CHAPTER 24 – Capacitance, Dielectrics, Electric Energy Storage



1.	From Q = CV, we have

		2500 mC = C(950 V), which gives C =       2.6 mF.



2.	From Q = CV, we have

		28.0 ´ 10–8 C = (12,000 ´ 10–12 F)V, which gives V =       23.3 V.



3.	From Q = CV, we have

		75 pC = C(12.0 V), which gives C =       6.3 pF.



4.	The final potential on the capacitor will be the voltage of the battery.  Positive charge will move from one plate to the other, so the charge that flows through the battery is

		Q = CV = (15.6 ´ 10–6 F)(12 V) =       1.9 ´ 10–4 C.



5.	From Q = CV, we see that

		?Q = C ?V;

		16 mC = C(48 V – 28 V), which gives C =       0.80 mF.



6.	When the capacitors are connected, some charge will flow from C1 to C2 until the potential 

	difference across the two capacitors is the same:

		V1 = V2 = V.

	Because charge is conserved, we have

		Q0 = Q1 + Q2 .

	For the two capacitors we have

		Q1 = C1V,   and   Q2 = C2V.

	When we form the ratio, we get

		Q2/Q1 = (Q0 – Q1)/Q1 = C2/C1 , which gives      Q1 = Q0C1/(C1 + C2).

	For Q2 we have

		Q2 = Q0 – Q1 = Q0{1 – [C1/(C1 + C2)]}, thus      Q2 = Q0C2/(C1 + C2).

	We find the potential difference from

		Q1 = C1V;

		Q0C1/(C1 + C2) = C1V, which gives       V = Q0/(C1 + C2).



7.	We assume that the charge transferred is small compared to the initial charge on the plates so the potential difference between the plates is constant.  The energy required to move the charge is 

		W = qV.

	Thus the charge on each plate is

		Q = CV = C(W/q) = (16 ´ 10–6 F)(25 J)/(0.20 ´ 10–3 C) =       2.0 C.

	Because this is much greater than the charge moved, our assumption is justified.

























8.	We find the initial charges on the capacitors:

		Q1 = C1V1 = (2.40 mF)(880 V) = 2112 mC;

		Q2 = C2V2 = (4.00 mF)(560 V) = 2240 mC.

	(a)	When the capacitors are connected with positive plates together, some charge will flow from 

		C2 to C1  until the potential difference across the two capacitors is the same:

			V1¢ = V2¢ = V.

		Because charge is conserved, we have

			Q = Q1¢ + Q2¢ = Q1 + Q2  = 2112 mC + 2240 mC = 4352 mC.

		For the two capacitors we have

			Q1¢ = C1V,   and   Q2¢ = C2V.

		When we add these, we get

			Q1¢ + Q2¢ = Q = (C1 + C2)V;

			4352 mC = (2.40 mF + 4.00 mF)V, which gives V =      680 V.

		The charge on C1 is

			Q1¢ = C1V = (2.40 mF)(680 V) = 1.63 ´ 103 mC =      1.63 ´ 10–3 C.

		The charge on C2 is

			Q2¢ = C2V = (4.00 mF)(680 V) = 2.72 ´ 103 mC =      2.72 ´ 10–3 C.

	(b)	When the capacitors are connected with opposite plates together and charge flows from 

		C2 to C1 , the combination of positive and negative charges will result in the cancellation of some 

		charge until the potential difference across the two capacitors is the same:

			V1¢ = V2¢ = V.

		Because charge is conserved, we have

			Q = Q1¢ + Q2¢ = Q2 – Q1  = 2240 mC – 2112 mC = 128 mC.

		For the two capacitors we have

			Q1¢ = C1V,   and   Q2¢ = C2V.

		When we add these, we get

			Q1¢ + Q2¢ = Q = (C1 + C2)V;

			128 mC = (2.40 mF + 4.00 mF)V, which gives V =      20 V.

		The charge on C1 is

			Q1¢ = C1V = (2.40 mF)(20 V) =       48 mC.

		The charge on C2 is

			Q2¢ = C2V = (4.00 mF)(20 V) =       80 mC.



9.	For a parallel-plate capacitor, we find the area from

		C = Å0A/d;

		0.40 ´ 10–6 F = (8.85 ´ 10–12 C2/N · m2)A/(4.0 ´ 10–3 m), which gives A =       1.8 ´ 102 m2.

	If the area were a square, it would be ˜ 13 m on a side.



10.	For a coaxial cable, we have

		C = L2pÅ0/ln(R2/R1) = L2pÅ0/ln(D2/D1), so

		C/L = 2p(8.85 ´ 10–12 F/m)/ln[(5.0 mm)/(1.0 mm)] =       3.5 ´ 10–11 F/m.



11.	The potential at the surface of a spherical conductor is 

		V = Q/4pÅ0rE , so we have

		C = Q/V = 4pÅ0rE = 4p(8.85 ´ 10–12 F/m)(6.38 ´ 106 m) =      7.1 ´ 10–4 F.
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12.	From the symmetry of the charge distribution, we know 

	that any electric field must be radial, away from the axis of 

	the cylinders, with a magnitude independent of the direction.  

	For a Gaussian surface we choose a cylinder of length ¬ and 

	radius r, centered on the axis.  On the ends of this surface, the 

	electric field is not constant but E and dA are perpendicular, 

	so we have E · dA = 0.  On the curved side, the field has a 

	constant magnitude and E and dA are parallel, so we have 

	E · dA = E dA.  

	For the region where r < R1 ,  there is no charge inside the Gaussian surface, so we have

		ı E ·  dA = ?ends E ·  dA + ?sideE ·  dA = Qenclosed/Å0 ;

		0 + E2pr¬ = 0,   or   E = 0; r < R1.

	For the region where r > R2 , the charge inside the Gaussian surface is 

		Qenclosed = (Q/L)¬ – (Q/L)¬ = 0.

	Thus there is no net charge inside the Gaussian surface, so we have  E = 0; r > R2 .



13.	The uniform electric field between the plates is related to the potential difference across the plates:

		E = V/d.

	For a parallel-plate capacitor, we have

		Qmax 	= CVmax = (Å0A/d)(Emaxd) = Å0AEmax

				= (8.85 ´ 10–12 C2/N · m2)(8.5 ´ 10–4 m2)(3.0 ´ 106 V/m) = 2.3 ´ 10–8 C =      23 nC.



14.	The uniform electric field between the plates is related to the potential difference across the plates:

		E = V/d.

	For a parallel-plate capacitor, we have

		Q 	= CV = (Å0A/d)(Ed) = Å0AE

			= (8.85 ´ 10–12 C2/N · m2)(21.0 ´ 10–4 m2)(2.80 ´ 105 V/m) 

			= 5.20 ´ 10–9 C =      5.20 nC.



15.	When the two cylinders are separated by d, we have Ra = Rb + d.  For a cylindrical capacitor, we have

		C = L2pÅ0/ln(Ra/Rb) = L2pÅ0/ln[(Rb + d)/Rb] = L2pÅ0/ln[1 + (d/Rb)]. 

	If d « Rb , we have

		C ˜ L2pÅ0/(d/Rb) = L2pRbÅ0/d = Å0A/d, 

	which is the expression for a parallel-plate capacitor.



16.	The uniform electric field between the plates is related to the potential difference across the plates:

		E = V/d.

	For a parallel-plate capacitor, we have

		Q = CV = (Å0A/d)(Ed) = Å0AE;

		4.2 ´ 10–6 C = (8.85 ´ 10–12 C2/N · m2)A(2.0 ´ 103 V/mm)(103 mm/m), 

	which gives A =       0.24 m2.



