CHAPTER 25 – Electric Currents and Resistance



1.	The rate at which electrons pass any point in the wire is the current:

		I = 1.50 A = (1.50 C/s)/(1.60 ´ 10–19 C/electron) =        9.38 ´ 1018 electron/s.



2.	The charge that passes through the battery is

		?Q = I ?t = (5.7 A)(7.0 h)(3600 s/h) =        1.4 ´ 105 C.



3.	We find the current from

		I = ?Q/?t = (1000 ions)(1.60 ´ 10–19 C/ion)/(7.5 ´ 10–6 s) =       2.1 ´ 10–11 A.



4.	We find the resistance from 

		V = IR; 

		110 V = (4.2 A)R, which gives R =       26 W.



5.	We find the voltage from 

		V = IR = (0.25 A)(3000 W) =       7.5 ´ 102 V.



6.	For the device we have V = IR.  

	(a)	If we assume constant resistance and divide expressions for the two conditions, we get

			V2/V1 = I2/I1;

			0.90 = I2/(5.50 A), which gives I2 =       4.95 A.

	(b)	With the voltage constant, if we divide expressions for the two conditions, we get

			I2/I1 = R1/R2;

			I2/(5.50 A) = 1/0.90, which gives I2 =       6.11 A.



7.	The rate at which electrons leave the battery is the current:

		I = V/R = [(9.0 V)/(1.6 W)](60 s/min)/(1.60 ´ 10–19 C/electron) =        2.1 ´ 1021 electron/min.



8.	We find the resistance from 

		V = IR; 

		12 V = (0.50 A)R, which gives R =       24 W.

	The energy taken out of the battery is

		Energy = Pt = IVt = (0.50 A)(12 V)(1 min)(60 s/min) =       3.6 ´ 102 J.



9.	(a)	We find the resistance from 

			V = IR; 

			120 V = (7.5 A)R, which gives R =       16 W.

	(b)	The charge that passes through the hair dryer is

			?Q = I ?t = (7.5 A)(15 min)(60 s/min) =        6.8 ´ 103 C.



10.	We find the potential difference across the bird’s feet from 

		V = IR = (2500 A)(2.5 ´ 10–5 W/m)(4.0 ´ 10–2 m) =       2.5 ´ 10–3 V.



11.	We find the radius from 

		R = rL/A = rL/pr2;

		0.22 W  = (5.6 ´ 10–8 W · m)(1.00 m)/pr2, which gives r = 2.85 ´ 10–4 m,

	so the diameter is 5.7 ´ 10–4 m =       0.57 mm.



12.	We find the resistance from

		R  	= rL/A = rL/#pd2 

			= (1.68 ´ 10–8 W · m)(3.5 m)/#p(1.5 ´ 10–3 m)2 =        0.033 W.



13.	From the expression for the resistance, R = rL/A, we form the ratio

		RAl/RCu	= (rAl/rCu)(LAl/LCu)(ACu/AAl) = (rAl/rCu)(LAl/LCu)(dCu/dAl)2

				= [(2.65 ´ 10–8 W · m)/(1.68 ´ 10–8 W · m)][(10.0 m)/(20.0 m)][(2.5 mm)/(2.0 mm)]2

				= 1.2,   or      RAl = 1.2RCu. 



14.		Yes,      if we select the appropriate diameter.  From the expression for the resistance, R = rL/A, 

	we form the ratio

		RT/RCu = (rT/rCu)(LT/LCu)(ACu/AT) = (rT/rCu)(dCu/dT)2;

		1 = [(5.6 ´ 10–8 W · m)/(1.68 ´ 10–8 W · m)][(2.5 mm)/dT]2, which gives dT =         4.6 mm. 



15.	Because the material and area of the two pieces are the same, from the expression for the resistance, 

	R = rL/A, we see that the resistance is proportional to the length:

		R1/R2 = L1/L2 = 5.0.

