CHAPTER 26 – DC Circuits



1.	(a)	For the current in the single loop, we have

			Ia = V/(Ra + r) = (8.50 V)/(68.0 W + 0.900 W) = 0.123 A.

		For the terminal voltage of the battery, we have

			Va = å – Iar = 8.50 V – (0.123 A)(0.900 W) =       8.39 V.

	(b)	For the current in the single loop, we have

			Ib = V/(Rb + r) = (8.50 V)/(680 W + 0.900 W) = 0.0125 A.

		For the terminal voltage of the battery, we have

			Vb = å – Ibr = 8.50 V – (0.0125 A)(0.900 W) =       8.49 V.



2.	The voltage across the bulb is the terminal voltage of the four cells:

		V = IRbulb = 4(å – Ir);

		(0.62 A)(12 W) = 4[2.0 V – (0.62 A)r], which gives r =      0.23 W.



3.	If we can ignore the resistance of the ammeter, for the single loop we have

		I = å/r;

		25 A = (1.5 V)/r, which gives r =      0.060 W.



4.	We find the internal resistance from

		V  = å – Ir;

		9.8 V = [12.0 V – (60 A)r], which gives r =      0.037 W.

	Because the terminal voltage is the voltage across the starter, we have

		V = IR;

		9.8 V = (60 A)R, which gives R =      0.16 W.



5.	When the bulbs are connected in series, the equivalent resistance is

		Rseries = ?Ri = 4Rbulb = 4(90 W) =       360 W.

	When the bulbs are connected in parallel, we find the equivalent resistance from

		1/Rparallel = ?(1/Ri) = 4/Rbulb = 4/(90 W), which gives Rparallel =       23 W.

	

6.	(a)	When the bulbs are connected in series, the equivalent resistance is

			Rseries = ?Ri = 3R1 + 3R2 = 3(40 W) + 3(80 W) =       360 W.

	(b)	When the bulbs are connected in parallel, we find the equivalent resistance from

			1/Rparallel = ?(1/Ri) = (3/R1) + (3/R2) = [3/(40 W)] + [3/(80 W)], which gives Rparallel =       8.9 W.



7.	If we use them as single resistors, we have

		R1 =      25 W;        R2 =      70 W.

	When the resistors are connected in series, the equivalent resistance is

		Rseries = ?Ri = R1 + R2 = 25 W + 70 W =       95 W.

	When the resistors are connected in parallel, we find the equivalent resistance from

		1/Rparallel = ?(1/Ri) = (1/R1) + (1/R2) = [1/(25 W)] + [1/(70 W)], which gives Rparallel =       18 W.



8.	Because resistance increases when resistors are connected in series, the maximum resistance is

		Rseries = R1 + R2 + R3 = 500 W + 900 W + 1400 W = 2800 W =       2.80 kW.

	Because resistance decreases when resistors are connected in parallel, we find the minimum 

	resistance from

		1/Rparallel = (1/R1) + (1/R2) + (1/R3) = [1/(500 W)] + [1/(900 W)] + [1/(1400 W)], 

	which gives Rparallel =       261 W.
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9.	The voltage is the same across resistors in parallel, but is less 

	across a resistor in a series connection.  We connect three 1.0-W 

	resistors in series as shown in the diagram.  Each resistor has 

	the same current and thus the same voltage:

		Vi = @V = @(6.0 V) = 2.0 V.

	Thus we can get a 4.0-V output between a and c.
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10.	When the resistors are connected in series, as shown in A, 

	we have

		RA = ?Ri = 3R = 3(1.20 kW) =       3.60 kW.

	When the resistors are connected in parallel, as shown in B, 

	we have

		1/RB = ?(1/Ri) = 3/R = 3/(1.20 kW), so RB =       0.40 kW.

	In circuit C, we find the equivalent resistance of the 

	two resistors in parallel:

		1/R1 = ?(1/Ri) = 2/R = 2/(1.20 kW), so R1 = 0.60 kW.

	This resistance is in series with the third resistor, 

	so we have

		RC = R1 + R = 0.60 kW + 1.20 kW =       1.80 kW.

	In circuit D, we find the equivalent resistance of the 

	two resistors in series:

		R2 = R + R = 1.20 kW + 1.20 kW = 2.40 kW.

	This resistance is in parallel with the third resistor, 

	so we have

		1/RD = (1/R2) + (1/R) = (1/2.40 kW) + (1/1.20 kW), so RD =       0.80 kW.
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11.	We can reduce the circuit to a single loop by successively 

	combining parallel and series combinations.  

	We combine R1 and R2 , which are in series:

		R7	= R1 + R2 = 2.8 kW + 2.8 kW = 5.6 kW.

	We combine R3 and R7 , which are in parallel:

		1/R8 = (1/R3) + (1/R7) = [1/(2.8 kW)] + [1/(5.6 kW)],

	which gives R8 = 1.87 kW.

	We  combine R4 and R8 , which are in series:

		R9	= R4 + R8 = 2.8 kW + 1.87 kW = 4.67 kW.

	We combine R5 and R9 , which are in parallel:

		1/R10 = (1/R5) + (1/R9) = [1/(2.8 kW)] + [1/(4.67 kW)],

	which gives R10 = 1.75 kW.

	We  combine R10 and R6 , which are in series:

		Req = R10 + R6 = 1.75 kW + 2.8 kW =       4.6 kW.































12.	(a)	In series the current must be the same for all bulbs.  If all bulbs have the same resistance, they 

		will have the same voltage:

			Vbulb = V/N = (110 V)/8 =       13.8 V.

	(b)	We find the resistance of each bulb from

			Rbulb = Vbulb/I = (13.8 V)/(0.60 A) =      23 W.

		The power dissipated in each bulb is 

			Pbulb = IVbulb = (0.60 A)(13.8 V) =      8.3 W.
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13.	For the parallel combination, the total current from the source is

		I = NIbulb = 8(0.340 A) = 2.72 A.

	The voltage across the leads is

		Vleads = IRleads = (2.72 A)(1.5 W) = 4.1 V.

	The voltage across each of the bulbs is

		Vbulb = V – Vleads = 110 V – 4.1 V = 106 V.

	We find the resistance of a bulb from

		Rbulb = Vbulb/Ibulb = (106 V)/(0.340 A) =      310 W.

	The power dissipated in the leads is IVleads and the total power used 

	is IV, so the fraction wasted is

		IVleads/IV = Vleads/V = (4.1 V)/(110 V) = 0.037 =      3.7%.























14.	In series the current must be the same for all bulbs.  If all bulbs have the same resistance, they will have the same voltage:

		Vbulb = V/N = (110 V)/8 = 13.8 V.

	We find the resistance of each bulb from

		Pbulb = Vbulb2/Rbulb ;

		7.0 W = (13.8 V)2/Rbulb , which gives Rbulb =      27 W.



15.	Fortunately the required resistance is less.  We can reduce the resistance by adding a parallel resistor, which does not require breaking the circuit.  We find the necessary resistance from

		1/R = (1/R1) + (1/R2);

		1/(320 W) = [1/(480 W)] + (1/R2), which gives R2 =       960 W in parallel.



16.	The equivalent resistance of the two resistors connected in series is

		Rs = R1 + R2 .

	We find the equivalent resistance of the two resistors connected in parallel from

		1/Rp = (1/R1) + (1/R2),   or   Rp = R1R2/(R1 + R2).

	The power dissipated in a resistor is P = V2/R, so the ratio of the two powers is

		Pp/Ps = Rs/Rp = (R1 + R2)2/R1R2 = 4.

	When we expand the square, we get

		R12 + 2R1R2 + R22 = 4R1R2 ,   or  R12 – 2R1R2 + R22 = (R1 – R2)2 = 0, which gives R2 = R1 =      1.6 kW.



17.	With the two bulbs connected in parallel, there will be 110 V across each bulb, so the total power will be 75 W + 40 W = 115 W.  We find the net resistance of the bulbs from 

		P = V 2/R;

		115 W = (110 V)2/R, which gives R =       105 W.











�

18.	We can reduce the circuit to a single loop by successively 

	combining parallel and series combinations.  