17.	We find the potential difference across the plates from

		Q = CV;

		72 mC = (0.80 mF)V, which gives V = 90 V.

	We find the uniform electric field between the plates from

		E = V/d = (90 V)/(2.0 ´ 10–3 m) =      4.5 ´ 104 V/m.











18.	When the two spheres are separated by d, we have ra = rb + d.  For a spherical capacitor, we have

		C = 4pÅ0rbra/(ra – rb) = 4pÅ0rb(rb + d)/d = 4pÅ0rb2[1 + (d/rb)]/d. 

	If d « rb , we have

		C ˜ 4pÅ0rb2/d = Å0A/d, 

	which is the expression for a parallel-plate capacitor.



19.	(a)	When the uncharged plate is placed between the two charged plates, charges will separate so 

		that there is a charge + Q on the side facing the negative plate and a charge – Q on the side facing 

		the positive plate.  Thus we have the same uniform electric field in each gap:

			E = s/Å0 = Q/AÅ0 .  

		If x is the separation on one side of the sheet, the potentials across the gaps are

			V1 = Ex,   V2 = E(d – ¬ – x).

		Thus the potential across the capacitor is

			V1 + V2 = Ex + E(d – ¬ – x) = (Q/AÅ0)(d – ¬).

		The capacitance is 

			C = Q/(V1 + V2) =       Å0A/(d – ¬).

	(b)	If ¬ = %d, we have

			C/C0 = d/(d – ¬) = d/(d – %d) =      3.



20.	We find the equivalent capacitance for a parallel connection from

		Cparallel = ?Ci = 6C1 = 6(1.8 mF) =       10.8 mF.

	When the capacitors are connected in series, we find the equivalent capacitance from

		1/Cseries = ?(1/Ci ) = 6/C1 = 6/(1.8 mF), which gives Cseries =       0.30 mF.



21.	We can decrease the capacitance by adding a series capacitor.  We find the necessary capacitor from

		1/C = (1/C1) + (1/C2);

		1/(1600 pF) = [1/(3600 pF)] + (1/C2), which gives C2 =       2880 pF.

	     Yes,     it is necessary to break a connection to add a series component.



22.	For the parallel network the potential difference is the same for all capacitors, and the total charge is the sum of the individual charges.  We find the charge on each from

		Q1 = C1V = (Å0A1/d1)V;  Q2 = C2V = (Å0A2/d2)V;  Q3 = C3V = (Å0A3/d3)V.

	Thus the sum of the charges is

		Q = Q1 + Q2 + Q3 = (Å0A1/d1)V + (Å0A2/d2)V + (Å0A3/d3)V.

	The definition of the equivalent capacitance is 

		Ceq = Q/V = (Å0A1/d1) + (Å0A2/d2) + (Å0A3/d3) = C1 + C2 + C3 .
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23.	(a)	From the circuit, we see that C2 and C3 are in series 

		and find their equivalent capacitance from

			1/C4 = (1/C2) + (1/C3), which gives C4 = C2C3/(C2 + C3).

		From the new circuit, we see that C1 and C4 are in parallel, 

		with an equivalent capacitance

			Ceq 	= C1 + C4 = C1 + [C2C3/(C2 + C3)] 

				=       (C1C2 + C1C3 + C2C3)/(C2 + C3).

	(b)	Because V is across C1 , we have

			Q1 = C1V = (14.0 mF)(25.0 V) =       350 mC.

		Because C2 and C3 are in series, the charge on each is the 

		charge on their equivalent capacitance:

			Q2 	= Q3 = C4V = [C2C3/(C2 + C3)]V 

				= [(14.0 mF)(7.00 mF)/(14.0 mF + 7.00 mF)](25.0 V) =      117 mC. 
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24.	Because C2 and C3 are in series, they must have the same charge:

		Q3 = Q2 = 24.0 mC.

	Thus we can find the potential across each of these:

		V2 = Q2/C2 = (24.0 mC)/(16.0 mF) = 1.50 V;

		V3 = Q3/C3 = (24.0 mC)/(16.0 mF) = 1.50 V, so       V2 = V3 = 1.50 V.

	C2 and C3 are in parallel with C1 , so we have

		V1 = V2 + V3 = 1.50 V + 1.50 V = 3.00 V.

	Thus we have

		Q1 = C1V1 = (16.0 mF)(3.00 V) =       48.0 mC;

		Vab = V1 = 3.00 V.
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25.	(a)	From the circuit, we see that C2 and C3 are in series 

		and find their equivalent capacitance from

			1/C4 = (1/C2) + (1/C3);

			1/C4 = (1/3.00 mF)+ (1/4.00 mF), which gives C4 = 1.71 mF.

		From the new circuit, we see that C1 and C4 are in parallel, 

		with an equivalent capacitance

			Ceq = C1 + C4 = 2.00 mF + 1.71 mF =       3.71 mF.

	(b)	Because Vab is across C1 , we have

			Vab = V1 = 26.0 V.

		For the series combination we have

			Q2 = Q3 = Q4 = C4Vab = (1.71 mF)(26.0 V) = 44.6 mC.

		We find the other voltages from

			V2 = Q2/C2 = (44.6 mC)/(3.00 mF) =       14.9 V;

			V3 = Q3/C3 = (44.6 mC)/(4.00 mF) =       11.1 V. 

		As a check we see that V2 + V3 = Vab .
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26.	(a)	Because the potential is the same across the top and bottom 

		pairs, they are in       parallel.

	(b)	Because d1 + d2 is much less than the dimensions of the plates, 

		we can treat them as parallel-plate capacitors.  

		The equivalent capacitance is 

			C = C1 + C2 = (Å0A/d1) + (Å0A/d2) =       Å0A(d1 + d2)/d1d2 .

	(c)	We see that the capacitance goes to infinity if       

			d1 (or d2) = 0, for C maximum:      Cmax = 8.

		This corresponds to a short circuit.

		If we let D = d1 + d2, we have

			C = C1 + C2 = Å0AD/d1(D – d1).

		We find the minimum by setting the first derivative equal to zero:

			dC/dd1 = Å0AD[– 1/d12(D – d1) + 1/d1(D – d1)2] = Å0AD(– D +2d1)/d12(D – d1)2 = 0.

		Thus we get the minimum capacitance when d1 = !D:

			Cmin = Å0A(!D + !D)/!D!D = 4Å0A/(d1 + d2 ) =      2Å0A/d1 ,  d1 = d2 .







27.	The capacitance increases with a parallel connection, so the maximum capacitance is

		Cmax 	=  C1 + C2  + C3 

				= 3000 pF + 5000 pF + 0.010 mF = 3.0 nF + 5.0 nF + 10 nF =       18 nF (parallel).

	The capacitance decreases with a series connection, so we find the minimum capacitance from

		1/Cmin 	= (1/C1) + (1/C2) + (1/C3) = [1/(3000 pF)] + [1/(5000 pF)] + [1/(0.010 mF)]

				= [1/(3.0 nF)] + [1/(5.0 nF)] + [1/(10 nF)], which gives Cmin =       1.6 nF (series).
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28.	(a)	We find the equivalent capacitance from

			1/Cseries = (1/C1) + (1/C2) = [1/(0.20 mF)] + [1/(0.30 mF)], 

		which gives Cseries = 0.12 mF.

		The charge on the equivalent capacitor is the 

		charge on each capacitor:

			Q1 = Q2 = Qseries = CseriesV = (0.12 mF)(9.0 V) = 1.08 mC.

		We find the potential differences from

			Q1 = C1V1 ;

			1.08 mC = (0.20 mF)V1 , which gives       V1 = 5.4 V.

