	which gives v0 = 7.26 ¥ 107 m/s.

	Because the force from the electric field is vertical, the 

	horizontal velocity is constant.  The time to pass through 

	the field is

		t1 = d/v0 = (0.028 m)/(7.26 ¥ 107 m/s) = 3.86 ¥ 10ñ10 s.

	The time for the electron to go from the field to the screen is

		t2 = L/v0 = (0.22 m)/(7.26 ¥ 107 m/s) = 3.03 ¥ 10ñ9 s.

	If we neglect the small deflection during the passage through the field, we find the vertical velocity when the electron leaves the field from the vertical displacement:

		vy = h/t2 = (0.11 m)/(3.03 ¥ 10ñ9 s) = 3.63 ¥ 107 m/s.

	This velocity was produced by the acceleration in the electric field:

		F = eE = may ,   or   ay = eE/m.

	From the vertical motion in the field, we have

		vy = v0y + ayt1 ;

		3.63 ¥ 107 m/s = 0 + [(1.60 ¥ 10ñ19 C)E/(9.11 ¥ 10ñ31 kg)](3.86 ¥ 10ñ10 s), 

	which gives E =      5.4 ¥ 105 V/m.







62.	

	�





63.	The potential at the surface of a charged sphere is

		V = Q/4p≈0r = (9.0 ¥ 109 N ∑ m2/C2)(10ñ8 C)/(0.10 m) =       9 ¥ 102 V.



64.	There are 10 electrons in each water molecule, so the number of electrons in the drop is 

		N = [(1000 kg/m3))p(1.5 ¥ 10ñ3 m)3(103 g/kg)/(18 g/mol)] ¥ 

					(6.02 ¥ 1023 molecules/mol)(10 electrons/molecule) = 4.7 ¥ 1021 electrons.

	The change in the potential is

		?V = ?Q/4p≈0rE = (9.0 ¥ 109 N ∑ m2/C2)(4.7 ¥ 1021)(1.60 ¥ 10ñ19 C)/(6.38 ¥ 106 m) =       1.1 ¥ 106 V.



65.	(a)	We find the potential difference from

			U = Q ?V;

			4.2 MJ = (4.0 C) ?V, which gives ?V =       1.1 MV.

	(b)	We find the amount of water that can have its temperature raised to the boiling point from

			U = mc ?T;

			4.2 ¥ 106 J = m(4186 J/kg ∑ C∞)(100∞C ñ 20∞C), which gives m =       13 kg.





�

66.	(a)	All eight charges are the same distance from the 

		center.  For the potential at the center we have

			VC = 8(Q/4p≈0)[1/!(Lv3)] =       16Q/4p≈0Lv3.

	(b)	For the seven charges that produce the potential at 

		a corner, three are a distance L away, three are a 

		distance Lv2 away and one is a distance Lv3 away.  

		The potential is

			Vcorner 	= 3(Q/4p≈0L) + 3(Q/4p≈0Lv2) + (Q/4p≈0Lv3) 

					= (Q/4p≈0L)(3 + 3/v2 + 1/v3) =       5.70Q/4p≈0L.

	(c)	We can find the energy for the charge at each corner, if we 

		recognize that this would be counting the contribution 

		from each pair twice.  Thus we have

			U = !(8 Q)Vcorner = 4(5.70Q2/4p≈0L) =      22.8Q2/4p≈0L.









67.	When the proton is accelerated by a potential difference, it acquires a kinetic energy:

		K = QpVaccel .

	If it is far from the iron nucleus, the potential is zero.  The proton will slow as it approaches the positive charge of the nucleus, because the potential produced by the iron nucleus is increasing.  At the protonís closest point the kinetic energy will be zero.  We find the required accelerating potential from

		?K + ?U = 0;  

		0 ñ K + Qp(VSi ñ 0) = 0,  or  

		QpVaccel  = QpQSi/4p≈0(rp + rSi);

		Vaccel  	= (9.0 ¥ 109 N ∑ m2/C2)(26)(1.60 ¥ 10ñ19 C)/(1.2 ¥ 10ñ15 m + 4.0 ¥ 10ñ15 m) 

				= 7.2 ¥ 106 V =        7.2 MV.



�

68.	We find the velocity of the electron as it enters the 

	electric field from the accelerating voltage:

		!mv02 = eV;

		!(9.11 ¥ 10ñ31 kg)v02 = (1.60 ¥ 10ñ19 C)(14 ¥ 103 V), 

	which gives v0 = 7.01 ¥ 107 m/s.

