CHAPTER 27 – Magnetism





1.	(a)	The maximum force will be produced when the wire and the magnetic field are perpendicular, 


		so we have


			Fmax = ILB,    or   


			Fmax/L = IB = (7.40 A)(0.90 T) =      6.7 N/m.


	(b)	We find the force per unit length from


			F/L = IB sin 45.0° = (Fmax/L) sin 45.0° = (6.7 N/m) sin 45.0° =      4.7 N/m.





2.	The force on the wire is produced by the component of the magnetic field perpendicular to the wire:


		F 	= ILB sin q 


			= (150 A)(240 m)(5.0 ´ 10–5 T) sin 60° =      1.6 N perpendicular to the wire and to B. 





3.	For the maximum force the wire is perpendicular to the field, so we find the current from


		F = ILB;


		0.900 N = I(4.20 m)(0.0800 T), which gives I =      2.68 A.  





4.	The force on the wire is produced by the component of the magnetic field perpendicular to the wire:


		F 	= ILB sin 40° 


			= (4.5 A)(1.5 m)(5.5 ´ 10–5 T) sin 40° =      2.4 ´ 10–4 N perpendicular to the wire and to B. 





5.	The maximum force will be produced when the wire and the magnetic field are perpendicular, 


	so we have


		Fmax = ILB;


		1.18 N = (8.75 A)(0.555 m)B, which gives B =      0.243 T.
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6.	The force is maximum when the current and 


	field are perpendicular:


		Fmax = ILB.


	When the current makes an angle q with the 


	field, the force is


		F = ILB sin q.


	Thus we have


		F/Fmax = sin q = 0.45,   or   q =       27°.





�


7.	(a)	We see from the diagram that the magnetic field is up, 


		so the top pole face is a      south pole.


	(b)	We find the current from the length of wire in the field:


			F = ILB;


			5.30 N = I(0.10 m)(0.15 T), which gives I =      3.5 ´ 102 A.


	(c)	The new force is


			F¢ = ILB sin q = F sin q = (5.30 N) sin 80° =      5.22 N.


		Note that the wire could be tipped either way.
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8.	We have the same upward force on the semicircular wire.  


	The force on each of the horizontal wires will also be upward.  


	Thus the total force is 


		Ftotal = Fsemi + 2Fwire = 2IB0R + 2ILB0 =       2IB0(R + L) upward.

















9.	If we consider a length L of the wire, for the balanced forces, we have


		mg = rpr2Lg = ILB;


		(8.9 ´ 103 kg/m3)p(1.0 ´ 10–3 m)2(9.80 m/s2) = I(5.0 ´ 10–5 T), 


	which gives I =       5.5 ´ 103 A.





10.	We find the force per unit length from


		F/L 	= I(i ´ B) = (3.0 A)[i ´ (0.20i – 0.30 j + 0.25k)T]


				= (3.0 A)(– 0.30k – 0.25j)T = (– 0.75j – 0.90k) N/m =       (– 7.5 ´ 10–3j – 9.0 ´ 10–3k) N/cm.
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11.	We choose the coordinate system shown in the diagram.


	We select a differential element of the curved wire,


		d¬ = dx i + dy j,


	on which the force is 


		dF = I d¬ ´ B = I(dx i + dy j) ´ (– Bk) = IB(dx j – dy i).


	We find the resultant force by integration:


		F = ? dF = IB ? (dx j – dy i) = IB(?x j – ?y i),


	where ?x = xb – xa , and ?y = yb – ya.


	If we have the same current in the straight wire, the 


	resultant force is


		F = I(?x i + ?y j) ´ (– Bk) = IB(?x j – ?y i), 


	which is the same result.
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12.	If we select a differential length d¬ of the 


	wire, we see that the force on this element 


	has a magnitude


		dF = IB d¬ 


	and will have a direction perpendicular to 


	the wire at an angle q below the horizontal.  


	For each element there will be one diametrically 


	opposite with an opposite horizontal force component, so the net force will be vertical.  We find the net force by adding the vertical components from all of the differential elements:


		F = ? dFz = ? IB d¬ (– sin q) = – IB sin q ? d¬ = – IB2pr sin q =       – 2pIBr2/(r2 + d2)1/2 (downward).