	Because L1 + L2 = L, we have

		5.0L2 + L2 = L,   or   L2 = L/6.0,   and   L1 = 5.0L/6.0, so the wire should be cut at      1/6 the length.

	We find the resistance of each piece from

		R1 = (L1/L)R = (5.0/6.0)(10.0 W) =      8.3 W;

		R2 = (L2/L)R = (1/6.0)(10.0 W) =      1.7 W.

 

16.	We find the temperature change from

		R = R0(1 + a DT),  or  ?R = R0a DT;

		0.20R0 = R0[0.0068 (C°)–1] ?T, which gives ?T =       29 C°.



17.	For the wire we have R = V/I.  We find the temperature from

		R = R 0(1 + a DT); 

		(V/I) = (V/I0)(1 + a DT);

		(10.00 V/0.3618 A) = (10.00 V/0.4212 A){1 + [0.00429 (C°)–1](T – 20.0°C)}, which gives T =      58.3°C.



18.	We find the temperature from

		r0,T = rCu = r0,Cu(1 + aCu DT);

		5.6 ´ 10–8 W · m = (1.68 ´ 10–8 W · m){1 + [0.0068 (C°)–1](T – 20.0°C)}, which gives T =      363°C.



19.	We find the temperature from

		R = R0(1 + aCu DT);

		140 W = (12 W){1 + [0.0060 (C°)–1](T – 20.0°C)}, which gives T =      1.8 ´ 103 °C.



�

20.	For each direction through the solid, the length and area 

	will be constant, so we have R = rL/A. 

	(a)	In the x-direction, we have

			Rx 	= rLx/LyLz 

				= (3.0 ´ 10–5 W · m)(0.010 m)/(0.020 m)(0.040 m) 

				=      3.8 ´ 10–4 W.

	(b)	In the y-direction, we have

			Ry 	= rLy/LxLz 

				= (3.0 ´ 10–5 W · m)(0.020 m)/(0.010 m)(0.040 m) 

				=      1.5 ´ 10–3 W.

	(c)	In the z-direction, we have

			Rz 	= rLz/LxLy 

				= (3.0 ´ 10–5 W · m)(0.040 m)/(0.010 m)(0.020 m) 

				=      6.0 ´ 10–3 W.





21.	The dependence of the resistance on the dimensions is R = rL/A.  When we form the ratio for the two conditions, we get

		R2/R1 = (L2/L1)(A1/A2) = (!)(!) = #, so     R2 = #R1 .



22.	We use the temperature coefficients at 20°C.  For the total resistance we have

		R = RC + RN = RC0(1 + a C DT) + RN0(1 + a N DT) = RC0 + RN0 + RC0a C DT + RN0a N DT.

	If the total resistance does not change, we have

		RC + RN = RC0 + RN0 ,  or   

		RC0a C DT = – RN0a N DT;

		RC0[– 0.0005 (C°)–1] = – RN0[0.0004 (C°)–1], which gives RC0 = 0.8RN0 .

	For the total resistance we have

		4.70 kW =  RC0 + RN0 = 0.8RN0 + RN0 , which gives      RN0  = 2.61 kW,       and      RC0 = 2.09 kW.



23.	(a)	For a length x of the uniform wire we have

			V = IR = Ix/sA.

		If we find the potential gradient by differentiating, we get

			dV/dx = I/sA.

		Because the current is defined to flow from higher to lower potential, that is, opposite to the 

		potential gradient, we must introduce a negative sign: 

			I = dq/dt = – sA dV/dx.

	(b)	The expression for heat conduction through an area A is

			dQ/dt = – kA dT/dx,

		where the negative sign indicates heat flow from higher to lower temperature.

		We expect s and k to be related, because the free electrons can easily acquire thermal energy and 

		transmit it along the wire.



�

24.	(a)	We choose a cylindrical shell of radius r and thickness dr as a 

		differential element.  The area of the element is 2pr¬.  We add 

		(integrate) the resistances of all the shells:

			�

	(b)	For the given data we have

			R = [(3.0 ´ 10–5 W · m)/2p(0.030 m)] ln(1.8 mm/1.0 mm) =      9.4 ´ 10–5 W.