	We combine R1 and R2 , which are in series:

		R7 = R1 + R2 = 2.20 kW + 2.20 kW = 4.40 kW.

	We combine R3 and R7 , which are in parallel:

		1/R8 = (1/R3) + (1/R7) = [1/(2.20 kW)] + [1/(4.40 kW)],

	which gives R8 = 1.47 kW.

	We  combine R4 and R8 , which are in series:

		R9 = R4 + R8 = 2.20 kW + 1.47 kW = 3.67 kW.

	We combine R5 and R9 , which are in parallel:

		1/R10 = (1/R5) + (1/R9) = [1/(2.20 kW)] + [1/(3.67 kW)],

	which gives R10 = 1.38 kW.

	We  combine R10 and R6 , which are in series:

		Req = R10 + R6 = 1.38 kW + 2.20 kW = 3.58 kW.

	The current in the single loop is the current through R6 :

		I6 = I = å/Req = (12 V)/(3.58 kW) =      3.36 mA.

	For VAC we have

		VAC = IR10 = (3.36 mA)(1.38 kW) = 4.63 V.

	This allows us to find I5 and I4 ;

		I5 = VAC/R5 = (4.63 V)/(2.20 kW) =       2.11 mA;

		I4 = VAC/R9 = (4.63 V)/(3.67 kW) =       1.26 mA.

	For VAB we have

		VAB = I4R8 = (1.26 mA)(1.47 kW) = 1.85 V.

	This allows us to find I3 , I2 , and I1 ;

		I3 = VAB/R3 = (1.85 V)/(2.20 kW) =       0.84 mA;

		I1 = I2 = VAB/R7 = (1.85 V)/(4.40 kW) =       0.42 mA.

	From above, we have      VAB = 1.85 V.

















































19.	(a)	When the switch is closed the addition of R2 to the parallel set will decrease the equivalent 

		resistance, so the current from the battery will increase.  This causes an increase in the voltage 

		across R1 , and a corresponding decrease across R3 and R4.  The voltage across R2 increases from zero.  

		Thus we have      V1 and V2 increase; V3 and V4 decrease.

	(b)	The current through R1 has increased.  This current is now split into three, so currents through 

		R3 and R4 decrease.  Thus we have

			I1 (= I) and I2 increase; I3 and I4 decrease.

	(c)	The current through the battery has increased, so the power output of the battery       increases.

�

	(d)	Before the switch is closed,      I2 = 0.      We find the 

		resistance for R3 and R4 in parallel from

			1/RA = ?(1/Ri) = 2/R3 = 2/(100 W), 

		which gives RA = 50 W.

		For the single loop, we have

			I 	= I1 = V/(R1 + RA) 

				= (45.0 V)/(100 W + 50 W) =      0.300 A.

		This current will split evenly through R3 and R4 :

			I3 = I4 =  !I = !(0.300 A) =      0.150 A.

		After the switch is closed, we find the 

		resistance for R2 , R3 , and R4 in parallel from

			1/RB = ?(1/Ri) = 3/R3 = 3/(100 W), 

		which gives RB = 33.3 W.

		For the single loop, we have

			I 	= I1 = V/(R1 + RB) 

				= (45.0 V)/(100 W + 33.3 W) =      0.338 A.

		This current will split evenly through R2 , R3 , and R4 :

			I2 = I3 = I4 =  @I = @(0.338 A) =      0.113 A.



20.	(a)	When the switch is opened, the removal of a resistor from the parallel set will increase the 

		equivalent resistance, so the current from the battery will decrease.  This causes a decrease in the 

		voltage across R1 , and a corresponding increase across R2 .  The voltage across R3 decreases to zero.  

		Thus we have      V1 and V3 decrease; V2 increases.

	(b)	The current through R1 has decreased.  The current through R2 has increased.  The current through 

		R3 has decreased to zero.  Thus we have

			I1 (= I) and I3 decrease; I2 increases.

	(c)	Because the current through the battery decreases, the Ir term decreases, so the terminal voltage of 
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		the battery will      increase.

	(d)	When the switch is closed, we find the 

		resistance for R2 and R3 in parallel from

			1/RA = ?(1/Ri) = 2/R = 2/(5.50 W), 

		which gives RA = 2.75 W.

		For the single loop, we have

			I 	= V/(R1 + RA + r) 

				= (12.0 V)/(5.50 W + 2.75 W + 0.50 W) = 1.37 A.

		For the terminal voltage of the battery, we have

			Vab = å – Ir = 12.0 V – (1.37 A)(0.50 W) =       11.3 V.

	(e)	When the switch is open, for the single loop, 

		we have

			I¢	= V/(R1 + R2 + r) 

				= (12.0 V)/(5.50 W + 5.50 W + 0.50 W) = 1.04 A.

		For the terminal voltage of the battery, we have

			Vab¢ = å – I¢r = 12.0 V – (1.04 A)(0.50 W) =       11.5 V.

21.	We find the resistance of a bulb from the nominal rating:

		Rbulb = Vnominal2/Pnominal = (12.0 V)2/(3.0 W) = 48 W.

	We find the current through each bulb when connected to the battery from:

		Ibulb = V/Rbulb = (11.8 V)/(48 W) = 0.246 A.

	Because the bulbs are in parallel, the current through the battery is 

		I = 2Ibulb = 2(0.246 A) = 0.492 A.

	We find the internal resistance from

		V  = å – Ir;

		11.8 V = [12.0 V – (0.492 A)r], which gives r =      0.4 W.
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22.	We find the resistance for R1 and R2 in parallel from

		1/Rp = (1/R1) + (1/R2) = [1/(3.8 kW)] + [1/(2.1 kW)], 

	which gives Rp = 1.35 kW.

	Because the same current passes through Rp and R3 , the 

	higher resistor will have the higher power dissipation, 

	so the limiting resistor is R3 , which will have a power 

	dissipation of ! W.  We find the current from

		P3max = I3max2R3 ;

		0.50 W = I3max2(1.8 ´ 103 W), which gives I3max = 0.0167 A.

	The maximum voltage for the network is

		Vmax 	= I3max(Rp + R3) 

				= (0.0167 A)(1.35 ´ 103 W + 1.8 ´ 103 W) =      53 V.



23.	For the current in the single loop, we have
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		I	= V/(R1 + R2 + r) 

			= (9.0 V)/(8.0 W + 12.0 W + 2.0 W) =       0.41 A.

	For the terminal voltage of the battery, we have

		Vab = å – Ir = 9.0 V – (0.41 A)(2.0 W) = 8.18 V.

	The current in a resistor goes from high to low potential.

	For the voltage changes across the resistors, we have

		Vbc = – IR2 = – (0.41 A)(12.0 W) = – 4.91 V;

		Vca = – IR1 = – (0.41 A)(8.0 W) = – 3.27 V.

	For the sum of the voltage changes, we have

		Vab + Vbc + Vca = 8.18 V – 4.91 V – 3.27 V = 0.
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24.	For the loop, we start at point a:

		– IR – å2 – Ir2 + å1 – Ir1 = 0;

		 – I(6.6 W) – 12 V – I(2 W) + 18 V – I(1 W) = 0, 

	which gives I = 0.625 A.

	The top battery is discharging, so we have

		V1 = å1 – Ir1 = 18 V – (0.625 A)(1 W) =       17.4 V.

	The bottom battery is charging, so we have

		V2 = å2 + Ir2 = 12 V + (0.625 A)(2 W) =       13.3 V.
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25.	For the conservation of current at point c, we have

		Iin = Iout ;

		I1 = I2 + I3 .

	For the two loops indicated on the diagram, we have

		loop 1:	V1 – I2R2 – I1R1 = 0;

				+ 9.0 V – I2(15 W) – I1(22 W) = 0; 

		loop 2:	V3 + I2R2 = 0;

				+ 6.0 V + I2(15 W) = 0.

	When we solve these equations, we get

		I1 = 0.68 A, I2 = – 0.40 A,       I3 = 1.08 A.

	Note that I2 is opposite to the direction shown.
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26.	For the conservation of current at point c, we have

		Iin = Iout ;

		I1 = I2 + I3 .