			Q2 = C2V2 ;

			1.08 mC = (0.30 mF)V2 , which gives       V2 = 3.6 V.

	(b)	As we found above

			Q1 = Q2 =      1.08 mC.

	(c)	For the parallel network, we have

			V1 = V2 =      9.0 V.

		We find the two charges from

			Q1 = C1V1 = (0.20 mF)(9.0 V) =     1.8 mC;

			Q2 = C2V2 = (0.30 mF)(9.0 V) =     2.7 mC.
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29.	(a)	From the circuit, we see that C1 and C2 are in series 

		and find their equivalent capacitance from

			1/C5 = (1/C1) + (1/C2) = (1/C) + (1/C), which gives C5 = C/2.

		From the new circuit, we see that C3 and C5 are in parallel, 

		with an equivalent capacitance

			C6 = C3 + C5 = C + C/2 = 3C/2.

		From the new circuit, we see that C4 and C6 are in series 

		and find their equivalent capacitance from

			1/Ceq 	= (1/C4) + (1/C6)

					= (1/C) + [1/(3C/2)], which gives Ceq =       3C/5.

	(b)	The charge on the equivalent capacitor is also the 

		charge on C4 and C6 :

			Qeq = Q4 = Q6 = CeqVab = (3C/5)V = 3CV/5.

		We find the potential difference between c and b from

			Vcb = Q6/C6 = (3CV/5)/(3C/2) = 2V/5.

		The charge on C5 is also the charge on C1 and C2 :

			Q5 = Q1 = Q2 = C5Vcb = (C/2)(2V/5) = CV/5.

		We find the potential differences from

			Vcd = Q1/C1 = (CV/5)/(C) = V/5;

			Vdb = Q2/C2 = (CV/5)/(C) = V/5;

			Vac = Q4/C4 = (3CV/5)/(C) = 3V/5.

		The charge on C3 is 

			Q3 = C3Vcb = (C)(2V/5) = 2CV/5.

		Thus we have

			Q1 = Q2 = CV/5,   Q3 = 2CV/5,   Q4 = 3CV/5;

			V1 = V2 = V/5,   V3 = 2V/5,   V4 = 3V/5.





�

30.	Because C1 and C2 are in series, we have

		Q1 = Q2 = 12.4 mC.

	Thus we have

		V1 = Vcd = Q1/C1 = 12.4 mC/16.0 mF = 0.775 V;

		V2 = Vdb = Q2/C2 = 12.4 mC/16.0 mF = 0.775 V.

	From the diagram we see that 

		V3 = Vcd + Vdb = 0.775 V + 0.775 V = 1.55 V, so

		Q3 = C3V3 = (16.0 mF)(1.55 V) = 24.8 mC.

	For Q4 we have

		Q4 = Q1 + Q3 = 12.4 mC + 24.8 mC = 37.2 mC, so

		V4 = Vac = Q4/C4 = 37.2 mC/36.0 mF = 1.03 V.

	From the diagram we see that

		Vab = Vac + Vcb = 1.03 V + 1.55 V = 2.58 V.

	Thus we have

		Q1 = Q2 = 12.4 mC,  Q3 = 24.8 mC,  Q4 = 37.2 mC;  

		V1 = V2 = 0.775 V, V3 = 1.55 V, V4 = 1.03 V, Vab = 2.58 V.















31.	When the switch is down, the initial charge on C2 is

�

		Q2 = C2V0.

	When the switch is connected upward, some charge will flow from C2 to C1  

	until the potential difference across the two capacitors is the same:

		V1 = V2 = V.

	Because charge is conserved, we have

		Q = Q1¢ + Q2¢ = Q2 ,  or

		C1V +  C2V = C2V0 , which gives V = C2V0/(C1 + C2).

	For the charges we have

		Q1¢ = C1V = C1C2V0/(C1 + C2);    Q2¢ = C2V  = C22V0/(C1 + C2).
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32.	(a)	From the circuit, we see that C1 and C2 are in parallel, 

		and C3 and C4 are in parallel: 

			C5 = C1 + C2 ;    C6 = C3 + C4 .

		We now have two capacitors in series, so the equivalent 

		capacitance is

			1/Ceq = (1/C5) + (1/C6) = [1/(C1 + C2)] + [1/(C3 + C4)], 

		which gives 

			Ceq = (C1 + C2)(C3 + C4)/(C1 + C2 + C3 + C4).

	(b)	For the series combination we have

			Qeq = Q5 = Q6 = CeqVab 

				= (C1 + C2)(C3 + C4)Vab/(C1 + C2 + C3 + C4).

		We can now find

			Vac 	= V1 = V2 = Q5/C5 

				= (C1 + C2)(C3 + C4)Vab/(C1 + C2 + C3 + C4)(C1 + C2) 

				=       (C3 + C4)Vab/(C1 + C2 + C3 + C4).

			Vcb 	= V3 = V4 = Q6/C6 

				= (C1 + C2)(C3 + C4)Vab/(C1 + C2 + C3 + C4)(C3 + C4) 

				=       (C1 + C2)Vab/(C1 + C2 + C3 + C4).

		We find the charges on each capacitor from

			Q1 = C1V1 = C1(C3 + C4)Vab/(C1 + C2 + C3 + C4);   Q2 = C2V2 = C2(C3 + C4)Vab/(C1 + C2 + C3 + C4);

			Q3 = C3V3 = C3(C1 + C2)Vab/(C1 + C2 + C3 + C4);   Q4 = C4V4 = C4(C1 + C2)Vab/(C1 + C2 + C3 + C4).
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33.	Because C3 and C4 are in parallel, we have

		Vcb = V3 = V4 = Q3 /C3 = 30 mC/8.0 mF = 3.75 V.

	Thus we have

		Q4 = C4V4 = (16.0 mF)(3.75 V) = 60 mC.

	From the diagram we see that

		Q5 = Q6 = Q3 + Q4 = 30 mC + 60 mC = 90 mC.

	We see that C1 and C2 are in parallel: 

		C5 = C1 + C2 = 8.0 mF + 16.0 mF = 24.0 mF, so we have

		V1 = V2 = V5 = Vac = Q5/C5 = 90 mC/24.0 mF = 3.75 V.

	We can now find the charges on C1 and C2 :

		Q1 = C1V1 = (8.0 mF)(3.75 V) = 30 mC;    

		Q2 = C2V2 = (16.0 mF)(3.75 V) = 60 mC.

	As expected from the symmetry we have

	(a)	Q1 = Q3 = 30 mC;  Q2 = Q4 = 60 mC.

	(b)	V1 = V2 = V3 = V4 = 3.75 V.

	(c)	Vab = Vac + Vcb = 3.75 V + 3.75 V =      7.5 V.



34.	For the two combinations we have

		Cp = C1 + C2 ;   35.0 mF = C1 + C2 ,  and   

		1/Cs = (1/C1) + (1/C2)   or   Cs = C1C2/(C1 + C2) = C1C2/Cp ;   4.0 mF = C1C2/(35.0 mF).

	When we combine these two equations, we get a quadratic equation for C1:

		C12 – (35.0 mF)C1 + (140 mF2) = 0.

	The two solutions are C1 = 4.6 mF and 30.4 mF, which give C2 = 30.4 mF and 4.6 mF.  Thus the two capacitors are       4.6 mF,   30.4 mF.
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35.	When there is no reading on the voltmeter, we have Vab = 0, so

		V1 = V2 ,   or   Q1/C1 = Q2/ C2 ;   and   

		Vx = V3 ,   or   Qx/Cx = Q3/ C3 . 

	If we divide the two equations, we get

		(Q1/Qx)(Cx/C1) = (Q2/Q3)(C3/C2).