	(c)	For the resistance along the axis we have

			R 	= r¬/A = (3.0 ´ 10–5 W · m)(0.030 m)/p[(1.8 ´ 10–3 m)2 – (1.0 ´ 10–3 m)2] 

				=       0.13 W.











25.	We choose a spherical shell of radius r and thickness dr as a differential element.  The area of the element is 4pr2.  We add (integrate) the resistances of all the shells:

		�EMBED Word.Picture.8���









26.	(a)	When we take into account the change in resistivity and the change in dimensions, we get

			R = rL/A = r0(1 + a ?T)L0(1 + aT ?T)/A0(1 + aT ?T)2,   or 

			R/R0 = (1 + a ?T)/(1 + aT ?T);

			(140 W)/(12 W) = [1 + (4.5 ´ 10–3 /C°) ?T]/[1 + (5 ´ 10–6 /C°)?T], which gives ?T = 2.4 ´ 103 C°.

		Thus the operating temperature is

			T = T0 + ?T = 20°C + 2.4 ´ 103 C° =      2.4 ´ 103 °C.

	(b)	The thermal expansion has the effect of lowering the resistance because the area increase is 

		greater than the length increase.  For the temperature change, the new resistance from thermal 

		expansion is 

			Rthermal = R0/(1 + aT ?T) = (12 W)/[1 + (5 ´ 10–6 /C°)(2.4 ´ 103 C°)] = 11.9 W.

		The percentage of the actual change is

			%thermal = (11.9 W – 12 W)/(140 W – 12 W) =      – 0.1%.

		The change in r increases the resistance.  For the temperature change, the new resistance from the 

		increase in r is 

			Rresistivity = R0(1 + a ?T) = (12 W)[1 + (4.5 ´ 10–3 /C°)(2.4 ´ 103 C°)] = 141.6 W.

		The percentage of the actual change is

			%resistivity = (141.6 W – 12 W)/(140 W – 12 W) =      + 101%.





27.	We find the power from

		P = IV = (0.350 A)(9.0 V) =      3.2 W.



28.	For an ohmic resistor, we have

		P = IV = V 2/R,   or   R = V 2/P = (240 V)2/(3.1 ´ 103 W) =      19 W.



29.	From P = V 2/R, we see that the maximum voltage will produce the maximum power, so we have

		# W = Vmax2/(5.4 ´ 103 W), which gives Vmax =      37 V.



30.	(a)	From P = V 2/R, we see that the lower power setting,      600 W,       must have the higher 

		resistance.

	(b)	At the lower setting, we have

			P1 = V 2/R1 ;

			600 W = (120 V)2/R1 , which gives R1 =      24 W.

	(c)	At the higher setting, we have

			P2 = V 2/R2 ;

			1200 W = (120 V)2/R2 , which gives R2 =      12 W.



31.	(a)	We find the resistance from

			P1 = V 2/R1 ;

			60 W = (120 V)2/R1 , which gives R1 =      240 W.

		The current is

			I1 = V/R1 = (120 V)/(240 W) =      0.50 A.

	(b)	We find the resistance from

			P2 = V 2/R2 ;

			150 W = (120 V)2/R2 , which gives R2 =      96 W.

		The current is

			I2 = V/R2 = (120 V)/(96 W) =      1.25 A.











32.	We find the operating resistance from

		P = V 2/R;

		60 W = (240 V) 2/R, which gives R = 9.6 ´ 102 W.

	If we assume that the resistance stays the same, for the lower voltage we have

		P = V 2/R = (120 V)2/(9.6 ´ 102 W) =       15 W.

	At one-quarter the power, the bulb will be       much dimmer.



33.	We find the energy used by the toaster from

		Energy = Pt = (0.550 kW)(10 min)/(60 min/h) =       0.092 kWh.