	When we add the internal resistance terms for the two 

	loops indicated on the diagram, we have

		loop 1:	V1 – I2R2 – I1R1 – I1r1 = 0;

				+ 9.0 V – I2(15 W) – I1(22 W) – I1(1.2 W) = 0; 

		loop 2:	V3 + I2R2 – I3r3 = 0;

				+ 6.0 V + I2(15 W) – I3(1.2 W) = 0.

	When we solve these equations, we get

		I1 = 0.60 A, I2 = – 0.33 A,       I3 = 0.93 A.
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27.	For the conservation of current at point b, we have

		Iin = Iout ;

		I1 + I3 = I2 .

	For the two loops indicated on the diagram, we have

		loop 1:	å1 – I1R1 – I2R2 = 0;

				+ 9.0 V – I1(15 W) – I2(20 W) = 0; 

		loop 2:	– å2 + I2R2 + I3R3 = 0;

				– 12.0 V + I2(20 W) + I3(40 W) = 0.

	When we solve these equations, we get

		I1 = 0.18 A right, I2 = 0.32 A left, I3 = 0.14 A up.
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28.	For the conservation of current at point b, we have

		Iin = Iout ;

		I1 + I3 = I2 .

	When we add the internal resistance terms for the two 

	loops indicated on the diagram, we have

		loop 1:	å1 – I1r1 – I1R1 – I2R2 = 0;

				+ 9.0 V – I1(1.0 W) – I1(15 W) – I2(20 W) = 0; 

		loop 2:	– å2 + I3r2 + I2R2 + I3R3 = 0;

				– 12.0 V + I3(1.0 W) + I2(20 W) + I3(40 W) = 0.

	When we solve these equations, we get

		I1 = 0.17 A right, I2 = 0.31 A left, I3 = 0.14 A up.





29.	When we include the current through the battery, we have 

	six unknowns.  For the conservation of current, we have

		junction a: 	I = I1 + I2 ;

		junction b: 	I1 = I3 + I5 ;

		junction d: 	I2 + I5 = I4 .

	For the three loops indicated on the diagram, we have

		loop 1:	– I1R1 – I5R5 + I2R2 = 0;

				– I1(20 W) – I5(10 W) + I2(25 W) = 0;

		loop 2:	– I3R3 + I4R4 + I5R5 = 0;

				– I3(2 W) + I4(2 W) + I5(10 W) = 0;

		loop 3:	+ å – I2R2 – I4R4 = 0.

				+ 6.0 V – I2(25 W) – I4(2 W) = 0.
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	When we solve these six equations, we get

		I1 = 0.274 A, I2 = 0.222 A, I3 = 0.266 A, I4 = 0.229 A, I5 = 0.007 A, I = 0.496 A.

	We have carried an extra decimal place to show the agreement with the junction equations.
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30.	When the 20-W resistor is shorted, points a and b become 

	the same point and we lose I1 .

	For the conservation of current, we have		junction a: 	I = I2 + I3 + I5 ;		junction d: 	I2 + I5 = I4 ;	For the three loops indicated on the diagram, we have		loop 1:	+ I2R2 – I5R5 = 0;				+ I2(25 W) – I5(10 W) = 0;		loop 2:	– I3R3 + I4R4 + I5R5 = 0;				– I3(2 W) + I4(2 W) + I5(10 W) = 0;		loop 3 (around outside):	+ å – I3R3 = 0.				+ 6.0 V – I3(2 W) = 0;	When we solve these five equations, we get		I2 = 0.19 A, I3 = 3.00 A, I4 = 0.66 A, I5 = 0.47 A, I = 3.66 A.	Thus the current through the 10-W resistor is      0.47 A down.�31.	If we assume the current in R4 is to the right, we have		Vcd = I4R4 = (3.50 mA)(4.0 kW) = 14.0 V.	We can now find the current in R8 :		I8 = Vcd/R8 = (14.0 V)/(8.0 kW) = 1.75 mA.	From conservation of current at the junction c, we have

		I = I4 + I8 = 3.50 mA + 1.75 mA = 5.25 mA.

	If we go clockwise around the outer loop, starting at a, 

	we have

		Vba – IR5 – I4R4 – å – Ir = 0,   or   

		Vba = (5.25 mA)(5.0 kW) + (3.50 mA)(4.0 kW) + 12.0 V + (5.25 mA)(1.0 ´ 10–3 kW) =     52 V.

	If we assume the current in R4 is to the left, all currents are reversed, so we have

		Vdc = 14.0 V;   I8 = 1.75 mA,   and   I = 5.25 mA.

	If we go counterclockwise around the outer loop, starting at a, we have

		– Ir + å – I4R4 – IR5 + Vab = 0,   or   Vba = – Vab = – Ir + å – I4R4 – IR5 ;

		Vba = – (5.25 mA)(1.0 ´ 10–3 kW) + 12.0 V – (3.50 mA)(4.0 kW) – (5.25 mA)(5.0 kW) =     – 28 V.

	The negative value means the battery is facing the other direction.





32.	The given current is I2 = + 0.90 A.  For the conservation of current at point a, we have

�

		I2 + I3 = I1 ,   or   0.90 A + I3 = I1 .

	We assume r1 = r2 = r3 = r4 = 1.0 W.  For a loop CCW around the outside, we have

		å1 – I1r1 – I1R3 – I3R4 + å3 – I3r3 – I3R5 – I1R1 = 0;

		12.0 V – I1(1.0 W) – I1(8.0 W) – (I1 – 0.90 A)(15 W) + 6.0 V – 

			(I1 – 0.90 A)(1.0 W) – (I1 – 0.90 A)(18 W) – I1(12 W) = 0,

	which gives I1 = 0.884 A.

	For the top loop indicated on the diagram, we have

		loop 1:	å1 – I1r1 – I1R3 + å2 – I2r2 – I2R – I1R1 = 0;

				+ 12.0 V – (0.884 A)(1.0 W) – (0.884 A)(8.0 W) + 12.0 V – 

					(0.90 A)(1.0 W) – (0.90 A)R – (0.884 A)(12 W) = 0,

	which gives R =       5.0 W. 



33.	The given current is I2 = – 0.30 A.  For the conservation of current at point a, we have
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		I2 + I3 = I1 ,   or   – 0.30 A + I3 = I1 .

	For the top loop indicated on the diagram, we have

		loop 1:	å1 – I1r1 – I1R3 + å2 – I2r2 – I2R2 – I1R1 = 0;

				+ 12.0 V – I1(1.0 W) – I1(8.0 W) + 12.0 V – 

					(– 0.30 A)(1.0 W) – (– 0.30 A)(10 W) – I1(12 W) = 0,

	which gives I1 = 1.30 A. 

	Thus we have

		I3 = I1 – I2 = 1.30 A – (– 0.30 A) = 1.60 A.

	For the bottom loop indicated on the diagram, we have

		loop 2:	å – I3r – I3R5 + I2R2 – å2 + I2r2 – I3R4 = 0;

				å – (1.60 A)(1.0 W) – (1.60 A)(18 W) + (– 0.30 A)(10 W) – 

						12.0 V + (– 0.30 A)(1.0 W) – (1.60 A)(15 W) = 0,

	which gives å =      70 V.
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34.	For the conservation of current at point a, we have

		I2 + I3 = I1 .

	For the two loops indicated on the diagram, we have

		loop 1:	å1 – I1r1 – I1R3 + å2 – I2r2 – I2R2 – I1R1 = 0;

				+ 12.0 V – I1(1.0 W) – I1(8.0 W) + 12.0 V – 

							I2(1.0 W) – I2(10 W) – I1(12 W) = 0; 

		loop 2:	å3 – I3r3 – I3R5 + I2R2 – å2 + I2r2 – I3R4 = 0;

				+ 6.0 V – I3(1.0 W) – I3(18 W) + I2(10 W) – 

							12.0 V + I2(1.0 W) – I3(15 W) = 0.

	When we solve these equations, we get

		I1 = 0.77 A, I2 = 0.71 A, I3 = 0.055 A.

	For the terminal voltage of the 6.0-V battery, we have

		Vfe = å3 – I3r3 = 6.0 V – (0.055 A)(1.0 W) =        5.95 V.



