	Because Vab = 0, we could remove the connection between 

	a and b without affecting the circuit.  This means that 

		Q1 = Qx , and Q2 = Q3 , so we have

		Cx/C1 = C3/C2 ,  or

		Cx = (C3/C2)C1 = [(6.0 mF)/(18.0 mF)](8.9 mF) =      3.0 mF.







36.	We find the equivalent capacitance for the series combination from

		1/Cseries = (1/C1) + (1/C2) = [1/(3200 pF)] + [1/(2200 pF)], 

	which gives Cseries = 1300 pF.

	The charge on the equivalent capacitor is the initial charge on each capacitor:

		Q1 = Q2 = Qseries = CseriesV0 = (1300 pF)(12.0 V) = 1.56 ´ 104 pC.

	When the capacitors are connected with positive plates together, some charge will flow  until the potential difference across the two capacitors is the same:

		V1 = V2 = V.

	Because charge is conserved, we have

		Q = Q1¢ + Q2¢ = Q1 + Q2  = 1.56 ´ 104 pC + 1.56 ´ 104 pC = 3.12 ´ 104 pC.

	For the two capacitors we have

		V = Q1¢/C1 = Q2¢/C2 ; 

		Q1¢/3200 pF = (3.12 ´ 104 pC – Q1¢)/2200 pF, which gives       Q1¢ = 1.85 ´ 104 pC.

	Thus 

		Q2¢ = 3.12 ´ 104 pC – 1.85 ´ 104 pC =       1.27 ´ 104 pC.
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37.	For a small angle q, we have tan q ˜ q.  If we consider a differential 

	element a distance y from the small end, the capacitance of the 

	element is

		dC = Å0 dA/(d + y tan q) ˜ Å0¬ dy/(d + yq), 

	where ¬ is the length of a plate.  The infinite number of elements 

	are in parallel, so we find the total capacitance by integrating:

		�

	We use the expansion ln(1 + x) ˜ x –!x2, for small x:

		C ˜ (Å0¬/q)[(¬q/d) – !(¬q/d)2] = (Å0¬2/d)[1 – !(¬q/d)] =       (Å0A/d)[1 – !(qvA/d)].





38.	(a)	From the diagram we see that

�

			Vab = Vac + Vcb ,  or  V = V1 + V2 ;    		(1)

			Vcb = Vcd + Vdb ,  or  V1 = V3 + V4 ;    		(2)

			Vad = Vac + Vcd ,  or  V5 = V2 + V3 .    		(3)

		At point a we see that the total charge is

			Q = Q2 + Q5 ,  or   CV = C2V2 + C5V5 ;    	(4)

		A similar reasoning at the other junctions gives

			Q = Q1 + Q4 ,  or   CV = C1V1 + C4V4 ;    	(5)

			Q2 = Q1 + Q3 ,  or   C2V2 = C1V1 + C3V3 .    	(6)

		We eliminate potentials by combining equations:

			(5) & (2): 	CV = (C1 + C4)V1 – C4V3 ;    	(7)

			(4) & (3):	CV = C2V2 + C5V2 + C5V3 ;     	(8)

			(8) & (6): 	CV = C1V1 + C3V3 + C5(C1/C2)V1 + C5(C3/C2)V3 + C5V3 ;    			(9)

			(6) & (1): 	V = V1 + (C1/C2)V1 + (C3/C2)V3 ;   						(10)

			(7) & (9): 	(C2C4 – C1C5)V1 = (C2C3 + C3C5 + C2C5 + C2C4)V3 ;    				(11)

			(7) & (11): 	CV = [C1 + C4 – C4(C2C4 – C1C5)/(C2C3 + C3C5 + C2C5 + C2C4)]V1 ;    		(12)

			(10) & (11): 	V = [1 + (C1/C2) + C3(C2C4 – C1C5)/C2(C2C3 + C3C5 + C2C5 + C2C4)]V1 ;  	(13)

		and finally dividing (12) by (13):

			�EMBED Word.Picture.8���

	(b)	For the given data we get

			C = [(6.0 mF)(8.0 mF)(6.0 mF + 8.0 mF + 6.0 mF) + (6.0 mF)(6.0 mF)(6.0 mF + 8.0 mF) + 

									(6.0 mF)(8.0 mF)(8.0 mF + 6.0 mF) + (8.0 mF)(8.0 mF)(6.0 mF)]/

							[(6.0 mF)(6.0 mF + 8.0 mF + 6.0 mF) + (8.0 mF)(6.0 mF + 8.0 mF + 6.0 mF) + 

													(6.0 mF)(8.0 mF + 6.0 mF)] =       6.9 mF.



39.	The energy stored in the capacitor is 

		U = !CV 2 = !(2800 ´ 10–12 F)(1200 V)2 =       2.0 ´ 10–3 J.



40.	The energy density in the field is

		u = !Å0E2 = !(8.85 ´ 10–12 C2/N · m2)(150 V/m)2 =      1.0 ´ 10–7 J/m3.



41.	Because the separation of the plates is small compared to the dimensions of the plates, the capacitance is Å0A/d. We find the stored energy from

		U 	= !CV 2 = !Q 2/C = !Q 2d/Å0A 

			= !(420 ´ 10–6 C)2(1.5 ´ 10–3 m)/(8.85 ´ 10–12 C2/N · m2)(8.0 ´ 10–2 m)2 =      2.3 ´ 103 J.

	From E = V/d = Q/Cd = Q/Å0A, we see that this is also U = !Å0E2Ad.





42.	(a)	From C = Å0A/d, we see that separating the plates will change C.  For the stored energy we have

			U = !CV 2 =  !Q 2/C.

		Because the charge is constant, for the two conditions we have

			U2/U1 = C1/C2 = d2/d1 =       2.

	(b)	The work changes the energy stored in the capacitor:

			W = U2 – U1 = !Q 2(1/C2 – 1/C1) = (!Q 2/Å0A)(d2 – d1) =       Q 2d/2Å0A.











43.	From Problem 23 we know that the equivalent capacitance is

		Ceq = (C1C2 + C1C3 + C2C3)/(C2 + C3) = 3C1/2 = 3(2200 pF)/2 = 3300 pF.

	Because this capacitance is equivalent to the three capacitors, the energy stored in it is the energy stored in the network:

		U = !CeqV2 = !(3300 ´ 10–12 F)(10.0 V)2 =       1.65 ´ 10–7 J.



44.	From Problem 29 we know that the equivalent capacitance is

		Ceq = 3C/5.

	Because this capacitance is equivalent to the three capacitors, the energy stored in it is the energy stored in the network:

		U = !CeqV2 = !(3C/5)V2 =       3CV2/10.



45.	(a)	When the capacitors are connected in parallel, we find the equivalent capacitance from

			Cparallel = C1 + C2 = 0.15 mF + 0.20 mF = 0.35 mF.

		The stored energy is

			Uparallel = !CparallelV2 = !(0.35 ´ 10–6 F)(12 V)2 =      2.5 ´ 10–5 J.

	(b)	When the capacitors are connected in series, we find the equivalent capacitance from

			1/Cseries = (1/C1) + (1/C2) = [1/(0.15 mF)] + [1/(0.20 mF)], which gives Cseries = 0.0857 mF.

		The stored energy is

			Useries = !CseriesV2 = !(0.0857 ´ 10–6 F)(12 V)2 =      6.2 ´ 10–6 J.

	(c)	We find the charges from

			Q = CeqV;

			Qparallel = CparallelV = (0.35 mF)(12 V) =       4.2 mC.

			Qseries = CseriesV = (0.0857 mF)(12 V) =       1.0 mC.