	The cost for a month would be

		Cost = Energy(rate) = (0.092 kWh/day)(5 days/wk)(4 wk/month)(12¢/kWh) =      22¢/month.



34.	The cost for a year would be

		Cost 	= Energy(rate) = Pt(rate) 

				= (60 ´ 10–3 kW)(1 yr)(365 days/yr)(24 h/day)($0.110/kWh) =      $57.82.

	Note that power companies may ignore significant figures.



35.	90 A · h is the total charge that passed through the battery when it was charged.  

	We find the energy from

		Energy = Pt = VIt = VQ = (12 V)(90 A · h)(10–3 kW/W) =       1.1 kWh      = 3.9 ´ 106 J.



36.	(a)	We find the maximum power output from

			Pmax = ImaxV = (0.028 A)(9.0 V) =      0.25 W.

	(b)	The power output eventually becomes thermal energy.  The circuit is designed to allow the 

		dissipation of the maximum power, which we assume is the same.  Thus we have

			Pmax = ImaxV = Imax¢V¢;

			0.25 W = Imax¢(7.0 V), which gives Imax¢ = 0.036 A =      36 mA. 



37.	The total power will be the sum, so we have

		Ptotal = ItotalV;

		N(100 W) = (2.5 A)(120 V), which gives N =      3.



38.	The power rating is the mechanical power output, so we have

		efficiency 	= output/input = Pmechanical/Pelectrical 

					= (0.50 hp)(746 W/hp)/(4.6 A)(120 V) = 0.676 =      68%.



39.	The required current to deliver the power is I = P/V, and the wasted power (thermal losses in the wires) is Ploss = I 2R.  For the two conditions we have

		I1 = (520 kW)/(12 kV) = 43.3 A;  Ploss1 = (43.3 A)2(3.0 W)(10–3 kW/W) = 5.63 kW;

		I2 = (520 kW)/(50 kV) = 10.4 A;  Ploss2 = (10.4 A)2(3.0 W)(10–3 kW/W) = 0.324 kW.

	Thus the decrease in power loss is

		?Ploss = Ploss1 – Ploss2 = 5.63 kW – 0.324 kW =       5.3 kW.





















40.	(a)	We find the resistance from

			P = V 2/R;

			2800 W = (240 V) 2/R, which gives R =       20.6 W.

	(b)	If 80% of the electrical energy is used to heat the water to the boiling point, we have

			0.80Energyelec = 0.80 Pelect = mc ?T;

			(0.80)(2800 W)t = (100 mL)(1 g/mL)(10–3 kg/g)(4186 J/kg · C°)(100°C – 20°C), 

		which gives t =      15 s.

	(c)	We find the cost from

			Cost 	= Energy(rate) = Pelect (rate) 

					= [(2.80 kW)(15 s)/(3600 s/h)](10¢/kWh) =      0.12¢.



41.	For the water to remove the thermal energy produced, we have

		P = IV = (m/t)c ?T;

		(14.5 A)(240 V) = (m/t)(4186 J/kg · C°)(6.50 C°), which gives m/t =      0.128 kg/s.





42.	If 60% of the electrical energy is used to heat the water, we have

		0.60Energyelec = 0.60 IVt = mc ?T;

		(0.60)I(12 V)(6.0 min)(60 s/min) = (150 mL)(1 g/mL)(10–3 kg/g)(4186 J/kg · C°)(95°C – 5°C), 

	which gives I =      22 A.

	The resistance of the heating  coil is

		R = V/I = (12 V)/(22 A) =       0.55 W.



43.	We find the peak current from the peak voltage:

		V0 = v2 Vrms = I0R;

		v2(120 V) = I0(1.8 ´ 103 W), which gives I0 =      0.094 A. 



44.	We find the peak current from the peak voltage:

		V0 = I0R;

		180 V = I0(330 W), which gives I0 =      0.545 A. 

	The rms current is

		Irms = I0/v2 = (0.545 A)/v2 =      0.386 A.