13.	To find the direction of the force on the electron, we point our fingers east and curl them upward into the magnetic field.  Our thumb points south, which would be the direction of the force on a positive charge.  Thus the force on the electron is north.


		F = qvB = (1.60 ´ 10–19 C)(7.75 ´ 105 m/s)(0.85 T) =       1.05 ´ 10–13 N  north.





14.	To find the direction of the force on the negative charge, we point our fingers in the direction of v and curl them into the magnetic field B.  Our thumb points in the direction of the force on a positive charge.  Thus the force on the negative charge is opposite to our thumb. 


	(a)	Fingers out, curl down, thumb right, force      left.


	(b)	Fingers down, curl back, thumb right, force      left.


	(c)	Fingers in, curl right, thumb down, force      up.


	(d)	Fingers right, curl up, thumb out, force      in.


	(e)	Fingers left, but cannot curl into B, so force is      zero.


	(f)	Fingers left, curl out, thumb up, force      down.

















15.	We assume that we want the direction of B that produces the maximum force, i. e., perpendicular to v.  Because the charge is positive, we point our thumb in the direction of F and our fingers in the direction 


	of v.  To find the direction of B, we note which way we should curl our fingers, which will be the direction of the magnetic field B. 


	(a)	Thumb out, fingers left, curl      down.


	(b)	Thumb up, fingers right, curl      in.


	(c)	Thumb down, fingers in, curl      right.





16.	To find the direction of the force on the electron, we point our fingers upward and curl them forward into the magnetic field.  Our thumb points left, which would be the direction of the force on a positive charge.  Thus the force on the electron is to the right.  As the electron deflects to the right, the force will always be perpendicular, so the electron will travel in a       clockwise vertical circle.


	The magnetic force provides the radial acceleration, so we have


		F = qvB = mv2/r, so the radius of the path is


		r 	= mv/qB;


			= (9.11 ´ 10–31 kg)(1.80 ´ 106 m/s)/(1.60 ´ 10–19 C)(0.250 T) =      4.10 ´ 10–5 m.





17.	The magnetic force provides the centripetal acceleration:


		qvB = mv2/r,   or    mv = p = qBr.





18.	For the net force on the electron to be zero, the velocity is perpendicular to the crossed electric and magnetic fields.  The magnitudes of the two forces will be equal:


		eE = evB,  or


		v = E/B = (8.8 ´ 103 V/m)/(3.5 ´ 10–3 T) =      2.5 ´ 106 m/s.


	When the electric field is turned off, the magnetic force will always be perpendicular to the velocity.  


	The magnetic force provides the radial acceleration, so we have


		F = evB = mv2/r, so the radius of the path is


		r 	= mv/eB;


			= (9.11 ´ 10–31 kg)(2.5 ´ 106 m/s)/(1.60 ´ 10–19 C)(3.5 ´ 10–3 T) = 4.10 ´ 10–3 m =      0.41 cm.





19.	(a)	The magnetic force provides the centripetal acceleration:


			qvB = mv2/r,   or    mv = qBr.


		The kinetic energy of the electron is


			K = !mv2 = !(qBr)2/m = (q2B2/2m)r2.


	(b)	The magnetic force provides the centripetal acceleration:


			qvB = mv2/r,   or    mv = p = qBr.


		The angular momentum is


			L = mvr = qBr2.





20.	The force on the electron is


		F 	= – e v ´ B


			= (– 1.60 ´ 10–19 C)(4.0i – 6.0 j ) ´ 104  m/s ´ (– 0.80i + 0.60 j)T 


			= – (1.60 ´ 10–15 N)[(4.0)(0.60) – (– 6.0)(– 0.80)]k  =       + (3.8 ´ 10–15 N)k.





21.	The magnetic force provides the radial acceleration, so we have


		F = evB = mv2/r, so 


		r 	= mv/eB = (2mK)1/2/eB


			= [2(1.67 ´ 10–27 kg)(5.0 ´ 106 eV)(1.60 ´ 10–19 J/eV)]1/2/(1.60 ´ 10–19 C)(0.20 T) =       1.6 m.

