46.	(a)	The capacitance of the cylindrical capacitor is

			C = L2pÅ0/ln(Ra/Rb).

		Because the charge remains constant, we express the energy as

			U = !CV 2 = !Q 2/C.

		If we form the ratio for the two conditions, we have

			U2/U1 = C1/C2 = ln(2Ra/Rb)/ln(Ra/Rb) =       1 + [ln 2/ln(Ra/Rb)]. 

		The increase in stored energy comes from the work required to separate the opposite charges on the 

		two cylinders.

	(b)	Because the voltage remains constant, we express the energy as

			U = !CV 2.

		If we form the ratio for the two conditions, we have

			U2/U1 = C2/C1 = ln(Ra/Rb)/ln(2Ra/Rb) =       1/{1 + [ln 2/ln(Ra/Rb)]}. 

		The decrease in stored energy occurs because charge must leave the capacitor, returning to the 

		voltage source.



























47.	(a)	Because there is no stored energy on the uncharged 5.0-mF capacitor, the total stored energy is 

			Ua = !C1V02 = !(3.0 ´ 10–6 F)(12 V)2 =       2.2 ´ 10–4 J.

	(b)	We find the initial charge on the 3.0-mF capacitor when it is connected to the battery;

			Q = C1V0 = (3.0 mF)(12 V) = 36 mC.

		When the capacitors are connected, some charge will flow from C1 to C2  until the potential 

		difference across the two capacitors is the same; so the two capacitors are connected in parallel:

			Ceq = C1 + C2 = 3.0 mF + 5.0 mF = 8.0 mF.

		For the stored energy we have 

			Ub = !CeqV2 = !Q 2 /Ceq = !(36 mC)2/(8.0 mF) = 81 mJ =       8.1 ´ 10–5 J.  

	(c)	The change in stored energy is

			?U = Ub – Ua = 8.1 ´ 10–5 J – 2.2 ´ 10–4 J =      – 1.4 ´ 10–4 J.

	(d)	The stored potential energy is not conserved.      During the flow of charge before the final 

		steady state, some of the stored energy is dissipated as thermal and radiant energy.



48.	(a)	Because the voltage remains constant, we express the energy as

			U = !CV 2,

		so the work required is

			W = ?U = Uf – Ui = !(Å0A/d)V 2 – ![Å0A/(d – ¬)]V 2 =       – Å0AV 2¬/2d(d – ¬).

		Note that, although positive work must be done by an outside agent to remove the sheet, the 

		decrease in capacitance means charge (and energy) is returned to the voltage source, so the net 

		energy change is negative.

	(b)	Because the charge remains constant, we express the energy as

			U = !CV 2 = !Q 2/C,

		so the work required is

			W = ?U = Uf – Ui = !Q 2/(Å0A/d) – !Q 2/[Å0A/(d – ¬)] = Q 2¬/2Å0A.

		The charge on the capacitor is

			Q = [Å0A/(d – ¬)]Vi , so we have       W = Å0AVi 2¬/2(d – ¬)2.



49.	(a)	Because the charge remains constant, we express the energy as

			U = !CV 2 = !Q 2/C = !Q 2x/Å0A, 

		so the work required of an external force to increase the separation by dx is

			dW = dU;

			F dx = !Q 2 dx/Å0A.

		Thus the force required is F = !Q 2/Å0A.  With no increase in kinetic energy, the force that each 

		plate exerts on the other must have this magnitude.

	(b)	We cannot use F = QE, where E is the electric field between the plates, because the electric field is 

		produced by both plates.  The electric field at one plate, due to the other plate, is !E.































50.	(a)	The electric field outside the spherical conductor is

			E = Q/4pÅ0r2.

		We choose a differential spherical shell of radius r and thickness dr and add (integrate) the 

		energies in the shells:

			�

	(b)	The energy stored in the spherical capacitor is

			U = !CV 2 = !Q 2/C =  !Q 2/4pÅ0R = Q 2/8pÅ0R.

	(c)	When there is a charge q on the sphere, its potential is

			V = q/4pÅ0R.

		The work required to bring a differential charge dq to the sphere is dW = V dq.  We find the total 

		work required by adding (integrating) the works required to bring all of the dq’s to the sphere:

			�



51.	We find the capacitance from

		C 	= KÅ0A/d = KÅ0pr2/d 

			= (7)(8.85 ´ 10–12 C2/N · m2)p(0.050 m)2/(3.2 ´ 10–3 m) =       1.5 ´ 10–10 F.



52.	We find the capacitance from

		C 	= KÅ0A/d = KÅ0¬2/d 

			= (2.2)(8.85 ´ 10–12 C2/N · m2)(0.055 m)2/(1.8 ´ 10–3 m) = 3.3 ´ 10–11 F =      33 pF.



53.	The mica will change the capacitance.  The potential difference is constant, so we have

		?Q	= Q2 – Q1 = (C2 – C1)V = (K – 1)C1V 

			= (7 – 1)(3500 ´ 10–12 F)(22 V) = 4.6 ´ 10–7 C =       0.46 mC.



54.	Because the voltage remains constant, we express the energy as U = !CV 2, 

	so the energy change of the capacitor is ?U = !(1 – K)C0V 2.

	The charge entering the battery is ?Qbattery = – ?Q, so the energy change in the battery is

		?Ubattery = – V ?Q = – V2 ?C =  – (1 – K)C0V 2.

	Thus the total work required is

		W	= ?Ubattery + ?U = – (1 – K)C0V 2 + !(1 – K)C0V 2 = !(K – 1)C0V 2 

			= !(3.4 – 1)(8.85 ´ 10–9 F)(100 V)2 =       + 1.1 ´ 10–4 J.

	Note that the positive work done by an outside agent to remove the sheet  means charge (and energy) is returned to the voltage source.



55.	Because the charge remains constant, we express the energy as

		U = !CV 2 = !Q 2/C.

	If we form the ratio for the two conditions, we have

		U/U0 = C0/C = 1/K, so 

		U = U0/K = (2.33 ´ 103 J)/7 =      3.3 ´ 102 J.



�

56.	The potential difference must be the same on each 

	half of the capacitor, so we can treat the system 

	as two capacitors in parallel:

		C 	= C1 + C2 = [K1Å0(!A)/d] + [K2Å0(!A)/d]

			= (Å0!A/d)(K1 + K2) = !(K1 + K2)(Å0A/d) 

			=       Å0A(K1 + K2)/2d .



�

57.	If we think of a layer of equal and opposite charges on the 

	interface between the two dielectrics, we see that they 

	are in series.  For the equivalent capacitance, we have

		1/C 	= (1/C1) + (1/C2) = (!d/K1Å0A) + (!d/K2Å0A) 

				= (d/2Å0A)[(1/K1) + (1/K2)] 

				= (d/2Å0A)[(K1 + K2)/K1K2], 

	which gives       C = 2Å0AK1K2/d(K1 + K2).



�

58.	If we think of a layer of equal and opposite charges on the 

	interface between the two dielectrics, we see that they 

	are in series.  For the equivalent capacitance, we have

		1/C 	= (1/C1) + (1/C2) = (d1/K1Å0A) + (d2/K2Å0A) 

				= (1/Å0A)[(d1/K1) + (d2/K2)], 

	which gives       C = Å0AK1K2/(d1K1 + d2K2).







59.	(a)	Because each capacitor acquires Q0 , the (equal) initial capacitance of each is

			C = Q0/V0 .

		When the dielectric is inserted, the capacitors are still in parallel and charge will flow to make 

		the potential the same.  Charge is conserved so, if we call Q1 the charge on the capacitor without 

		the dielectric, we have

			Q1/C = Q2/KC = (2Q0 – Q1)/KC, which gives

			Q1 = 2Q0/(1 + K) = 2Q0/(1 + 4.0) =       0.40Q0.