45.	(a)	Because the total resistance is

			Rtotal = V/I, when I = 0, the resistance is         infinite.

	(b)	With one light bulb on, we have

			P = IrmsVrms = Vrms2/R;

			75 W = (120 V)2/R, which gives R =      1.9 ´ 102 W. 



46.	We find the rms voltage from

		P = IrmsVrms ;

		1500 W = [(6.0 A)/v2]Vrms , which gives Vrms =       3.5 ´ 102 V.



47.	The peak voltage is

		V0 = v2 Vrms = v2(450 V) =       636 V.

	We find the peak current from

		P = IrmsVrms = (I0/v2)Vrms ;

		1800 W = (I0/v2)(450 V), which gives I0 =       5.66 A. 









48.	The maximum instantaneous power is

		P0 = I0V0 =(v2 Irms)(v2 Vrms) = 2P = 2(3.0 hp) =       6.0 hp      (4.5 kW).

	For the maximum current, we have

		P = IrmsVrms = (I0/v2)Vrms ;

		(3.0 hp)(746 W/hp) = (I0/v2)(240 V), which gives I0 =       13 A. 



49.	For the average power, we have

		P = IrmsVrms = Vrms2/R = (240 V)2/(38 W) = 1.5 ´ 103 W =      1.5 kW.

	The maximum power is 

		P0 = I0V0 =(v2 Irms)(v2 Vrms) = 2P = 2(1.5 kW) =       3.0 kW.

	Because the power is always positive, the minimum power is       zero.



50.	(a)	We find the frequency from the coefficient of t:

			2pf = 210 s–1, which gives f =       33.4 Hz.

	(b)	The maximum current is 1.80 A, so the rms current is

			Irms = I0/v2 = (1.80 A)/v2 =      1.27 A.

	(c)	For the voltage we have

			V = IR = (1.80 A)(42.0 W) sin (210 s–1)t =       (75.6 V) sin (210 s–1)t.



51.	From Example 25-12 we know that the density of free electrons in copper is 

		n = 8.4 ´ 1028 m–3.

	(a)	We find the drift speed from

			I = neAvd = ne(#pD2)vd ;

			2.5 ´ 10–6 A = (8.4 ´ 1028 m–3)(1.60 ´ 10–19 C)[#p(0.55 ´ 10–3 m)2]vd , 

		which gives vd =      7.8 ´ 10–10 m/s.

	(b)	The current density is

			j = I/A = (2.5 ´ 10–6 A)/#p(0.55 ´ 10–3 m)2 =      10.5 A/m2 along the wire.

	(c)	We find the electric field from

			j = E/r;

			10.5 A/m2 = E/(1.68 ´ 10–8 W · m), which gives E =      1.8 ´ 10–7 V/m.



52.	(a)	We find the resistance from

			R = V/I = (22.0 mV)/(750 mA) =       0.0293 W.

	(b)	We find the resistivity from

			R = rL/A;

			0.0293 W = r(5.00 m)/p(1.0 ´ 10–3 m)2, which gives r =      1.8 ´ 10–8 W · m.

	(c)	The current density is

			j = I/A = (750 ´ 10–3 A)/p(1.0 ´ 10–3 m)2 =      2.4 ´ 105 A/m2 along the wire.

	(d)	We find the electric field from

			E = V/L = (22.0 ´ 10–3 V)/(5.00 m) =      4.40 ´ 10–3 V/m.

	(e)	We find the density of free electrons from the drift speed:

			I = neAvd = ne(pr2)vd ;

			750 ´ 10–3 A = n(1.60 ´ 10–19 C)p(1.0 ´ 10–3 m)2(1.7 ´ 10–5 m/s), which gives n =      8.8 ´ 1028 m–3.



53.	If we take north as the positive direction, for the current density we have

		I /A 	= n+(+ 2e)vd+ + n–(– e)vd–  

				= (2.8 ´ 1012 m–3)(2)(1.60 ´ 10–19 C)(2.0 ´ 106 m/s) + 

						(8.0 ´ 1011 m–3)(– 1.60 ´ 10–19 C)(– 7.2 ´ 106 m/s) =       2.7 A/m2  north.