	Because the force from the electric field is perpendicular, 

	this velocity component is constant.  The time to pass 

	through the field is

		t1 = d/v0 = (0.026 m)/(7.01 ¥ 107 m/s) = 3.71 ¥ 10ñ10 s.

	The time for the electron to go from the field to the screen is

		t2 = L/v0 = (0.34 m)/(7.01 ¥ 107 m/s) = 4.85 ¥ 10ñ9 s.

	The electron will sweep both ways across the screen.  If we neglect the small deflection during the passage through the deflecting plates, when the electron leaves the plates the horizontal velocity required to reach the edge of the screen is

		vymax = h/t2 = (0.15 m)/(4.85 ¥ 10ñ9 s) = 3.10 ¥ 107 m/s.

	This velocity was produced by the acceleration in the electric field:

		F = eEmax = maymax ,   or   aymax = eEmax/m.

	From the horizontal motion in the field, we have

		vymax = v0y + aymaxt1 ;

		3.10 ¥ 107 m/s = 0 + [(1.60 ¥ 10ñ19 C)Emax/(9.11 ¥ 10ñ31 kg)](3.71 ¥ 10ñ10 s), 

	which gives Emax = 4.8 ¥ 105 V/m.

	Thus the range for the electric field is      ñ 4.8 ¥ 105 V/m < E < 4.8 ¥ 105 V/m.



69.	The electrons form a spherical shell.  The electric field at the surface of the shell is

		E = Q/4p≈0rE2 = Ne/4p≈0rE2.

	For the magnitude of the electric force on an electron at the surface of the shell (which is up) to balance the force from the Earthís gravity, we have

		eNe/4p≈0rE2 = mg;

		(9.0 ¥ 109 N ∑ m2/C2)N(1.60 ¥ 10ñ19 C)2/(6.38 ¥ 106 m)2 = (9.11 ¥ 10ñ31 kg)(9.80 m/s2), 

	which gives N =       1.58 ¥ 1012 electrons.
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70.	For the potential energy of the four charges we have

		U	= (1/4p≈0)(Q1Q2/r12 + Q1Q3/r13 + Q1Q4/r14 + Q2Q3/r23 + 

										     Q2Q4/r24 + Q3Q4/r34)

			= (Q2/4p≈0)[(1)(2)/b + (1)(ñ 3)/bv2 + (1)(2)/b + (2)(ñ3)/b + 

										(2)(2)/bv2 + (ñ 3)(2)/b]

			= (9.0 ¥ 109 N ∑ m2/C2)(4.8 ¥ 10ñ6 C)2 ¥ 

								[2 ñ 3/v2 + 2 ñ 6 + 4/v2 ñ 6]/(0.080 m) 

			=       ñ 19 J.





71.	The acceleration produced by a potential difference of 1000 V over a distance of 1 cm is

		a = eE/m = eV/md = (1.60 ¥ 10ñ19 C)(1000 V)/(9.11 ¥ 10ñ31 kg)(0.01 m) = 2 ¥ 1016 m/s2.

	Because this is so much greater than g,       yes,      the electron can easily move upward.

	To find the potential difference to hold the electron stationary, we have

		mg = eE = eV/d;

		(9.11 ¥ 10ñ31 kg)(9.80 m/s2) = (1.60 ¥ 10ñ19 C)V/(0.030 m), which gives V =      1.7 ¥ 10ñ12 V.



72.	(a)	The kinetic energy of the proton (q = + e) is

			Kp = ñ qVQP = ñ (+ e)VQP = ñ eVQP = 5.2 keV.

		The kinetic energy of the electron (q = ñ e) is

			Ke = ñ qVPQ = ñ (ñ e)(ñ VQP) = ñ eVQP =        5.2 keV.

	(b)	We find the ratio of their speeds, starting from rest, from

			!meve2 = !mpvp2,   or   ve/vp = (mp/me)1/2 = [(1.67 ¥ 10ñ27 kg)/(9.11 ¥ 10ñ31 kg)]1/2 =      42.8.



73.	For the motion of the electron from emission to the plate, the energy of the electron is conserved, 

	so we have

		?K + ?U = 0,   or   0 ñ  !mv2 + (ñ e) ?V = 0;

		ñ !(9.11 ¥ 10ñ31 kg)v2 + (ñ 1.60 ¥ 10ñ19 C)(ñ 3.02 V ñ 0) = 0, which gives v =      1.03 ¥ 106 m/s.



74.	Because the electric field points downward, the potential is greater at the higher elevation.  For the potential difference, we have

		?V = ñ (150 V/m)(2.00 m) = ñ 300 V.