		For Q2 we have

			Q2 = 2Q0 – Q1 =       1.60Q0.

	(b)	We find the common voltage from 

			V = Q1/C = 0.40Q0/C =      0.40V0 .

















































�

60.	(a)	We can treat the system as a capacitor of length ¬ – x in 

		parallel with a capacitor of length x:

			C = Cair + Cdielectric 

			     =  [Å0¬(¬ – x)/d]  + (KÅ0¬x/d) 

			     = (Å0¬2/d)[1 – (x/¬) + K(x/¬)] =     (Å0¬2/d)[1 + (K – 1)(x/¬)].

	(b)	The energy stored is 

			U = !CV02 =       (Å0¬2V02/2d)[1 + (K – 1)(x/¬)].

	(c)	When the slab moves a small distance dx, the capacitance change is 

			dC = (Å0¬2/d)(K – 1) dx/¬ = Å0¬(K – 1) dx/d.

		Because the voltage is constant, this increase in capacitance means a decrease in the charge on the 

		capacitor plates, which means some charge is returned to the voltage source.  The magnitude of the 

		change in charge is

			dQ = V0 dC = Å0¬V0(K – 1) dx/d.

		We see from part (b) that there is an increase in the energy stored in the capacitor:

			dUcapacitor = Å0¬V02(K – 1) dx/2d.

		For the entire system we must include the decrease in energy in the voltage source:

			dUsource = – V0 dQ = – Å0¬V02(K – 1) dx/d.

		We find the external force required to produce the total energy change from

			dW = dUcapacitor + dUsource 

			F dx = Å0¬V02(K – 1) dx/2d – Å0¬V02(K – 1) dx/d = – Å0¬V02(K – 1) dx/2d.

		Thus the external force is 

			Fexternal = – Å0¬V02(K – 1)/2d, that is, to the right to oppose the attraction between the charges 

		on the plates and the induced charges on the dielectric, and thus keep the slab from accelerating.  

		Thus the force of attraction on the slab is

			Fslab = + Å0¬V02(K – 1)/2d, to the left,       drawing the slab between the plates.





61.	(a)	The initial capacitance will be the same:

			C0 = Å0A/d =       111 pF.

	(b)	The initial charge will be the same:

			Q0 = C0V0 =       1.66 ´ 10–8 C.

	(c)	Because the capacitance depends only on the physical characteristics, from Example 24–9 the new 

		capacitance is C = 172 pF.  Thus the charge on the each plate is now

			Q = CV0 = (172 ´ 10–12 F)(150 V) = 2.58 ´ 10–8 C. 

		The induced charge is

			Qind = Q[1 – (1/K)] = (2.58 ´ 10–8 C)[1 – (1/3.50)] =       1.84 ´ 10–8 C.

	(d)	We find the electric field in the gap from the charge density:

			Egap = Q/Å0A = (2.58 ´ 10–8 C)/(8.85 ´ 10–12 C2/N · m2)(2.50 ´ 10–2 m2) =       1.17 ´ 105 V/m.

	(e)	The electric field in the dielectric is

			Edielectric = Egap/K = (1.17 ´ 105 V/m)/3.50 =        3.34 ´ 104 V/m.

	(f)	The potential difference is constant:

			V = V0 =       150 V.

	(g)	Because the capacitance depends only on the physical characteristics, it will be the same:

			C =        172 pF.

	(h)	The charge on each plate is now

			Q = CV0 = (172 ´ 10–12 F)(150 V) =       2.58 ´ 10–8 C. 











62.	If we think of a layer of equal and opposite charges at each side of the dielectric, we see that there 

	are three capacitors in series.  If one air gap has thickness d1 , for the equivalent capacitance, we have

		1/C 	= (1/C1) + (1/C2) + (1/C3) = (d1/Å0A) + (¬/KÅ0A) + [(d – d1 – ¬)/Å0A]  

				= (1/Å0A)[d1 + (¬/K) + d – d1 – ¬] 

				= (1/KÅ0A)[Kd + ¬(1 – K)], so 

		C 	= KÅ0A/[K(d – ¬) + ¬] 

			= (3.50)(8.85 ´ 10–12 C2/N · m2)(2.50 ´ 10–2 m2)/[(3.50)(2.00 – 1.00) ´ 10–3 m + (1.00 ´ 10–3 m)], 

	which gives C = 1.72 ´ 10–10 F = 172 pF.



63.	We find the energy in each region from the energy density and the volume:

		Udielectric = udielectricVdielectric = !KÅ0Edielectric2A¬;

		Ugap = ugapVgap = !Å0Egap2A(d – ¬).

	When we use Egap = KEdielectric and cancel common factors, we have

		Udielectric/(Udielectric + Ugap) 	= KEdielectric2¬/[KEdielectric2¬ + Egap2(d – ¬)] 

									= KEdielectric2¬/[KEdielectric2¬ + K2Edielectric2(d – ¬)] 

									= ¬/[¬ + K(d – ¬)]

									= (1.00 mm)/[1.00 mm + (3.50)(2.00 mm – 1.00 mm)] 

									= 0.22 =      22%. 



64.	The capacitance is given by

		C = Q/V.

	If we use the results from Example 24–9, we have

		C = Å0AE0/E0[d – ¬ + (¬/K)] =       KÅ0A/[K(d – ¬) + ¬].



65.	We can treat the capacitor as an air capacitor and a glass capacitor in series.  We find the equivalent capacitance from

		1/C = 1/Cair + 1/Cglass = (a/Å0A) + (b/KÅ0A),  or

		C 	= Å0A/[a + (b/K)] 

			= (8.85 ´ 10–12 C2/N · m2)(1.85 m2)/[3.00 ´ 10–3 m + (2.00 ´ 10–3 m)/(5.80)] = 4.89 ´ 10–9 F.

	The free charge on the capacitor plates is

		Q = CV = (4.89 ´ 10–9 F)(90.0 V) =       4.41 ´ 10–7 C.

	The induced charge on the glass is

�

		Qind = Q(1 – 1/K) = (4.41 ´ 10–7 C)(1 – 1/5.80) =       3.65 ´ 10–7 C.

	The electric field in the air is 

		Eair = s/Å0 = Q/Å0A 

			= (4.41 ´ 10–7 C)/(8.85 ´ 10–12 C2/N · m2)(1.85 m2) 

			=       2.69 ´ 104 V/m.

	The electric field in the glass is

		Eglass = Eair/K = (2.69 ´ 104 V/m)/(5.80) =       4.64 ´ 103 V/m.



66.	Fortunately the required capacitance is greater.  We can increase the capacitance by adding a parallel capacitor, which does not require breaking the circuit.  We find the necessary capacitor from

		C = C1 + C2 ;

		16 mF = 5.0 mF + C2 , which gives C2 =       11 mF in parallel.

		

67.	We find the capacitance from

		U = !CV 2;

		200 J = !C(6000 V)2, which gives C = 1.1 ´ 10–5 F =       11 mF.







68.	(a)	The radius of the pie plate is

			r = !(9.0 in)(2.54 ´ 10–2 m/in) = 0.114 m.

		If we assume that it approximates a parallel-plate capacitor, we have

			C 	= Å0A/d = Å0pr2/d 

				= (8.85 ´ 10–12 C2/N · m2)p(0.114 m)2/(0.10 m) = 3.6 ´ 10–12 F =       3.6 pF.

	(b)	We find the charge on each plate from

			Q = CV = (3.6 pF)(9.0 V) =       33 pC.