22.	The greatest force will be produced when the velocity and the magnetic field are perpendicular.  


	We point our thumb down (a negative charge!), and our fingers north.  We must curl our fingers to the east, which will be the direction of the magnetic field.  We find the magnitude from


		F = qvB;


		7.2 ´ 10–13 N = (1.60 ´ 10–19 C)(2.9 ´ 106 m/s)B, which gives B =        1.6 T  east.





23.	(a)	We find the speed acquired from the accelerating voltage from energy conservation:


			0 = ?K + ?U;


			0 = !mv2 – 0 + q(– V), which gives 


			v = (2qV/m)1/2 = [2(2)(1.60 ´ 10–19 C)(2100 V)/(6.6 ´ 10–27 kg)]1/2 = 4.51 ´ 105 m/s.


		For the radius of the path, we have


			r 	= mv/qB = (6.6 ´ 10–27 kg)(4.51 ´ 105 m/s)/(2)(1.60 ´ 10–19 C)(0.340 T) 


				= 2.7 ´ 10–2 m =       2.7 cm.


	(b)	The period of revolution is 


			T = 2pr/v = 2pm/qB = 2p(6.6 ´ 10–27 kg)/(2)(1.60 ´ 10–19 C)(0.340 T) =       3.8 ´ 10–7 s.





24.	The magnetic force produces an acceleration perpendicular to the original motion:


		a^ = qvB/m = (13.5 ´ 10–9 C)(160 m/s)(5.00 ´ 10–5 T)/(3.40 ´ 10–3 kg) = 3.18 ´ 10–8 m/s2.


	The time the bullet takes to travel 1.00 km is


		t = L/v = (1.00 ´ 103 m)/(160 m/s) = 6.25 s.


	The small acceleration will produce a small deflection, so we assume the perpendicular acceleration is constant in magnitude and direction.  We find the deflection of the electron from


		y = v0yt + !at2 = 0 + !(3.18 ´ 10–8 m/s2)(6.25 s)2 =      6.20 ´ 10–7 m.


	This justifies our assumption of constant acceleration.





25.	If we assume the positively-charged ion is traveling west around the equator, the magnetic force will be down.  This force and mg will produce the radial acceleration:


		mg + evB = mv2/r,   or   v2 – (eBr/m)v – gr = 0.


	We evaluate the constants:


		eBr/m 	= (1.60 ´ 10–19 C)(0.40 ´ 10–4 T)(6.38 ´ 106 m + 5.0 ´ 103 m)/(238 u)(1.66 ´ 10–27 kg/u) 


				= 1.034 ´ 108 m/s;


		gr = (9.80 m/s2)(6.38 ´ 106 m + 5.0 ´ 103 m) = 6.25 ´ 107 m2/s2.


	Thus we have


		v2 – (1.034 ´ 108 m/s)v – 6.25 ´ 107 m2/s2 = 0.


	The solutions to this quadratic equation are + 1.034 ´ 108 m/s, – 0.605 m/s.


	We see that for the large positive velocity (to the west) the mg term is negligible, so the magnetic force provides the radial acceleration.  For the small negative velocity (to the east), the radial acceleration is negligible because the radius is so large; the upward magnetic force essentially balances the mg force.


	Thus the appropriate answer is      1.034 ´ 108 m/s (west) and gravity can be ignored.


	Note that this speed is close to c, so a relativistic correction is necessary.





26.	We find the velocity acquired from the accelerating potential from energy conservation:


		K + U = 0;


		!mv2 + Q(– V) = 0,  or   mv = (2mQV)1/2.


	The magnetic force provides the radial acceleration, so we have


		F = QvB = mv2/r, so 


		r = mv/QB = (2mQV)1/2/QB = (2mV/Q)1/2/B.


	When we form the ratio for two particles, we have


		rd/rp = [(Qp/Qd)(md/mp)]1/2 = [(e/e)(2mp/mp)]1/2 =      v2;


		ra/rp = [(Qp/Qa)(ma/mp)]1/2 = [(e/2e)(4mp/mp)]1/2 =      v2.