35.	The lower loop equation becomes

		loop 2:	å3 – I3r3 + I2R2 – å2 + I2r2 – I3R4 = 0;

				+ 6.0 V – I3(1.0 W) + I2(10 W) – 12.0 V + I2(1.0 W) – I3(15 W) = 0.

	The other equations are the same:

		I2 + I3 = I1 .

		loop 1:	å1 – I1r1 – I1R3 + å2 – I2r2 – I2R2 – I1R1 = 0;

				+ 12.0 V – I1(1.0 W) – I1(8.0 W) + 12.0 V – I2(1.0 W) – I2(10 W) – I1(12 W) = 0.

	When we solve these equations, we get      I1 = 0.783 A,       I2 = 0.686 A, I3 = 0.097 A.

	We have carried an extra decimal place to show the agreement with the junction equations.
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36.	(a)	On the diagram, we show the potential difference applied 

		between points a and c.  Because all of the resistors are the 

		same, symmetry means that the three currents leaving 

		point a must be the same three currents entering point c.  

		This means that there is no current in the resistor between 

		points b and d, which can be removed without changing the 

		currents.  When we redraw the circuit, we see that we have 

		three parallel branches between points a and c.  

		We find the equivalent resistance from 

			1/Rac = (1/R) + (1/2R) + (1/2R),

		which gives Rac =      R/2.

	(b)	If we apply a potential difference between points a and b, 

		the same symmetry exists, so all currents leaving a must enter b.  

		Consequently there is no current in R¢, which can be removed.  

		When we redraw the circuit, we get one identical to that in 

		part (a), so the equivalent resistance is      R/2.





























37.	We find the equivalent resistance for the parallel connection from

		1/Rparallel = (1/R) + (1/R) + … = n/R,   or   Rparallel = R/n.

	We find the equivalent resistance for the series connection from

		Rseries = R + R + … = nR.

	The  power transformation is P = IV = V 2/R.  If we form the ratio at constant voltage for the two connections, we get

		Pseries/Pparallel = Rparallel/Rseries = (R/n)/nR = 1/n2.











38.	(a)	For the conservation of current at point d, we have

�

			I4 = I1 + I3 .

		For the conservation of current at point e, we have

			I2 = I3 + I5 .

		For the three loops indicated on the diagram, we have

			loop 1:	å1 – I1R1 – I4R4 = 0;

					+ 14 V – (I4 – I3)(10 kW) – I4(12 kW) = 0; 

			loop 2:	å2 – I2R2 – I5R3 = 0;

					+ 18 V – (I3 + I5)(15 kW) – I5(20 kW) = 0;

			loop 3:	å3 + I5R3 – I4R4 = 0;

					+ 12 V + I5(20 kW) – I4(12 kW) = 0.

		We now have three equations for three currents.  When we solve these and use the junction 

		equations, we get 

			I1 = 0.0665 mA,       I2 = 1.111 mA, I3 = 1.045 mA, I4 = 1.111 mA, I5 = 0.0663 mA.

	(b)	If we start at point b and add the potential drops, we have

			Vb – I2R2 + I1R1 = Va ,   or  Vab = – (1.111 mA)(15 kW) + (0.0665 mA)(10 kW) =      – 16 V. 
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39.	(a)	On the diagram, we show the potential difference applied 

		between points a and c, and the six currents.  

		For the conservation of current we have

			at point a:    I = I1 + I2 + I3 ;				(1)

			at point b:    I3 = I4 + I5 ;

			at point d:    I2 + I4 = I6 .

		For a loop CW around the right triangle, we have

			– I4R – I6R ¢ + I5R = 0;

			– I4R – (I2 + I4)R ¢ + (I3 – I4)R = 0,   or   

			(2R + R ¢)I4 = I3R – I2R ¢. 					(2)

		For a loop CW around the left triangle, we have

			– I2R + I4R + I3R = 0,   or   I4 = I2 – I3 .			(3)

		For a loop CW around the bottom triangle, we have

			– I3R – I5R + I1R = 0;

			– I3R – (I3 – I4)R + I1R = 0,   or   I4 = 2I3 – I1 .		(4)

		When we combine (3) and (4), we get

			3I3 = I1 + I2 .								(5)

		When we combine (2) and (3), we get

			(2R + R ¢)I2 – (2R + R ¢)I3 = I3R – I2R ¢,   or   

			I3 = 2(R + R ¢)I2/(3R + R ¢).				(6)

		When we combine (5) and (6), we get

			I2 = (3R + R ¢)I1/(3R + 5R ¢).				(7)

		When we combine (6) and (7), we get

			I3 = 2(R + R ¢)I1/(3R + 5R ¢).				(8)

		When we use (7) and (8) in (1), we get

			I = 8(R + R ¢)I1/(3R + 5R ¢).

		Because I1 = Vac/R, for the equivalent resistance we have

			Req = Vac/I = I1R/I =       R(3R + 5R ¢)/8(R + R ¢).

�

	(b)	If we apply a potential difference between points a and b, 

		all currents leaving a must enter b.  From the symmetry 

		I1 = I2 and I4 = I5 , so I2 = – I4 and I1 = – I5 .  Consequently there 

		is no current in R¢, which can be removed.  When we redraw 

		the circuit, we see that we have three parallel branches 

		between points a and b.  We find the equivalent resistance from 

			1/Rab = (1/R) + (1/2R) + (1/2R),

		which gives Rab =      R/2.

































40.	(a)	On the diagram, we have used the symmetry to reduce the number of currents to five, as labeled. 

�

		For the conservation of current we have

			at point a:    I = 2I1 + I2 ; 				(1)

			at point c:    I1 = I3 + I4 ;				(2)

			at point d:    I5 = 2I4 .

		For a loop CW around the bottom of the cube, we have

			– I4R – I5R – I4R  + I3R = 0;

			– 2I4R – (2I4)R  + I3R = 0,   or   I3 = 4I4 .		(3)

		For a loop CW around the top of the cube, we have

			– I1R – I3R – I1R  + I2R = 0,   or   I2 = 2I1 + I3 .		(4)

		When we combine (2) and (3), we get

			I3 = 4I1/5.								(5)

		When we combine (4) and (5), we get

			I2 = 14I1/5.								(6)

		When we combine (1) and (6), we get

			I = 24I1/5.								(7)

		Because I2 = Vab/R, for the equivalent resistance we have

			Req = Vab/I = I2R/I = (14I1/5)R/(24I1/5) =       7R/12.

	(b)	On the diagram, we have used the symmetry to reduce the number of currents to three, as labeled. 

�

		Note that there are two resistors with zero current.

		For the conservation of current we have

			at point a:    I = 2I1 + I2 ; 				(1)

			at point d:    I2 = 2I3 .				(2)

		For a loop CW around the top of the cube, we have

			– I2R – I3R + 0 + I1R = 0,   or   I1 = I2 + I3 .		(3)

		When we combine (2) and (3), we get

			I2 = 2I1/3.								(4)

		When we combine (1) and (4), we get

			I = 8I1/3.								(5)

		Because I1 = Vac/2R, for the equivalent resistance we have

			Req = Vac/I = I1(2R)/I = 2I1R/(8I1/3) =       3R/4.

	(c)	On the diagram, we have used the symmetry to reduce the number of currents to two, as labeled. 

�

		For the conservation of current we have

			at point a:    I = 3I1 ; 

			at point c:    2I2 = I1 .

		For a path from a to d we have

			Vad = I1R + I2R + I1R = (2I1 + I1/2)R = 5I1R/2.

		For the equivalent resistance we have

			Req = Vad/I = (5I1R/2)/3I1 =       5R/6.
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41.	(a)	We find the capacitance from

			t = RC; 

			55 ´ 10–6 s = (15 ´ 103 W)C, 

		which gives C = 3.7 ´ 10–9 F =       3.7 nF.

	(b)	The voltage across the capacitance will increase to the final 

		steady state value.  The voltage across the resistor will start 

		at the battery voltage and decrease exponentially:

			VR = å e – t/t ;

			16.0 V = (24.0 V)e – t/(55 ms),   or   t/(55 ms) = ln(24.0 V/16.0 V) = 0.405, which gives t =      22 ms.



�

42.	The time constant of the circuit is

		t = RC = (6.7 ´ 103 W)(6.0 ´ 10–6 F) = 0.0402 s. 