54.	The charge is

		?Q = I ?t = (1.00 A · h)(3600 s/h) =        3.60 ´ 103 C.



55.	We find the current when the lights are on from

		P = IV;

		92 W = I(12 V), which gives I = 7.67 A. 

	90 A · h is the total charge that passes through the battery when it is completely discharged.  Thus the time for complete discharge is

		t = Q/I = (90 A · h)/(7.67 A) =       12 h.



56.	We find the current from

		P = IV;

		(1.5 hp)(746 W/hp) = I(120 V), which gives I =       9.3 A. 



57.	We find the conductance from

		G = 1/R = I/V = (0.800 A)/(12.0 V) =       6.67´ 10–2 S.



58.	(a)	For the resistance of each wire we have

			RCu = rCuLCu/A = (1.68 ´ 10–8 W · m)(5.0 m)/p(0.50 ´ 10–3 m)2  = 0.107 W.

			RAl = rAlLAl/A = (2.65 ´ 10–8 W · m)(5.0 m)/p(0.50 ´ 10–3 m)2  = 0.169 W.

		Thus the total resistance is

			R = RCu + RAl = 0.107 W + 0.169 W =      0.28 W.

	(b)	We find the current from

			V = IR; 

			25 V = I(0.28 W), which gives I =       89 A.

	(c)	The current must be the same for the two wires, so we have

			VCu = IRCu = (89 A)(0.107 W) =      10 V.

			VAl = IRAl = (89 A)(0.169 W) =      15 V.



59.	(a)	We find the resistance from

			V = IR;

			2(1.5 V) = (0.350 A)R , which gives R =      8.6 W.

		The power dissipated is

			P = IV = (0.350 A)(3.0 V) =      1.1 W.

	(b)	We assume that the resistance does not change, so we have

			P2/P1 = (V2/V1)2 = (6.0 V/3.0 V)2 =      4´.

		The increased power would last for a short time, until the increased temperature of the filament 

		would burn out the bulb.



60.	We find the resistance of the heating element from

		P = IV = V 2/R;

		900 W = (110 V)2/R, which gives R = 13.4 W.

	We find the diameter from

		R = rL/A = rL/#pD2 = 4rL/pD2;

		13.4 W = 4(9.71 ´ 10–8 W · m)(5.4 m)/pD2, which gives D = 2.2 ´ 10–4 m =      0.22 mm.



61.	(a)	The daily energy use is

			Energy 	= (1.8 kW)(3.0 h/day) + 4(0.10 kW)(6.0 h/day) + (3.0 kW)(1.4 h/day) + 2.0 kWh/day 

					= 14 kWh/day.

		The cost for a month is

			Cost = Energy(rate) = (14 kWh/day)(30 days/month)($0.105/kWh) =       $44.

	(b)	For a 35-percent efficient power plant, we find the amount of coal from

			0.35m(7000 kcal/kg)(4186 J/kcal) = (14 kWh/day)(365 days/yr)(103 W/kW)(3600 s/h), 

		which gives m =      1.8 ´ 103 kg/yr.



62.	The current required to deliver the power is 

		I = P/V.

	Thus the loss in a length L of the two wires is

		Ploss = I2R = (P/V)2r2L/A, so the loss per unit length is 

		Ploss/L = [(10 ´ 106 W)/(120 V)]2(1.68 ´ 10–8 W · m)(2)/p(0.25 ´ 10–2 m)2 = 1.19 ´ 107 W/m.

	The cost of this loss is

		Cost/t = (Ploss/L)(rate) = (1.19 ´ 104 kW/m)($0.10 /kWh) =      $1.2 ´ 103 /h · m.

	Note that the loss in one meter of line is greater than the power delivered, so the input power would have to be much greater!