27.	The total force on the proton is


		F 	= e(E + v ´ B)


			= e{(3.0i – 4.2 j) ´ 103 V/m + [(6.0i + 3.0j  – 5.0k) ´ 103 m/s ´ (0.45i + 0.20 j)T]} 


			= (1.60 ´ 10–19 C)[(3.0i – 4.2 j) + (1.0i – 2.25j  – 0.15k)] ´ 103 V/m 


			=       (6.4i – 10.3j  – 0.24k)] ´ 10–16 N.  





28.	For the magnetic force we have


		F = – ev ´ B;


		(3.8i – 2.7j ) ´ 10–13 N = – (1.60 ´ 10–19 C)(vxi + vyj  + vzk) ´ (0.35 T)k; 


		(3.8i – 2.7j ) ´ 10–13 N = – (1.60 ´ 10–19 C)(0.35 T)(– vxj + vyi).


	When we equate each component, we get


		vx = (– 2.7 ´ 10–13 N)/(1.60 ´ 10–19 C)(0.35 T) = – 4.8 ´ 106 m/s;


		vy = – (3.8 ´ 10–13 N)/(1.60 ´ 10–19 C)(0.35 T) = – 6.8 ´ 106 m/s.


	Thus the velocity is


		v = (– 4.8 ´ 106 m/s)i + (– 6.8 ´ 106 m/s)j.
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29.	The component of the velocity parallel to the field does not change.  


	The component perpendicular to the field produces a force which 


	causes the circular motion.  


	We find the radius of the circular motion from


		r 	= mv^/qB 


			= (9.11 ´ 10–31 kg)(3.0 ´ 106 m/s)(sin 45°)/(1.60 ´ 10–19 C)(0.23 T) 


			=       5.3 ´ 10–5 m.


	We find the time for one revolution:


		T = 2pr/v^ = 2p(5.25 ´ 10–5 m)/(3.0 ´ 106 m/s) sin 45° = 1.56 ´ 10–10 s.


	In this time, the distance the electron travels along the field is


		p = v||T = (3.0 ´ 106 m/s)(cos 45°)(1.56 ´ 10–10 s) =       3.3 ´ 10–4 m.





30.	The magnetic force provides the radial acceleration, so we have


		F = evB = mv2/r, so 


		r  = mv/eB = (2mK)1/2/eB. 


	Because the protons are bent 90° their path will extend a distance into the field equal to the radius.  Thus we have


		r  = (2mK)1/2/eB  = ¬,  or


		B = (2mK/e2¬2)1/2. 
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31.	(a)	Because the velocity is perpendicular to the magnetic field, 


		the proton will travel in a circular arc.  From the symmetry 


		of the motion we see that the upper half is a mirror image 


		of the lower half, so the exit angle is the same as the 


		incident angle:      45°.


	(b)	The magnetic force provides the radial acceleration, 


		so we have


			F 	= evB = mv2/r, so 


			r  	= mv/eB = (1.67 ´ 10–27 kg)(2.0 ´ 105 m/s)/(1.60 ´ 10–19 C)(0.850 T) 


				= 2.46 ´ 10–3 m.


		Thus the distance x is


			x = rv2 =       3.5 ´ 10–3 m.














32.	When the loop is parallel to the magnetic field, the torque is maximum, so we have


		t = NIAB;


		0.185 m · N = (1)(7.10 A)p(0.0650)2B, which gives B =      1.96 T.





33.	We find the work required to rotate the coil from


		W 	= ?U = (– � · B)f – (– � · B)i


				= mB( – cos qf + cos qi).


	(a)	The work required to rotate from 0° to 180° is


			W = mB( – cos 180° + cos 0°) =       2mB.


	(b)	The work required to rotate from 90° to – 90° is


			W = mB[ – cos (– 90°) + cos 90°] =       0.





34.	The angular momentum of the electron for the circular orbit is


		L = mvr.


	The time for the electron to go once around the orbit is


		T = 2pr/v,


	so the effective current is 


		I = e/T = ev/2pr.