	The capacitor voltage will decrease exponentially:

		VC = V0 e – t/t ;

		0.01V0 = V0 e – t/(0.0402 s),   or   t/(0.0402 s) = ln(100) = 4.61, 

	which gives t =      0.19 s.





43.	The charge on the capacitor increases with time to a final charge Q0 :

		Q = Q0 (1 – e – t/t ).

	When we express the stored energy in terms of charge we have

		U = !CV2 = !Q2/C = !(Q02/C)(1 – e – t/t )2 = Umax(1 – e – t/t )2.

	We find the time to reach half the maximum from

		! = (1 – e – t/t )2,   or   e – t/t  = 1 – 1/v2, which gives       t = 1.23t.
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44.	We find the equivalent capacitance from

		1/Ceq = (1/C1) + (1/C2) = [1/(6.0 mF)] + [1/(6.0 mF)], 

	which gives Ceq = 3.0 mF.

	We find the equivalent resistance from

		Req = R1 + R2 =2.2 kW + 2.2 kW = 4.4 kW.

	The time constant of the circuit is

		t = ReqCeq = (4.4 kW)(3.0 mF) = 13.2 ms.

	Initially there is no charge on the capacitors, so the applied voltage is across the equivalent resistance:

		å = I0Req ;

		12.0 V = I0(4.4 kW), which gives I0 = 2.73 mA.

	The current will decrease exponentially:

		I = I0 e – t/t ;

		1.50 mA = (2.73 mA)e – t/t , which gives t = 0.60t = (0.60)(13.2 ms) =     7.9 ms.
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45.	(a)	For the conservation of current at point a, we have

			I1 = I2 + I3 .

		For the loop on the right, we have

			+ I2R2 – Q/C = 0,  or  I2R2 = Q/C.

		For the outside loop, we have

			å – I1R1 – Q/C = 0,  or  I1R1 = å – Q/C.

		The current I3 is charging the capacitor: I3 = dQ/dt.

		When we use these results in the junction equation, we get

			(å – Q/C)/R1 = (Q/R2C) + dQ/dt, which becomes

			å = R1 dQ/dt + (R1 + R2)Q/R2C.

		This has the same form as the simple RC circuit:

			å = R dQ/dt + Q/C,

		if we replace R with R1 , and C with R2C/(R1 + R2).

		Thus the time constant is

			t = R1R2C/(R1 + R2).

	(b)	After a long time, the current through the capacitor will be zero and it will have its maximum 

		charge.  The current through the resistors will be

			I = å/(R1 + R2).

		The voltage across the capacitor will be the voltage across R2:  V = IR2 .  Thus the charge on the 

		capacitor will be

			Qmax = IR2C =       åR2C/(R1 + R2). 
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46.	In the steady state there is no current through the capacitors.  

	(a)	The current through the resistors is 

			I = Vcd/(R1 + R2) = (24 V)/(8.8 W + 4.4 W) = 1.82 A.

		The potential at point a is

			Va = Vad = IR2 = (1.82 A)(4.4 W) =      8.0 V.

	(b)	We find the equivalent capacitance of the two series capacitors:

			1/C = (1/C1) + (1/C2) = [1/(0.48 mF)] + [1/(0.24 mF)], 

			which gives C = 0.16 mF.

		We find the charge on each of the two in series:

			Q1 = Q2 = Q = CVcd = (0.16 mF)(24 V) = 3.84 mC.

		The potential at point b is

			Vb = Vbd = Q2/C2 = (3.84 mC)/(0.24 mF) =       16 V.

	(c)	With the switch closed, the current is the same.  Point b must have the same potential as point a:

			Vb = Va =       8.0 V.

	(d)	We find the charge on each of the two capacitors, which are no longer in series:

			Q1 = C1Vcb = (0.48 mF)(24 V – 8.0 V) = 7.68 mC;

			Q2 = C2Vbd = (0.24 mF)(8.0 V) = 1.92 mC.

		When the switch was open, the net charge at point b was zero, because the charge on the negative 

		plate of C1 had the same magnitude as the charge on the positive plate of C2.  With the switch 

		closed, these charges are not equal.  The net charge at point b is

			Qb = – Q1 + Q2 = – 7.68 mC + 1.92 mC =       – 5.8 mC,      which flowed through the switch.















47.	Because we have no simple series or parallel connections, we analyze the circuit.  On the diagram, we show the potential difference applied between points c and d, and the four currents.  

	For the conservation of current at points c and d, we have

�

		I = I1 + I3 = I2 + I4 . 						(1)

	The current I3 is charging the capacitor C1 : I3 = dQ1/dt.

	The current I4 is charging the capacitor C2 : I4 = dQ2/dt.

	For a CW loop acba, we have

		I1R1 – Q1/C1 = 0,    or 

		Q1/C1 = (I – I3)R1 = (I – dQ1/dt)R1 . 			(2)

	For a CW loop dabd, we have

		I2R2 – Q2/C2 = 0, or 

		Q2/C2 = (I – I4)R2 = (I – dQ2/dt)R2 . 			(3)

	For the path cbd, we have

		Vcd = (Q1/C1) + (Q2/C2).					(4)

	If we differentiate this, we get

		dVcd/dt = 0 = (1/C1)(dQ1/dt) + (1/C2)(dQ2/dt),   or  

		dQ2/dt = – (C2/C1) dQ1/dt.					(5)

	When we combine (3) and (5), we get

		Q2/C2 = R2[I + (C2/C1) dQ1/dt].				(6)

	When we combine (2) and (6), we get

		Q2/C2 = (R2/R1C1)Q1 + [R2(C1 + C2)/C1] dQ1/dt.	(7)

	When we combine (4) and (7), we get

		Vcd =  [(R1 + R2)/R1C1]Q1 + [R2(C1 + C2)/C1] dQ1/dt.

	This has the same form as the simple RC circuit:

		å = R dQ/dt + Q/C,

	with R = R2(C1 + C2)/C1 , and C = R1C1/(R1 + R2).

	Thus the time constant is

		t 	= R1R2(C1 + C2)/(R1 + R2)

			= (8.8 W)(4.4 W)(0.48 mF + 0.24 mF)/(8.8 W + 4.4 W) =       2.1 ms.



48.	We find the resistance of the voltmeter from

		R = (sensitivity)(scale) = (50,000 W/V)(250 V) = 1.25 ´ 107 W =       12.5 MW.



49.	We find the current for full-scale deflection of the ammeter from

		I = Vmax/R = Vmax/(sensitivity)Vmax = 1/(20,000 W/V) = 5.0 ´ 10–5 A =       50 mA.
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50.	(a)	We make an ammeter by putting a resistor in parallel with 

		the galvanometer.  For full-scale deflection, we have

			Vmeter = IGr = IsRs ;

			(50 ´ 10–6 A)(30 W) = (30 A – 50 ´ 10–6 A)Rs , 

		which gives Rs =       50 ´ 10–6 W in parallel. 

	(b)	We make a voltmeter by putting a resistor in series with 

		the galvanometer.  For full-scale deflection, we have

			Vmeter = I(Rx + r) = IG(Rx + r);

			1000 V = (50 ´ 10–6 A)(Rx + 30 W), 

		which gives Rx = 20 ´ 106 W =      20 MW in series.
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51.	(a)	The current for full-scale deflection of the galvanometer is

			I = 1/(sensitivity) = 1/(35 kW/V) = 2.86 ´ 10–2 mA.

		We make an ammeter by putting a resistor in parallel with 

		the galvanometer.  For full-scale deflection, we have

			Vmeter = IGr = IsRs ;

			(2.86 ´ 10–5 A)(20.0 W) = (2.0 A – 2.86 ´ 10–5 A)Rs , 

		which gives Rs =       2.9 ´ 10–4 W in parallel. 