	(c)	We assume that the electric field is uniform, so we have

			E = V/d = (9.0 V)/(0.10 m) =      90 V/m.

	(d)	The work done by the battery is the energy stored in the capacitor:

			W = U = !CV 2 = !(3.6 ´ 10–12 F)(9.0 V)2 =       1.5 ´ 10–10 J.

	(e)	Because the battery is still connected, the electric field will not change.  Insertion of the dielectric 

		will change      capacitance, charge, and work done by the battery.



69.	(a)	For the stored energy we have U = !CV 2.  Because the capacitance does not change, we have

			U2/U1 = (V2/V1)2 = (2)2 =       4´.

	(b)	For the stored energy we have U = !CV 2 =  !Q 2/C.  The capacitance does not change, so we have

			U2/U1 = (Q2/Q1)2 = (2)2 =       4´.

	(c)	Because the battery is still connected, the potential difference will not change.  

		From C = Å0A/d, we see that separating the plates will change C.  

		For the stored energy we have U = !CV 2, so we get

			U2/U1 = C2/C1 = d1/d2 =       !´.



70.	If we equate the heat flow to the stored energy, we have

		U = !CV 2 = mc ?T;

		!(7.0 F)V 2 = (2.5 kg)(4186 J/kg · C°)(95°C – 20°C), which gives V =       4.7 ´ 102 V.





71.	Because the charged capacitor is disconnected from the plates, the charge must be constant.  The paraffin will change the capacitance, so we have

		Q = C1V1 = C2V2  = KC1V2 ;

		24.0 V = (2.2)V2 , which gives V2 =      10.9 V.



72.	If the plates initially have a charge Q on each plate, the energy to move a charge ?Q will increase the stored energy:

		?U = U2 – U1 = (!Q2 2/C) – (!Q1 2/C) 

			= [(Q + ?Q)2 – Q 2]/2C = [(2Q ?Q + (?Q)2]/2C = (2Q + ?Q) ?Q/2C; 

		18.5 J = (2Q + 13.0 ´ 10–3 C)(13.0 ´ 10–3 C)/2(12.0 ´ 10–6 F), which gives Q = 0.0106 C =      10.6 mC.



73.	(a)	For a coaxial cable with a dielectric, we have

			C/L = KC0/L = 2pKÅ0/ln(Ra/Rb). 

	(b)	For the given data we get

			C/L 	= 2pKÅ0/ln(Ra/Rb) 

					= 2p(2.6)(8.85 ´ 10–12 F/m)/ln[(9.0 mm)/(3.5 mm)] =       1.5 ´ 10–10 F/m.

















74.	The uniform electric field between the plates is related to the potential difference across the plates:

		E = V/d.

	For a parallel-plate capacitor, we have

		Q = CV = CEd;

		0.475 ´ 10–6 C = C(9.21 ´ 104 V/m)(1.95 ´ 10–3 m), which gives C =        2.64 ´ 10–9 F.

	We find the area of the plates from

		C = KÅ0A/d;

		2.64 ´ 10–9 F = (3.75)(8.85 ´ 10–12 C2/N · m2)A/(1.95 ´ 10–3 m), which gives A =       0.155 m2.



75.	Because the capacitor is isolated, the charge will not change.  The initial stored energy is

		U1 = !C1V12 = !Q 2/C1 , with C1 = Å0A/d1 .

	The changes will change the capacitance:

		C2 = KÅ0A/d2 .

	For the ratio of stored energies, we have

		U2/U1 = C1/C2 = (Å0A/d1)/(KÅ0A/d2) = d2/Kd1 = !/K =       1/2K.

	The stored energy decreases from two factors.  Because the plates attract each other, when the separation is halved, work is done by the field, so the energy decreases.  When the dielectric is inserted, the induced charges on the dielectric are attracted to the plates; again work is done by the field and the energy decreases.

	The uniform electric field between the plates is related to the potential difference across the plates:

		E = V/d.

	For a parallel-plate capacitor, we have

		Q = C1V1 = C1E1d1 = C2E2d2 ,  or 

		E2/E1 = C1d1/C2d2 = Å0A/KÅ0A =       1/K.





76.	We find the initial charge on the 3.5-mF capacitor when it is connected to the battery:

		Q = C1V = (3.5 mF)(12.4 V) = 43.4 mC.

	When C1 is disconnected from the battery and then connected to C2 , some charge will flow from 

	C1 to C2 .  The flow will stop when the voltage across the two capacitors is the same:

		V1 = V2 = 5.2 V.

	Because charge is conserved, we have

		Q = Q1 + Q2 .

	We find the charge remaining on C1 from

		Q1 = C1V1 = (3.5 mF)(5.2 V) = 18.2 mC.

	The charge on C2 is

		Q2 = Q – Q1 = 43.4 mC – 18.2 mC = 25.2 mC.

	We find the value of C2 from

		Q2 = C2V2 ;

		25.2 mC = C2(5.2 V), which gives C2 =       4.8 mF.



77.	(a)	The energy stored in the capacitor is 

			U = !CV 2 = !(0.060 ´ 10–6 F)(25 ´ 103 V)2 =       19 J.

	(b)	We find the power of the pulse from

			P = 0.10 U/t = (0.10)(19 J)/(10 ´ 10–6 s) = 1.9 ´ 105 W =      0.19 MW.















�

78.	(a)	We see from the diagram that all positive plates are connected 

		to the positive side of the battery, and that all negative plates are 

		connected to the negative side of the battery, so the capacitors are 

		connected in     parallel.

	(b)	For parallel capacitors, the total capacitance is the sum, so we have

			Cmin 	= 7(Å0Amin/d) 

					= 7(8.85 ´ 10–12 C2/N · m2)(2.0 ´ 10–4 m2)/(1.0 ´ 10–3 m) = 1.2 ´ 10–11 F = 12 pF.

			Cmax 	= 7(Å0Amin/d) 

					= 7(8.85 ´ 10–12 C2/N · m2)(9.0 ´ 10–4 m2)/(1.0 ´ 10–3 m) = 5.6 ´ 10–11 F = 56 pF.

		Thus the range is      12 pF = C = 56 pF.



79.	(a)	Because the capacitor is disconnected from the power supply, the charge is constant.  We find the 

		new voltage from

			Q = C1V1 = C2V2 ;

			(10 pF)(10,000 V) = (1 pF)V2 , which gives V2 = 1.0 ´ 105 V =      0.10 MV.

	(b)	A major disadvantage is that, when the stored energy is used, the 

		voltage will decrease exponentially,     so it can be used for only short bursts.



80.	For a series network, we have

		Q1 = Q2 = Qseries = 125 pC.

	We find the equivalent capacitance from

		Qseries = CseriesV;

		125 pC = Cseries(25.0 V), which gives Cseries = 5.00 pF.

	We find the unknown capacitance from

		1/Cseries = (1/C1) + (1/C2);

		1/(5.00 pF) = [1/(150 pF)] + (1/C2), which gives C2 =       5.17 pF.







81.	If we express the stored energy as

		U = !CV 2,

	we see that, because the voltage is constant, we must increase the capacitance.  Thus we add a capacitor in parallel.  If we form the ratio of energies, we have

		U2/U1 = (C1 + C2)/C1 = 3, which gives

		C2 = 2C1 = 2(330 pF) =      660 pF in parallel.



































82.	If we have n identical capacitors in parallel, the equivalent capacitance is Cparallel = nC.

	If we have n identical capacitors in series, we have 1/Cseries = n/C, or Cseries = C/n.

	We use these results to reduce the following nine combinations.

�



�

C1 = 4C.	      C6 = 4C/3.