	The magnetic dipole moment is


		M = IA = (ev/2pr)pr2 = evr/2 = (e/2m)L.
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35.	(a)	The angle between the normal to the coil and the field 


		is 24.0°, so the torque is


			t 	= NIAB sin q 


				= (12)(7.10 A)p(0.0850 m)2(5.50 ´ 10–5 T) sin 24.0° 


				=        4.33 ´ 10–5 m · N.


	(b) From the directions of the forces shown on the diagram, 


		the      north edge       of the coil will rise.














36.	(a)	The magnetic dipole moment of the coil is


			m = NIA = (20)(7.6 A)p(0.10 m)2 = 4.8 A · m2 perpendicular to the loop.


		The clockwise direction of the current produces a magnetic moment in the – z direction, so we have


			� = – (4.8 A · m2)k.


	(b)	The torque on the coil is


			 t 	= � ´ B 


				=  (– 4.8 A · m2)k ´ (0.80i + 0.60j – 0.65k)T = (– 4.8 m · N)(0.80j – 0.60i) =      (+ 2.9i – 3.8j) m · N.


	(c)	If we take the reference level of U = 0 when the magnetic moment and field are perpendicular, 


		the potential energy of the coil is


			U 	= – �·· B 


				= – (– 4.8 A · m2)k·· (0.80i + 0.60j – 0.65k)T = (4.8 A · m2)(– 0.65 T) =       – 3.1 J.
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37.	The rotating charge is equivalent to a circular current.  We choose a 


	differential element of length dy a distance y from the axis of rotation.  


	The charge on this element is 


		dq = (Q/¬) dy.  


	Because the time for one revolution is T = 2p/w, the effective current 


	of the element is


		dI = dq/T = (w/2p) dq.


	Thus the magnetic moment of the element is 


		dm = A dI = (py2)(w/2p) dq = (wQ/2¬)y2 dy.


	We find the total magnetic moment by adding (integrating) the magnetic 


	moments of the differential elements:


		�





38.	When the coil comes to rest, the magnetic torque is balanced by the restoring torque:


		NIAB = kf.


	Because the full-scale deflection is the same, we have


		I1B1 = I2B2 ;


		(63.0 mA)B1 = I2(0.860B1), which gives I2 =      73.3 mA.





39.	When the coil comes to rest, the magnetic torque is balanced by the restoring torque:


		NIAB = kf.


	Because the full-scale deflection is the same, we have


		I1/k1 = I2/k2 ;


		(36 mA)/k1 = I2/(0.80k1), which gives I2 =      29 mA.





40.	If we assume that the magnetic field is constant, we have


		t2/t1 = I2/I1 = 0.82, 


	so the torque will       decrease by 18%.


	If we assume that the magnetic field is produced by the current, it will be proportional to the current and will also decrease by 18%, so we have


		t2/t1 = (I2/I1)(B2/B1) = (0.82)(0.82) = 0.67, 


	so the torque will       decrease by 33%.





41.	For the net force on the particle to be zero when the two fields are present, the velocity is perpendicular to the crossed electric and magnetic fields.  The magnitudes of the two forces will be equal:


		qE = qvB,  or


		v = E/B.


	Without the electric field, the magnetic force will always be perpendicular to the velocity.  


	The magnetic force provides the radial acceleration, so we have


		F = qvB = mv2/r, so 


		q/m = v/Br = E/B2r = (200 V/m)/(0.46 T)2(8.0 ´ 10–3 m) =      1.2 ´ 105 C/kg.





42.	When the drop is held at rest, the electric field will produce an upward force to balance the force of gravity:


		mg = qE = NeV/d;


		(3.3 ´ 10–15 kg)(9.80 m/s2) = N(1.60 ´ 10–19 C)(340 V)/(1.0 ´ 10–2 m), 


	which gives N = 5.9 =       6 electrons.














43.	(a)	The Hall emf is across the width of the sample, so the Hall field is


			EH = åH/w = (6.5 ´ 10–6 V)/(0.030 m) =       2.2 ´ 10–4 V/m.


	(b)	The forces from the electric field and the magnetic field balance. We find the drift speed from


			EH = vdB;


			2.2 ´ 10–4 V/m = vd(0.80 T), which gives vd =      2.7 ´ 10–4 m/s.