	For the motion of the falling charged balls, the energy is conserved: 

		?K + ?U = 0,   or   !mv2 ñ 0 + q ?V + mg(0 ñ h) = 0, which gives

		v2 = 2gh ñ 2(q/m) ?V.

	For the positive charge, we have

		v12 	= 2gh ñ 2(q1/m) ?V 

			= 2(9.80 m/s2)(2.00 m) ñ 2[(550 ¥ 10ñ6 C)/(0.540 kg)](ñ 300 V), which gives v1 = 6.31 m/s. 

	For the negative charge, we have

		v22 	= 2gh ñ 2(q2/m) ?V 

			= 2(9.80 m/s2)(2.00 m) ñ 2[(ñ 550 ¥ 10ñ6 C)/(0.540 kg)](ñ 300 V), which gives v2 = 6.21 m/s. 

	Thus the difference in speeds is  6.31 m/s ñ 6.21 m/s =      0.10 m/s.
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75.	The distances from the midpoint of a side to the three charges 

	are L/2, L/2, and L cos 30∞.

	At point a, we have

		Va 	= (1/4p≈0){[(ñ Q)/(L/2)] + [(+ Q)/(L/2)] + [(ñ 3Q)/(L cos 30∞)]} 

			= (Q/4p≈0L)[(ñ 2) + (+ 2) + (ñ 3/cos 30∞)] =       ñ 3.5 Q/4p≈0L.

	At point b, we have

		Vb 	= (1/4p≈0){[(+ Q)/(L/2)] + [(ñ 3Q)/(L/2)] + [(ñ Q)/(L cos 30∞)]} 

			= (Q/4p≈0L)[(+ 2) + (ñ 6) + (ñ 1/cos 30∞)] =       ñ 5.2 Q/4p≈0L.

	At point c, we have

		Vc 	= (1/4p≈0){[(ñ 3Q)/(L/2)] + [(ñ Q)/(L/2)] + [(+ Q)/(L cos 30∞)]} 

			= (Q/4p≈0L)[(ñ 6) + (ñ 2) + (+ 1/cos 30∞)] =       ñ 6.8 Q/4p≈0L.
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76.	We assume that r2 ª ¨2, so we can use the potential 

	produced by a dipole.  We choose the coordinate 

	system shown, so that x = r cos q and y = r sin q.  

	Thus the potential produced by p is

		V = p cos q/4p≈0r2 = (p/4p≈0)x/(x2 + y2)3/2.

	We find the components of E from

		Ex 	= ñ ?V/?x = ñ  (p/4p≈0) ?[x/(x2 + y2)3/2]/?x 

			= ñ (p/4p≈0)[1/(x2 + y2)3/2 ñ 3x2/(x2 + y2)5/2] 

			=        (p/4p≈0)[(2x2 ñ y2)/(x2 + y2)5/2]       = (p/4p≈0)(2 cos2 q ñ sin2 q)/r3;

		Ey 	= ñ ?V/?y = ñ  (p/4p≈0) ?[x/(x2 + y2)3/2]/?y 

			= ñ (p/4p≈0)[ñ 3xy/(x2 + y2)5/2] 

			=        (p/4p≈0)[3xy/(x2 + y2)5/2]        = (3p sin q cos q)/4p≈0r3;



77.	(a)	We find the electric potential of the proton from

			V = q/4p≈0r = (9.0 ¥ 109 N ∑ m2/C2)(1.60 ¥ 10ñ19 C)/(2.5 ¥ 10ñ15 m) = 5.76 ¥ 105 V =      5.8 ¥ 105 V.

	(b)	We find the electric potential energy of the system by considering one of the charges to be at the 

		potential created by the other charge:

			U = qV = (1.60 ¥ 10ñ19 C)(5.76 ¥ 105 V) =       9.2 ¥ 10ñ14 J       = 0.58 MeV.
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78.	The charge density of the ring is

		s = Q/p[R2 ñ(!R)2] = 4Q/3pR2.

	We choose a ring of radius r and width dr for a differential 

	element, with charge dq = s 2pr dr.  The potential of this 

	element on the axis a distance x from the ring is

		dV 	= dq/4p≈0(x2 + r2)1/2 

			= s 2pr dr/4p≈0(x2 + r2)1/2 = sr dr/2≈0(x2 + r2)1/2.

	We integrate to get the potential:

		�EMBED Word.Picture.8���



79.	In the region between the wire and cylinder the radial electric field will be produced by the central wire:

		E = l/2p≈0r, Ra < r < Rb  . 

	We find the potential difference  from

		�

		Va ñ Vb = (l/2p≈0) ln(Rb/Ra).