	(b)	We make a voltmeter by putting a resistor in series with 

		the galvanometer.  For full-scale deflection, we have

			Vmeter = I(Rx + r) = IG(Rx + r);

			1.00 V = (2.86 ´ 10–5 A)(Rx + 20 W), 

		which gives Rx = 3.5 ´ 104 W =      35 kW in series.
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52.	We can treat the milliammeter as a resistor 

	and find its resistance from

		1/RA = (1/Rs) + (1/r) = (1/0.20 W) + (1/30 W), 

	which gives RA = 0.199 W.

	We make a voltmeter by putting a resistor in series with 

	the galvanometer.  For full-scale deflection, we have

		Vmeter = I(Rx + RA);

		10 V = (20 ´ 10–3 A)(Rx + 0.199 W), 

	which gives Rx = 5.0 ´ 102 W =      0.50 kW in series.

	The sensitivity of the voltmeter is

		Sensitivity = (500 W)/(10 V) =      50 W/V.



53.	Before connecting the voltmeter, the current in the series circuit is

		I0 = å/(R1 + R2) = (45 V)/(37 kW + 28 kW) = 0.692 mA.

	The voltages across the resistors are

		V01 = I0R1 = (0.692 mA)(37 kW) = 25.6 V;

		V02 = I0R2 = (0.692 mA)(28 kW) = 19.4 V.

	When the voltmeter is across R1 , we find the equivalent 

	resistance of the pair in parallel:

		1/RA = (1/R1) + (1/RV) = (1/37 kW) + (1/100 kW), 

	which gives RA = 27.0 kW.

	The current in the circuit is 

		I1 = å/(RA + R2) = (45 V)/(27 kW + 28 kW) = 0.818 mA.

	The reading on the voltmeter is

		VV1 = I1RA = (0.818 mA)(27.0 kW) = 22.1 V =      22 V.

	When the voltmeter is across R2 , we find the equivalent 

	resistance of the pair in parallel:

		1/RB = (1/R2) + (1/RV) = (1/28 kW) + (1/100 kW), 

	which gives RB = 21.9 kW.

	The current in the circuit is 

		I2 = å/(R1 + RB) = (45 V)/(37 kW + 22 kW) = 0.764 mA.

	The reading on the voltmeter is

		VV2 = I2RB = (0.764 mA)(21.9 kW) = 16.7 V =      17 V.

	We find the percent inaccuracies introduced by the meter:

		(25.6 V – 22.1 V)(100)/(25.6 V) =      14% low;

		(19.4 V – 16.7 V)(100)/(19.4 V) =      14% low.
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54.	We find the voltage of the battery from the series circuit 

	with the ammeter in it:

		å 	= IA(RA + R1 + R2) 

			= (4.25 ´ 10–3 A)(60 W + 700 W + 400 W) = 4.93 V.

	Without the meter in the circuit, we have

		å = I0(R1 + R2);

		4.93 V = I0(700 W + 400 W), 

	which gives I0 = 4.48 ´ 10–3 A =      4.48 mA. 
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55.	We find the equivalent resistance of the voltmeter in parallel

	with one of the resistors:

		1/R = (1/R1) + (1/RV) = (1/9.0 kW) + (1/11.5 kW), 

	which gives R = 5.05 kW.

	The current in the circuit, which is read by the ammeter, is 

		I 	= å/(r + RA + R + R2) 

			= (12.0 V)/(1.0 W + 0.50 W + 5.05 kW + 9.0 kW) 

			=       0.85 mA.

	The reading on the voltmeter is

		Vab = IR = (0.85 mA)(5.05  kW) =       4.3 V.





�









�

56.	When the voltmeter is across R1 , for the junction b, we have

		I1A + I1V = I1 ;

		[(5.5 V)/R1] + [(5.5 V)/(15.0 kW)] = (12.0 V – 5.5 V)/R2 ;

		[(5.5 V)/R1] + 0.367 mA = (6.5 V)/R2 .

	When the voltmeter is across R2 , for the junction e, we have

		I2 = I2A + I2V ;

		(12.0 V – 4.0 V)/R1  = [(4.0 V)/R2] + [(4.0 V)/(15.0 kW)];

		[(8.0 V)/R1] = [(4.0 V)/R2] + 0.267 mA.

	We have two equations for two unknowns, with the results:  

		R1 = 9.4 kW,      and      R2 = 6.8 kW.
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57.	The resistance of the voltmeter is

		RV = (sensitivity)(scale) = (1000 W/V)(3.0 V) = 3.0 ´ 103 W = 3.0 kW.

	We find the equivalent resistance of the resistor and the voltmeter from

		1/Req = (1/R) + (1/RV),   or  

		Req = RRV/(R + RV) = (8.4 kW)(3.0 kW)/(8.4 kW + 3.0 kW) = 2.21 kW.

	The voltmeter measures the voltage across this equivalent resistance, 

	so the current in the circuit is

		I = Vab/Req = (2.0 V)/(2.21 kW) = 0.905 mA.

	For the series circuit, we have

		å = I(R + Req) = (0.905 mA)(8.4 kW + 2.21 kW) =      9.6 V.



�
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58.	We find the resistances of the voltmeter scales:

		RV100 	= (sensitivity)(scale) 

				= (20,000 W/V)(100 V) = 2.0 ´ 106 W = 2000 kW;

		RV30 	= (sensitivity)(scale) 

				= (20,000 W/V)(30 V) = 6.0 ´ 105 W = 600 kW.

	The current in the circuit is 

		I = (Vab/RV) + (Vab/R1).

	For the series circuit, we have

		å = Vab + IR2 .

	When the 100-volt scale is used, we have

		I = [(25 V)/(2000 kW)] + [(25 V)/(120 kW)] = 0.221 mA.

		å = 25 V + (0.221 mA)R2 .

	When the 30-volt scale is used, we have

		I = [(23 V)/(600 kW)] + [(23 V)/(120 kW)] = 0.230 mA.

		å = 23 V + (0.230 mA)R2 .

	We have two equations for two unknowns, with the results:  å = 74.1 V, and      R2 = 222 kW.

	Without the voltmeter in the circuit, we find the current:

		å = I ¢(R1 + R2);

		74.1 V = I ¢(120 kW + 222 kW), which gives I¢ = 0.217 mA.

	Thus the voltage across R1 is

		Vab¢ = I ¢R1 = (0.217 mA)(120 kW) =      26 V.



59.	(a)	In circuit 1 the voltmeter is placed in parallel with the resistor, 

		so we find their equivalent resistance from

			1/Req1 = (1/R) + (1/RV).

		The ammeter measures the current through this equivalent 

		resistance and the voltmeter measures the voltage across 

		this equivalent resistance, so we have

			Req1 = V/I.

		Thus we have

			I/V = (1/R) + (1/RV),  or   1/R = (I/V) – (1/RV).

	(b)	In circuit 2 the ammeter is placed in series with the resistor, 

		so we find their equivalent resistance from

			Req2 = R + RA .

		The ammeter measures the current through this equivalent 

		resistance and the voltmeter measures the voltage across 

		this equivalent resistance, so we have

			Req2 = V/I = R + RA ,  or   R = (V/I) – RA .









60.	We find the temperature of the junction from

		å = k(T – T0);

		1.72 ´ 10–3 V = (40 ´ 10–6 V/C°)(T – 25°C), which gives T =      68°C.



61.	We assume the lowest emf represents the uncertainty in a reading.  We find the uncertainty in the temperature from

		?å = k ?T;

		0.50 mV = (14 mV/C°) ?T, which gives ?T =       3.6 ´ 10–2 C°.



62.	(a)	We let rm be the mass density.  Because the mass is constant, when a wire is stretched, its area 

		must change.  If we represent the small changes as differentials, we have			A = m/rmL,   and  dA = – (m/rmL2) dL ,   or   dA/A = – dL/L.		The resistance will change from the change in length and the change in area:			R = rL/A,    and   dR = (r/A) dL – (rL/A2) dA,   or			dR/R = dL/L – dA/A = 2 dL/L.		Thus the fractional change in resistance is proportional to the fractional change in length.	(b)	We find the values of the resistances from			Rx0 = (R2/R1)R30 = (1.4800)(40.700 W) = 60.236 W;			Rx = (R2/R1)R3 = (1.4800)(40.736 W) = 60.289 W.		We find the change in width from			K = (?R/Rx0)/(?L/L);			1.8 = [(60.289 W – 60.236 W)/(60.236 W)]/(?L/4.5 mm), which gives ?L =       2.2 ´ 10–3 mm.�63.	The voltage is the same across resistors in parallel, but is less 	across a resistor in a series connection.  We connect two resistors 	in series as shown in the diagram.  Each resistor has the same 	current:		I = V/(R1 + R2) = (6.0 V)/(R1 + R2).