	(c)	We find the density from


			I = neAvd ;


			42 A = n(1.60 ´ 10–19 C)(0.030 m)(500 ´ 10–6 m)(2.7 ´ 10–4 m/s), 


		which gives n =      6.4 ´ 1028 electrons/m3.





44.	The Hall field is


		EH = åH/w = (2.42 ´ 10–6 V)/(0.015 m) = 1.613 ´ 10–4 V/m.


	To determine the drift speed, we first find the density of free electrons:


		n 	= [(0.971)(1000 kg/m3)(103 g/kg)/(23 g/mol)](6.02 ´ 1023 free electrons/mol) 


			= 2.543 ´ 1028 electrons/m3.


	We find the drift speed from


		I = neAvd ;


		12.0 A = (2.543 ´ 1028 electrons/m3)(1.60 ´ 10–19 C)(0.015 m)(1.30 ´ 10–3 m)vd , 


		which gives vd = 1.513 ´ 10–4 m/s.


	The forces from the electric field and the magnetic field balance, so we have


		EH = vdB;


		1.613 ´ 10–4 V/m = (1.513 ´ 10–4 m/s)B, which gives B =      1.07 T.





45.	(a)	The sign of the ions will not change the magnitude of the Hall emf, but will 


			determine the polarity of the emf.


	(b)	The forces from the electric field and the magnetic field balance. We find the flow velocity from


			åH = vdB/w;


			0.10 ´ 10–3 V = vd(0.070 T)(3.3 ´ 10–3 m), which gives vd =      0.43 m/s.





46.	For the circular motion, the magnetic force provides the centripetal acceleration:


		qvB = mv2/r,   or    r = mv/qB.


	The velocities are the same because of the velocity selector, so we have


		m/m0 = r/r0 ;


		m1/(76 u) = (21.0 cm)/(22.8 cm) =      70 u;


		m2/(76 u) = (21.6 cm)/(22.8 cm) =      72 u;


		m3/(76 u) = (21.9 cm)/(22.8 cm) =      73 u;


		m4/(76 u) = (22.2 cm)/(22.8 cm) =      74 u.





47.	We find the velocity of the velocity selector from


		v = E/B = (2.48 ´ 104 V/m)/(0.58 T) = 4.28 ´ 104 m/s.


	For the radius of the path, we have


		r = mv/qB¢ = [(4.28 ´ 104 m/s)/(1.60 ´ 10–19 C)(0.58 T)]m = (4.61 ´ 1023 m/kg)m.


	If we let A represent the mass number, we can write this as


		r = (4.61 ´ 1023 m/kg)(1.66 ´ 10–27 kg)A = (7.65 ´ 10–4 m)A = (0.765 mm)A.


	The separation of the lines is the difference in the diameter, or


		?D = 2 ?r = 2(0.765 mm) ?A = (1.53 mm)(1) =       1.53 mm.


	If the ions were doubly charged, all radii would be reduced by one-half, so the separation would be


		0.76 mm.











48.	The velocity of the velocity selector is


		v = E/B.


	The separation on the film will be the difference in the diameters of the path in the magnetic field.  For the radius of the path, we have


		r = mv/qB¢ = mE/qB¢B, so 


		r = km,   and   ?r = k ?m.


	If we form the ratio, we get


		?m/m = ?r/r;


		(28.0134 u – 28.0106 u)/(28.0134 u) = !(0.50 ´ 10–3 m)/r, which gives r =      2.5 m.





49.	We find the speed acquired from the accelerating voltage from energy conservation:


		0 = ?K + ?U;


		0 = !mv2 – 0 + q(– V), which gives v = (2qV/m)1/2.


	We combine this with the expression for the radius of the path: 


		R = mv/qB = m(2qV/m)1/2/qB,   or   m = qB2R2/2V.





50.	For the circular motion, the magnetic force provides the radial acceleration:


		qvB = mv2/r,   or    v = qBr/m.


	To make the path straight, the forces from the electric field and the magnetic field balance:


		qE = qvB = q(qBr/m)B,   or   


		E 	= qB2r/m = (1.60 ´ 10–19 C)(0.725 T)2(0.0510 m)/(1.67 ´ 10–27 kg) 


			=       2.57 ´ 106 V/m perpendicular to B.
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51.	The magnetic force must be toward the center of the circular path, 


	so the magnetic field must be up.