80.	(a)	The electric field at the spherical surface is 

			E =  Q/4p≈0r2,

		while the potential of a sphere, with V = 0 at 8, is 

			V = Q/4p≈0r.

		Thus we have 

			r = V/E;

			0.15 m = V/(3.0 ¥ 106 V/m), which gives V =      4.5 ¥ 105 V.

	(b)	We find the charge on the sphere from

			V = Q/4p≈0r;

	4.5 ¥ 105 V = (9.0 ¥ 109 N ∑ m2/C2)Q/(0.15 m), which gives Q = 7.5 ¥ 10ñ6 C =       7.5 mC.



�

81.	We assume that r2 ª ¨2, so we can use the potential 

	produced by a dipole.  Thus the potential produced 

	by the left dipole along the horizontal line is

		V1 = p1/4p≈0r2.

	We find the interaction energy by finding the energy 

	of each of the charges of the right dipole:

		U 	= Q[p1/4p≈0(r + !¨)2] ñ Q[p1/4p≈0(r ñ !¨)2] 

			= (Qp1/4p≈0r2)[1/(1 + !¨/r)2 ñ 1/(1 ñ !¨/r)2].

	If we use the approximation (1 ± x)ñn ò 1 ó nx, we get

		U 	ò (Qp1/4p≈0r2)[(1 ñ ¨/r) ñ (1 + ¨/r)] = (Qp1/4p≈0r2)(ñ 2¨/r) = ñ p1p2/2p≈0r3.
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82.	We assume that r2 ª ¨2, so we can use the potential 

	produced by a dipole.  We choose the coordinate 

	system based on the left dipole as shown, so that 

	x = r cos q1 and y = r sin q1 .  Thus the potential 

	produced by p1 at the center of p2 is

		V1 = p1 cos q1/4p≈0r2 = (p1/4p≈0)x/(x2 + y2)3/2.

	To find the potentials at the locations of the charges 

	of p2 , we use the fact that they are a differential 

	distance from the center, so we have

		V+ = V1 + !¨ cos (q1 ñ q2) ?V1/?x + !¨ sin(q1 ñ q2) ?V1/?y;

		Vñ = V1 ñ !¨ cos (q1 ñ q2) ?V1/?x ñ !¨ sin(q1 ñ q2) ?V1/?y.

	The partial derivatives are (suppressing the constant p1/4p≈0)

		?V1/?x = ?[x/(x2 + y2)3/2]/?x = 1/(x2 + y2)3/2 ñ 3x2/(x2 + y2)5/2 = (r2 ñ 3x2)/r5 = (1 ñ 3 cos2 q1)/r3;

		?V1/?y = ?[x/(x2 + y2)3/2]/?y = ñ 3xy/(x2 + y2)5/2 = ñ 3xy/r5 = ñ 3 cos q1 sin q1/r3;

	We find the interaction energy by finding the energy of each of the charges of p2 :

		U 	= QV+ + (ñ Q)Vñ = Q¨[cos (q1 ñ q2) ?V1/?x + sin(q1 ñ q2) ?V1/?y] 

			= (p1p2/4p≈0r3)[cos (q1 ñ q2) (1 ñ 3 cos2 q1) + sin(q1 ñ q2) (ñ 3 cos q1 sin q1)]

			= (p1p2/4p≈0r3){cos (q1 ñ q2) ñ 3 cos q1 [cos (q1 ñ q2) cos q1 + sin(q1 ñ q2) sin q1]} 

			= (p1p2/4p≈0r3)[cos (q1 ñ q2) ñ 3 cos q1 cos q2].  



83.	(a)	The reference level for the potential is V = 0 at r = 8.   At points outside the spherical shell, 

		it is equivalent to a point charge.  Thus the potential when r > r2 is

			V = Q/4p≈0r =  rE)p(r23 ñ r13)/4p≈0r =     rE(r23 ñ r13)/3≈0r , r > r2 .

	(b)	The electric field within the spherical conductor, r1 < r < r2 , is due to the charge within a radius r:

			E = rE)p(r3 ñ r13)/4p≈0r2 = (rE/3≈0)[r ñ (r13/r2)].

		We find the potential by integrating along a radial line from r to r2 :

			�

			V = (rE/6≈0)[3r22 ñ r2 ñ (2r13/r)], r1 < r < r2 .

	(c)	Inside the cavity the electric field is zero, so the potential is constant and equal to the  potential at 

		the inner surface of the shell:

			V = V(r1) = (rE/6≈0)[3r22 ñ r12 ñ (2r13/r1)] =       (rE/2≈0)(r22 ñ r12), r < r1 .

		The potential is continuous at r1 and r2 . 