	If the desired voltage is across R1 , we have

		Vab = IR1 = (6.0 V)R1/(R1 + R2);

		0.25 V = (6.0 V)R1/(R1 + R2) = (6.0 V)/[1 + (R2/R1)], 

	which gives R2/R1 = 23.

	When the body is connected across ab, we want very negligible current through the body, so the potential difference does not change.  This requires Rbody = 2000 W » R1 .  If we also do not want a large current from the battery, a possible combination is 

		R1 = 4 W, R2 = 92 W.
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64.	Because the voltage is constant and the power is additive, 

	we can use two resistors in parallel.  For the lower ratings, 

	we use the resistors separately; for the highest rating, we 

	use them in parallel.  The rotary switch shown allows 

	the B contact to successively connect to C and D.  The A 

	contact connects to C and D for the parallel connection.  

	We find the resistances for the three settings from

		P = V 2/R;

		50 W = (120 V)2/R1 , which gives R1 = 288 W;

		100 W = (120 V)2/R2 , which gives R2 = 144 W;

		150 W = (120 V)2/R3 , which gives R3 = 96 W.

	As expected, for the parallel arrangement we have

		1/Req = (1/R1) + (1/R2);

		1/Req = [1/(288 W)] + [1/(144 W)], which gives Req = 96 W = R3 . 

	Thus the two required resistors are      288 W, 144 W.



65.	The voltage drop across one of the wires is 

		Vdrop = IR = (3.0 A)(0.0065 W/m)(115 m) =       2.2 V.

	The applied voltage at the apparatus is

		V = V0 – 2Vdrop = 120 V – 2(2.2 V) =      116 V.



66.	We find the current through the patient (and nurse) from the series circuit:

		I 	= V/(Rmotor + Rbed + Rnurse + Rpatient) 

			= (220 V)/(104 W + 0 + 104 W + 104 W) = 7.3 ´ 10–3 A =       7.3 mA.



67.	The time between firings is 

		t = (60 s)/(72 beats) = 0.833 s.

	In this time the capacitor reaches 45% of maximum, so we have

		V = V0(1 – e – t/t) = 0.45V0 , which gives e – t/t = 0.55,   or   t = t/ln(1.82) = (0.833 s)/ln(1.82) = 1.39 s.

	We find the required resistance from

		t = RC;

		1.39 s = R(7.5 mF), which gives R =      0.19 MW.













68.	We find the required current for the hearing aid from

		P = IV;

		2 W = I(4.0 V), which gives I= 0.50 A.

	With this current the terminal voltage of the three mercury cells would be

		Vmercury = 3(åmercury – Irmercury) = 3[1.35 V – (0.50 A)(0.030 W)] = 4.01 V.

	With this current the terminal voltage of the three dry cells would be

		Vdry = 3(ådry – Irdry) = 3[1.5 V – (0.50 A)(0.35 W)] = 3.98 V.

	Thus the      mercury cells would have a higher terminal voltage.



69.	(a)	We find the current from

			I1 = V/Rbody = (110V)/(1100 W) =      0.10 A.

	(b)	Because the alternative path is in parallel, the current is the same:      0.10 A.

	(c)	The current restriction means that the voltage will change.  Because the voltage will be the same 

		across both resistances, we have

			I2R2 = IbodyRbody ;

			I2(40 W) = Ibody(1100 W),   or   I2 = 27.5Ibody .

		For the sum of the currents, we have

			I2 + Ibody = 28.5Ibody = 1.5 A, which gives Ibody = 5.3 ´ 10–2 A =      53 mA.



70.	The resistance of the platinum wire is

		Rx = (R2/R1)R3 = (46.0 W/38.0 W)(3.48 W) = 4.21 W.

	We find the length from

		R 	= rL/A 

			= (10.6 ´ 10–8 W · m)L/p(0.460 ´ 10–3 m)2, which gives L =      26.4 m.



�

71.	For the conservation of current at point b, we have

		I = I1 + I2 .

	For the two loops indicated on the diagram, we have

		loop 1:	å1 – I1r1 – IR = 0;

				+ 2.0 V – I1(0.10 W) – I(4.0 W) = 0; 

		loop 2:	å2 – I2r2 – IR = 0;

				+ 3.0 V – I2(0.10 W) – I(4.0 W) = 0.

	When we solve these equations, we get

		I1 = – 4.69 A, I2 = 5.31 A, I = 0.62 A.

	For the voltage across R we have

		Vab = IR = (0.62 A)(4.0 W) =       2.5 V.

	Note that one battery is charging the other with a significant current.



72.	Because the two sides of the circuit are identical, we find the resistance from the time constant:

		t = RC;

		3.0 s = R(3.0 mF), which gives R =       1.0 MW.



73.	The terminal voltage of a discharging battery is

		V = å – Ir.

	For the two conditions, we have

		40.8 V = å – (7.40 A)r;

		44.5 V = å – (2.20 A)r.

	We have two equations for two unknowns, with the solutions: å =       46.1 V,      and r =       0.71 W.









74.	One arrangement is to connect N resistors in series.  Each resistor will have the same power, so we need

		N = Ptotal/P = 5 W/! W = 10 resistors.

	We find the required value of resistance from

		Rtotal = NRseries ;

		1.2 kW = 10Rseries , which gives Rseries = 0.12 kW.

	Thus we have     10  0.12-kW resistors in series.

	Another arrangement is to connect N resistors in parallel.  Each resistor will again have the same power, so we need the same number of resistors:  10.

	We find the required value of resistance from

		1/Rtotal = ?(1/Ri) = N/Rparallel ;

		1/1.2 kW = 10/Rparallel , which gives Rparallel = 12 kW.

	Thus we have     10  12-kW resistors in parallel.





�

75.	The resistance along the potentiometer is proportional to the 

	length, so we find the equivalent resistance between points b and c:

		1/Req = (1/xRpot) + (1/Rbulb),   or  

		Req = xRpotRbulb/(xRpot + Rbulb).

	We find the current in the loop from

		I = V/[(1 – x)Rpot + Req].

	The potential difference across the bulb is

		Vbc = IReq , so the power expended in the bulb is

		P = Vbc2/Rbulb .

	(a)	For x = 1.00 we have

			Req = (1.00)(100 W)(200 W)/[(1.00)(100 W) + 200 W] = 66.7 W.

			I = (120 V)/[(1 – 1.00)(100 W) + 66.7 W] = 1.80 A.

			Vbc = (1.80 A)(66.7 W) = 120 V.

			P = (120 V)2/(200 W) =      72.0 W.

	(b)	For x = 0.50 we have

			Req = (0.50)(100 W)(200 W)/[(0.50)(100 W) + 200 W] = 40.0 W.

			I = (120 V)/[(1 – 0.50)(100 W) + 40.0 W] = 1.33 A.

			Vbc = (1.33 A)(40.0 W) = 53.3 V.

			P = (53.3 V)2/(200 W) =      14.2 W.

	(c)	For x = 0.25 we have

			Req = (0.25)(100 W)(200 W)/[(0.25)(100 W) + 200 W] = 22.2 W.

			I = (120 V)/[(1 – 0.25)(100 W) + 22.2 W] = 1.23 A.

			Vbc = (1.23 A)(22.2 W) = 27.4 V.

			P = (27.4 V)2/(200 W) =      3.76 W.
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76.	(a)	When there is no current through the galvanometer, 

		the current I must pass through the long resistor R¢, so 

		the potential difference between A and C is

			VAC = IR.

		Because there is no current through the measured emf, 

		for the bottom loop we have

			å = IR.

		When different emfs are balanced, the current I is the same, 

		so we have

			ås = IRs ,   and   åx = IRx .

		When we divide the two equations, we get

			ås/åx  = Rs /Rx ,   or   åx = (Rx/Rs)ås .