63.	(a)	The dependence of the power output on the voltage is P = V 2/R.  When we form the ratio for the 

		two conditions, we get

			P2/P1 = (V2/V1)2 .

		For the percentage change we have

			[(P2 – P1)/P1](100) = [(V2/V1)2 – 1](100) = [(105 V/117 V)2 – 1](100) =       – 19.5%.

	(b)	The decreased power output would cause a decrease in the temperature, so the resistance would 

		decrease.  This means for the reduced voltage, the      

			percentage decrease in the power output would be less      than calculated.



64.	The maximum current will produce the maximum rate of heating.  We can find the resistance 

	per meter from

		P/L = I 2R/L;

		1.6 W/m = (30 A) 2(R/L ), which gives R/L = 1.78 ´ 10–3 W/m.

	From the dependence of the resistance on the dimensions, R = rL/A, we get

		R/L = r/#pD2 = 4r/pD2;

		1.78 ´ 10–3 W/m = 4(1.68 ´ 10–8 W · m)/pD2, which gives D = 3.5 ´ 10–3 m =       3.5 mm.



65.	(a)	If we assume the values are rms values, we find the power from

			P = IV = (12 A)(120 V) =       1.44 ´ 103 W.

	(b)	We find the resistance from

			R1 = rL/A1 = (1.68 ´ 10–8 W · m)(15 m)/#p(1.628 ´ 10–3 m)2 = 0.12 W.

		The power dissipated in the wiring is

			Ploss1 = I2R1 = (12 A)2(0.12 W) =      17 W.

	(c)	We find the resistance of the #12 wire from

			R2 = rL/A2 = (1.68 ´ 10–8 W · m)(15 m)/#p(2.053 ´ 10–3 m)2 = 0.076 W.

		The power dissipated in the wiring is

			Ploss2 = I2R2 = (12 A)2(0.076 W) =      11 W.

	(d)	The difference in cost is

			cost1 – cost2 	= (Ploss1 – Ploss2)t(rate) 

						= (17 W – 11 W)(12 h/day)(10–3 kW/W)($0.10 /kWh) 

						= $7.8 ´ 10–3 /day ˜       0.8¢/day.



66.	The dependence of the power output on the voltage is P = V 2/R.  If the change in voltage is small, we can approximate it by a differential, so we have

		dP = (2V/R) dV,  or  dP/P = 2 dV/V,

	so the percentage change in power is twice the percentage change in voltage.

	If we assume that the drop from 60 W to 50 W is small, we have

		(dV/V)(100) = ![(50 W – 60 W)/(60 W)](100) = – 8.3%.

	Thus the required voltage drop is       8.3%.







67.	(a)	We find the input power from

			Poutput = (efficiency)Pinput ;

			900 W = (0.60)Pinput , which gives Pinput = 1500 W =       1.5 kW.

	(b)	We find the current from

			P = IrmsVrms ;

			1500 W = Irms(120 V), which gives Irms =       12.5 A.



68.	Because the volume is constant, we have

		AL = A¢L¢,   or   A¢/A = L/L¢ = 1/3.00.

	The dependence of the resistance on the dimensions is R = rL/A.  When we form the ratio for the two wires, we get

		R¢/R = (L¢/L)(A/A¢)

		R¢/(1.00 W) = (3.00)(3.00), which gives R¢ =       9.00 W.



69.	The dependence of the resistance on the dimensions is R = rL/A.  When we form the ratio for the two wires, we get

		R1/R2 = (L1/L2)(A2/A1) = (L1/L2)(D2/D1)2 = (2)(!)2 = !.

	For a fixed voltage, the power dissipation is 

		P = V 2/R.

	When we form the ratio for the two wires, we get

		P1/P2 = R2/R1 = 1/! =      2.



70.	Heat must be provided to replace the heat loss through the walls and to raise the temperature of the air brought in:

		P 	= Ploss + mc ?T = 850 kcal/h + (2 /h)(1.29 kg/m3)(68 m3)(0.17 kcal/kg · C°)(20°C – 5°C) 

			= 1.30 ´ 103 kcal/h = (1.30 ´ 103 kcal/h)(4186 J/kcal)/(3600 s/h) = 1.51 ´ 103 W =      1.5 kW.