	The magnetic force provides the centripetal acceleration:


		qvB = mv2/r,   or    mv = qBr;


		4.8 ´ 10–16 kg · m/s = (1.60 ´ 10–19 C)B(1.0 ´ 103 m), 


	which gives B =       3.0 T  up.




















52.	The radius of the path in the magnetic field is 


		r = mv/eB,   or    mv = eBr.


	The kinetic energy is


		K = !mv2 = !(eBr)2/m.


	If we form the ratio for the two particles, we have


		Kp/Ke = (rp/re)2(me/mp);


		1 = (rp/re)2[(9.11 ´ 10–31 kg)/(1.67 ´ 10–27 kg)], which gives rp/re =      42.8.





53.	The magnetic force on the electron must be up, so the velocity must be toward the west.


	For the balanced forces, we have


		mg = evB;


		(9.11 ´ 10–31 kg)(9.80 m/s2) = (1.60 ´ 10–19 C)v(0.50 ´ 10–4 T), 


	which gives v =       1.1 ´ 10–6 m/s  west.





54.	The force on the airplane is 


		F = qvB = (1550 ´ 10–6 C)(120 m/s)(5.0 ´ 10–5 T) =       9.3 ´ 10–6 N.








55.	Even though the Earth’s field dips, the current and the field are perpendicular.  The direction of the force will be perpendicular to both the cable and the Earth’s field, so it will be 68° above the horizontal toward the north.  For the magnitude, we have


		F 	= ILB  


			= (330 A)(10 m)(5.0 ´ 10–5 T) =      0.17 N, 68° above the horizontal toward the north.
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56.	(a)	The force from the magnetic field will accelerate 


		the rod:


			F = I¬B = ma, which gives a = I¬B/m.


		Because the rod starts from rest and the acceleration 


		is constant, we have


			v = v0 + at = 0 + (I¬B/m)t =       I¬Bt/m.


	(b)	The total normal force on the rod is mg, so there is a 


		friction force of mkmg.  For the acceleration, we have


			?F = I¬B – mkmg = ma, 


		which gives a = (I¬B/m) – mkg.


		For the speed we have


			v = at =       [(I¬B/m) – mkg]t.


	(c)	For a current toward the north in an upward field, the force will be to the      east.
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57.	We assume the magnetic field makes an angle q with the vertical.  


	From a view along the rod, we have the forces shown in the diagram.  


	For the z-direction we have


		FB sin q + FN – mg = 0,  or  FN = mg – ILB sin q.


	To start motion in the x-direction, we have


		FB cos q > Ffr,max = msFN.


	When we combine the two equations, we get


		B > msmg/IL(cos q + ms sin q).


	To find the angle for the minimum field, we find the angle that will make the denominator maximum by differentiating:


		d(cos q + ms sin q)/dq = – sin q + ms cos q = 0,  or   tan q = ms = 0.50, q = 26.6°.


	Thus B > (0.50)(0.40 kg)(9.80 m/s2)/(40 A)(0.22 m)(cos 26.6° + 0.50 sin 26.6°) =       0.20 T.


	The minimum magnetic field is       26.6° from the vertical.








58.	We find the speed acquired from the accelerating voltage from energy conservation:


		0 = ?K + ?U;


		0 = !mv2 – 0 + (– e)(V),   or   v = (2eV/m)1/2.


	If we assume that the deflection is small, the time the electron takes to reach the screen is


		t = L/v = L(m/2eV)1/2.


	The magnetic force produces an acceleration perpendicular to the original motion:


		a^ = evB/m. 


	For a small deflection, we can take the force to be constant, so the deflection of the electron is


		d 	= !a^t2 = !(evB/m)(L/v)2 = !eBL2/mv = !BL2(e/2mV)1/2 


			= !(5.0 ´ 10–5 T)(0.20 m)2[(1.60 ´ 10–19 C)/2(9.11 ´ 10–31 kg)V]1/2 = (0.296 m · V1/2)/V1/2.