�





C2 = C/4.

�

1/C7 = 1/C + 2/3C;

									           C7 = 3C/5.

�









C3 = C.	

�



C8 = 5C/2.







�



1/C4 = 1/C + 1/3C;

	C4 = 3C/4.

�



	

C9 = 5C/3.









�



			



1/C5 = 1/C + 1/C + 1/2C;

	C5 = 2C/5.





























�

83.	When the switch is connected left, the initial charge on C1 is

		Q0 = C1Vab = (1.0 mF)(24 V) = 24 mC.

	When the switch is connected right, some charge will flow from 

	C1 to C2  and C3 until the potential difference across C1 is the 

	potential difference across the series combination of C2  and C3:

		V1 = V23 = V.

	Because C2  and C3 are in series, we know that Q2 = Q3 , and we find 

	their equivalent capacitance from

		1/C23 = 1/C2 + 1/C3 = 1/2.0 mF + 1/3.0 mF, which gives C23 = 1.2 mF.

	Because charge is conserved, we have

		Q0 = Q1 + Q2 . 

		Q0 = C1V +  C23V, which gives 

		V = Q0/(C1 + C23) = (24 mC)/(1.0 mF + 1.2 mF) =      11 V = V1 .

	For the charges we have

		Q1 = C1V = (1.0 mF)(11 V) =      11 mC;

		Q2 = Q3 = C23V = (1.2 mF)(11 V) =       13 mC.

	We find the potential differences from

		V2 = Q2/C2 = (13 mC)/(2.0 mF) =      6.5 V;

		V3 = Q3/C3 = (13 mC)/(3.0 mF) =      4.4 V.



�

84.	We put a linear charge density of – l on the innermost cylinder and + l 

	on the outermost cylinder.  Because the two cylinders between these are 

	connected, they will acquire equal and opposite charge densities so that 

	they are at the same potential and have no electric field in the region 

	between them.  A charged cylinder has no electric field within it and an 

	electric field outside it that is the same as that of a line charge:

		E = l/2pÅ0r.

	We find the potential difference between c and d by integration:

		�

	The electric field between a and b will be due to the net line charge.  

	We integrate to find the potential difference between a and b:

		�

	Because Vb = Vc , we can use these results to get the potential difference across the capacitor:

		Va – Vd 	= (Va – Vb) + (Vc – Vd) 

					= + [(l/2pÅ0) ln(Ra/Rb)] + [+ (l/2pÅ0) ln(Rc/Rd)] = (l/2pÅ0) ln (RaRc/RbRd).

	Thus the capacitance per unit length is

		C/L = Q/LVad =       2pÅ0/ln(RaRc/RbRd).

	Note that this is also the result if the arrangement is treated as two cylindrical capacitors is series.



85.	To pull the plates apart requires a force to balance the attractive force between the charges.  The electric field at a plate is due to the other plate and thus has magnitude

		E = !Q/AÅ0 .

	Thus the work done by this force is

		W = F ?x = Q(Q/2AÅ0)(2x – x) =       Q2x/2AÅ0 .

	Because the charge remains constant, we find the energy change from

		?U = ?(Q2/2C) = Q2/2(Å0A/2x) – Q2/2(Å0A/x) = Q2x/2AÅ0 , which is the same as the work done.



86.	(a)	We find the number of electrons from the charge on the capacitor:

			N = Q/e = CV/e = (30 ´ 10–15 F)(3.0 V)/(1.60 ´ 10–19 C/electron) =       5.6 ´ 105 electrons.

	(b)	The electric field in the dielectric is

			E = V/d.

		Thus we see that the minimum thickness is determined by the maximum field, which is the 

		dielectric strength:

			Emax = V/dmin ;

			5.0 ´ 107 V/m = (3.0 V)/dmin , which gives dmin = 6.0 ´ 10–8 m =        60 nm.

	(c)	We find the required area from

			C = KÅ0A/dmin ;

			30 ´ 10–15 F = (1.00 ´ 104)(8.85 ´ 10–12 C2/N · m2)A/(6.0 ´ 10–8 m), 

		which gives A =       2.0 ´ 10–14 m2.





87.	(a)	The capacitance is 

			C0 = Å0A/d = (8.85 ´ 10–12 C2/N · m2)(2.5 m2)/(3.0 ´ 10–3 m) = 7.38 ´ 10–9 F =        7.4 nF.

		The charge on the capacitor is

			Q0 = C0V = (7.38 ´ 10–9 F)(45 V) = 3.32 ´ 10–7 C =       0.33 mC.

		The electric field is

			E0 = V/d = (45 V)/(3.0 ´ 10–3 m) =      1.5 ´ 104 V/m.

		The stored energy is

			U0 = !C0V2 = !(7.38 ´ 10–9 F)(45 V)2 =       7.5 ´ 10–6 J.

	(b)	With the addition of the dielectric we have

			C = KC0 = (3.6)(7.38 ´ 10–9 F) = 2.66 ´ 10–8 F =       27 nF;

			Q = CV = (2.66 ´ 10–8 F)(45 V) =1 .20 ´ 10–7 C =       1.2 mC;

			E = V/d = (45 V)/(3.0 ´ 10–3 m) =      1.5 ´ 104 V/m;

			U = !CV2 = !KC0V2 =  KU0 = (3.6)(7.5 ´ 10–6 J) =       2.7 ´ 10–5 J.





88.	Because the sphere is conducting, there is no field inside.  The field outside is 

		E = Q/4pÅ0r2,

	so the energy density is 

		u = !Å0E2 = Q2/32p2Å0r4.  

	If we let the radius of the sphere that contains half the energy be r1 , we use a spherical shell of radius r and thickness dr as a differential element and two integrals to determine the ratio of energies:

		�

	If we want this ratio to be !, we have

		(r1 – r0)/r1 = !, which gives      r1 = 2r0 .





















89.	(a)	The capacitance is 

			C0 	= KÅ0A/d 

				= (3.7)(8.85 ´ 10–12 C2/N · m2)(8.5 in)(11 in)(2.54 ´ 10–2 m/in)2/(0.030 ´ 10–3 m) 

				= 6.58 ´ 10–8 F =        66 pF.

�

	(b)	The electric field is E = V/d, so the charge on the capacitor is

			Qmax 	= C0Vmax = C0Emaxd 

					= (6.58 ´ 10–8 F)(15 ´ 106 V/m)(0.030 ´ 10–3 m) 

					= 2.96 ´ 10–5 C =       30 mC.

	(c)	From the diagram we see that we need the same number of sheets of 

		paper as we have individual capacitors, but we need one more sheet 

		of aluminum than this.  Thus the thickness is 

			t 	= (n + 1)tAl + nd 

				= (101)(0.040 ´ 10–3 m) + (100)(0.030 ´ 10–3 m) = 7.04 ´ 10–3 m 

				=      7.0 mm.

	(d)	Because the capacitors are connected in parallel, we find the maximum voltage from the 

		voltage across a single capacitor that will cause breakdown:

			Vmax = Emaxd = (15 ´ 106 V/m)(0.030 ´ 10–3 m) =       450 V.







90.	(a)	The capacitance is 

			C 	= Å0A/d 

				= (8.85 ´ 10–12 C2/N · m2)(110 ´ 106 m2)/(1500 m) = 6.5 ´ 10–7 F =        0.65 mF.

	(b)	The charge on the capacitor is

			Q = CV = (6.5 ´ 10–7 F)(35 ´ 106 V) =       23 C.

	(c)	We find the stored energy from

			U = !CV2 = !(6.5 ´ 10–7 F)(35 ´ 106 V)2 =       4.0 ´ 108 J.
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