71.	For the resistance, we have

		R = rL/A = rL/#pd2; 

		6.50 W = 4(1.68 ´ 10–8 W · m)L/pd2.

	The mass of the wire is

		m = rmAL; 

		0.0180 kg = (8.9 ´ 103 kg/m3)#pd2L.

	This gives us two equations with two unknowns, L and d.  When we solve them, we get

		d = 3.03 ´ 10–4 m =      0.303 mm,      and   L =       28.0 m.



72.	(a)	We find the average power required to provide the force to balance the average retarding 

		force from

			P = Fv = (240 N)(40 km/h)/(3.6 ks/h)(746 W/hp) =       3.6 hp.

	(b)	We find the average current from

			P = IV ;

			(3.57 hp)(746 W/hp) = I(12 V), which gives I = 222 A.

		52 A · h is the total charge that passes through the battery when it is completely discharged.  

		Thus the time for complete discharge is

			t = Q/I = (26)(52 A · h)/(222 A) = 6.08 h.

		In this time the car can travel

			x = vt = (40 km/h)(6.08 h) =       2.4 ´ 102 km.











73.	(a)	We find the initial power consumption from

			P = V 2/R0 = (120 V)2/(12 W) = 1.2 ´ 103 W =      1.2 kW.

	(b)	The power consumption when the bulb is hot is

			P = V 2/R = (120 V)2/(140 W) =      100 W. 

		The designated power is the operating power.



74.	The stored energy in the capacitor must provide the energy used during the lapse:

		U = !CV2 = Pt;

		!C(120 V)2 = (150 W)(0.10 s), which gives C =      2.1 ´ 10–3 F.



75.	The time for a proton to travel completely around the accelerator is

		t = L/v.

	In this time all the protons stored in the beam will pass a point, so the current is 

		I = Ne/t = Nev/L;

		11 ´ 10–3 A = N(1.60 ´ 10–19 C)(3.0 ´ 108 m/s)/(6300 m), which gives N =      1.4 ´ 1012 protons.



76.	From Example 25–12 we know that the density of free electrons in copper is 

		n = 8.4 ´ 1028 m–3.

	With the alternating current an electron will oscillate with SHM.  We find the rms current from

		P = IrmsVrms ;

		500 W = Irms(120 V), which gives Irms = 4.17 A, so the peak current is 

		I0 = v2 Irms = v2(4.17 A) = 5.89 A.

	The peak current corresponds to the maximum drift speed, which we find from

		I0 = neAvdmax = ne(#pD2)vdmax ;

		5.89 A = (8.4 ´ 1028 m–3)(1.60 ´ 10–19 C)[#p(1.8 ´ 10–3 m)2]vdmax , 

	which gives vdmax = 1.72 ´ 10–4 m/s.

	For SHM the maximum speed is related to the maximum displacement:

		vdmax = Aw = A(2pf );

		1.72 ´ 10–4 m/s = A[2p(60 Hz)], which gives A = 4.57 ´ 10–7 m.

	For SHM the electron will move from one extreme to the other, so the total distance covered is 2A: 

		9.1 ´ 10–7 m.



77.	In the steady state, there is no buildup of charge in the conductor, so the current must be the same at each end.  Thus the current densities are

		ja = I/Aa = (2.0 A)/#p(3.0 ´ 10–3 m)2 =      2.8 ´ 105 A/m2;

		jb = I/Ab = (2.0 A)/#p(4.0 ´ 10–3 m)2 =      1.6 ´ 105 A/m2.





�

78.	To find the resistance of the cylinder, we choose a 

	vertical slice at a distance x from the origin, with 

	diameter d = a + ax, where a = (b – a)/¬, and thickness dx.  

	We find the resistance by integrating over these slices:
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