	(b)	Because the resistance is proportional to the length, we have

			åx = (Rx/Rs)ås  = (45.8 cm/25.4 cm)(1.0182 V) =      1.836 V.

	(c)	If we assume that the current in the slide wire is much greater than the galvanometer current, the 

		uncertainty in the voltage is

			?V = ± IGRG = ± (0.015 mA)(30 W) = ± 0.45 mV.

		Because this can occur for each setting and there will be uncertainties in measuring the distances, 

		the minimum uncertainty is      ± 0.90 mV.

	(d)	The advantage of this method is that there is      no effect of the internal resistance,      because 

		there is no current through the cell.





77.	(a)	Normally there is no dc current in the circuit, so the voltage of the battery is across the 

		capacitor.  When there is an interruption, the capacitor voltage will decrease exponentially:

			VC = V0 e – t/t .

		We find the time constant from the need to maintain 70% of the voltage for 0.20 s:

			0.70V0 = V0 e – (0.20 s)/t ,   or   (0.20 s)/t = ln(1.43) = 3.57, 

		which gives t = 0.56 s.

		We find the required resistance from

			t = RC;

			0.56 s = R(14 ´ 10–6 F), which gives R = 4.0 ´ 104 W =        40 kW.

	(b)	In normal operation, there will be no voltage across the resistor, so the device should be connected 

		    between b and c. 





78.	The charge on the capacitor and the current in the resistor decrease exponentially:

		Q = Q0 e – t/t , I = I0 e – t/t  , with I0 = Q0 /t.

	When we express the stored energy in terms of charge we have

		U = !CV2 = !Q2/C = !(Q02/C)(e – t/t )2.

	Thus the change in stored energy for an elapsed time equal to one time constant is

		?Ustored = !(Q02/C)(e – 2t/t ) – !(Q02/C) = !(Q02/C)(e – 2 – 1).

	Because the current varies, we find the thermal loss by integrating:

		�

















79.	To get an output voltage of 100 V, it is necessary to put solar cells in series.  The number of series cells required is

		Nseries = (100 V)/(0.80 V/cell) = 125 cells.

	To get an output current of 1.0 A, it is necessary to put solar cells in parallel.  The number of parallel cells required is

		Nparallel = (1.0 A)/(0.350 A) = 2.8 = 3 cells.

	We connect 125 cells in series and then 3 of these units in parallel.  Thus the total number of cells is

		N = NseriesNparallel = (125)(3) =      375 cells.

	The size of the panel is

		(125)(0.030 m) ´ (3)(0.030 m) =      3.8 m ´ 0.090 m.

	Of course it is possible to adjust the dimensions by changing the wiring of the cells.  To optimize the output it is necessary to have the panel move so that it is always perpendicular to the sunlight.



80.	We have labeled the resistors and the currents through the resistors with the value of the resistance.  For the conservation of current at point c, we have

�

		I4 + I5 = I6 + I12 .

	For the three loops indicated on the diagram, we have

		loop 1:	å10 – I5R5 – I6R6 + å5 = 0;

				+ 10.00 V – I5(5.00 W) – I6(6.00 W) + 5.00 V = 0; 

				15.00 V = I5(5.00 W) + I6(6.00 W);

		loop 2:	å4 + å8 – I12R12 – I4R4 = 0;

				+ 4.00 V + 8.00 V – I2(12.00 W) – I4(4.00 W) = 0;

				12.00 V = I4(4.00 W) + I12(12.00 W);

		loop 3:	I12R12 – I6R6 = 0;

				I12(12.00 W) – I6(6.00 W) = 0.

	When we solve these equations, we get

		I4 = 0.857 A, I5 = 1.296 A, I6 = 1.428 A, I12 = 0.714 A.

	We have carried an extra decimal place to show the agreement with the junction equations.
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81.	(a)	Immediately after the switch is closed, there is no charge 

		on the capacitor, so the voltage across C, and thus across R2 , 

		is zero.  Thus the current is

			I0 = å/R1 = (10.0 V)/(20 W) =       0.50 A.

	(b)	After a long time the charge on the capacitor will be maximum, 

		so there will be no current through the capacitor.  

		Thus the current is

			I = å/(R1 + R2) = (10.0 V)/(20 W + 40 W) =       0.17 A.

	(c)	For the potential difference Vbc we have

			Vbc = IR2 = Qmax/C;

			(0.167 A)(40 W) = Qmax/(0.50 mF), which gives Qmax =       3.3 mC.

	(d)	When the switch is opened, the capacitor will discharge through R2 .  The time constant for 

		this circuit is 

			t = R2C = (40 W)(0.50 mF) = 20 ms.

		The capacitor charge will decrease exponentially:

			Q = Qmax e – t/t ;

			0.20Qmax = Qmax e – t/(20 ms),   or   t/(20 ms) = ln(5.0) = 1.61, 

		which gives t =      32 ms.







82.	(a)	The current in the series circuit is

�

			I = V0/(R1 + R2).

		The output voltage is the voltage across R2 :

			VT = IR2 = V0R2/(R1 + R2);

			3.0 V = (12.0 V)R2/(10.0 W + R2), which gives R2 =       3.3 W.

	(b)	We find the equivalent resistance between b and c:

			1/Req = (1/R2) + (1/Rload);

			1/Req = (1/3.33 W) + (1/7.0 W), which gives Req = 2.26 W.

		The current in the series circuit is

			I = V0/(R1 + Req).

		The output voltage is the voltage across Req :

			VT = IReq = V0Req/(R1 + Req) = (12.0 V)(2.26 W)/(10.0 W + 2.26 W) =      2.2 V.
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83.	(a)	After a long time there will be a steady state; there 

		will be no current in the capacitor branch:

			I5 = 0;   I1 = I3 ,   and   I2 = I4.

		For the two resistor branches we have

			Va – Vb = å = I2(R2 + R4);  

			12.0 V = I2(1.0 W + 9.0 W), which gives I2 = 1.20 A;

			Va – Vb = å = I1(R1 + R3);  

			12.0 V = I1(10.0 W + 5.0 W), which gives I1 = 0.80 A.

		We can find the potential difference across the capacitor from

			Vc – Vd 	= (Vc – Vb) – (Vd – Vb) = I4R4 – I3R3

					= (1.20 A)(9.0 W) – (0.80 A)(5.0 W) =      + 6.8 V.

		The charge on the capacitor is

			Q = C(Vc – Vd) = (1.5 mF)(6.8 V) =      10.2 mC.

	(b)	When the switch is opened, we find the equivalent resistance between c and d:

			1/Req = 1/(R1 + R2) + 1/(R3 + R4);

			1/Req = [1/(10.0 W + 1.0 W) + 1/(5.0 W + 9.0 W)], which gives Req = 6.16 W.

		The time constant for this circuit is 

			t = ReqC = (6.16 W)(1.5 mF) = 9.24 ms.

		The capacitor charge will decrease exponentially:

			Q = Qmax e – t/t ;

			0.050Qmax = Qmax e – t/(9.24 ms),   or   t/(9.24 ms) = ln(20.0) = 3.00, 

		which gives t =      28 ms.
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84.	(a)	The time constant of the RC circuit is

			t = RC = (33.0 kW)(4.00 mF) = 132 ms.

		During the charging cycle, the charge and the voltage 

		on the capacitor increases exponentially:

			VC = V0 (1 – e – t/t ), 

		so we find the time to reach 90.0 V from 

			� 

			t1/(132 ms) = ln(10.0) = 2.30, 

		which gives t1 =      304 ms.

	(b)	When the neon bulb starts conducting, the voltage on the capacitor drops quickly to 70.0 V and 

		then starts charging.  We can find the recharging time by first finding the time for the capacitor 

		to reach 70.0 V:

			� t3/(132 ms) = ln(3.33) = 1.20, 

		which gives t3 = 159 ms.

		Thus the time to charge from 70.0 V to 90.0 V is

			t4 = t1 – t3 = 304 ms – 159 ms = 145 ms.

		The time from when the switch is closed is

			t2 = t1 + t4 = 304 ms + 145 ms =      449 ms.

	(c)	

		� 
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