	(a)	For a voltage of 2.0 kV, we have


			d = (0.296 m · V1/2)/V1/2 = (0.296 m · V1/2)/(2.0 ´ 103 V)1/2 = 6.6 ´ 10–3 m =      6.6 mm.


	(b)	For a voltage of 30 kV, we have


			d = (0.296 m · V1/2)/V1/2 = (0.296 m · V1/2)/(30 ´ 103 V)1/2 = 1.7 ´ 10–3 m =      1.7 mm.


	These results justify our assumption of small deflection.





59.	(a)	The radius of the circular orbit is


			r = mv/qB.


		The time to complete a circle is 


			T = 2pr/v = 2pm/qB, so the frequency is


			f = 1/T = qB/2pm.


		Note that this is independent of r.


		Because we want the ac voltage to be maximum when the proton reaches the gap and minimum 


		(reversed) when the proton has made half a circle, the frequency of the ac voltage must be the 


		same:  f = 1/T = qB/2pm.


	(b)	In a full circle, the proton crosses the gap twice.  If the gap is small, the ac voltage will not change 


		significantly from its maximum magnitude while the proton is in the gap.   


		The energy gain from the two crossings is


			?K = 2qV0 .


	(c)	From r = mv/qB, we see that the maximum speed, and thus the maximum kinetic energy occurs at 


		the maximum radius of the path.  The maximum kinetic energy is 


			Kmax 	= !mvmax2 = !m(qBrmax/m)2 = (qBrmax)2/2m  


					= [(1.60 ´ 10–19 C)(0.50 T)(2.0 m)]2/2(1.67 ´ 10–27 kg) 


					= 7.66 ´ 10–12 J = (7.66 ´ 10–12 J)/(1.60 ´ 10–13 J/MeV) =       48 MeV.





60.	With the direction of q as the positive direction, we see that the torque on the loop will be negative.  If we let IM be the moment of inertia of the loop, for the angular motion we have


		– NIAB sin q = IM d2q/dt2. 


	If q « 1, sin q ˜ q, so we have


		– NIABq = IM d2q/dt2, or


		d2q/dt2 = – w2q, where w2 = NIAB/IM .


	Thus we see that we have angular simple harmonic motion.


	The loop has two wires of length a and mass ma/(2a + 2b) and two wires of length b and mass 


	mb/(2a + 2b).  The moment of inertia of the loop is


		IM = 2[ma/(2a + 2b)](b/2)2 + 2[mb/(2a + 2b)](b2/12) = mb2(3a + b)/12(a + b).


	The period of the motion is


		T 	= 2p/w = 2p(IM/NIAB)1/2 


			= 2p[mb2(3a + b)/12(a + b)abNIB]1/2 =       p[mb(3a + b)/3NIBa(a + b)]1/2.
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61.	If the beam is perpendicular to the magnetic field, the force from 


	the magnetic field is always perpendicular to the velocity, so it 


	will change the direction of the velocity, but not its magnitude.


	The radius of the path in the magnetic field is 


		R = mv/qB.


	Protons with different speeds will have paths of different radii.  


	Thus slower protons will deflect more, and faster protons will 


	deflect less, than those with the design speed.


	We find the radius of the path from


		R 	= mv/qB 


			= (1.67 ´ 10–27 kg)(0.75 ´ 107 m/s)/(1.60 ´ 10–19 C)(0.33 T) 


			= 0.237 m.


	Because the exit velocity is perpendicular to the radial 


	line from the center of curvature, the exit angle is also 


	the angle the radial line makes with the boundary of the field:


		sin q = L/R = (0.050 m)/(0.237 m) = 0.211,  so       q = 12°.
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62.	(a)	The force on one side of the loop is


			F = ILB  = (25.0 A)(0.200 m)(1.65 T) = 8.25 N.


		When the loop is perpendicular to the magnetic field, the forces 


		at top and bottom will create a tension in each of the other two 


		sides of !F.  This produces a tensile stress of !F/A = F/2pr2.


		When the loop is parallel to the magnetic field, the forces 


		on right and left will create a shear in each of the other two sides.  


		This produces a shear stress of !F/A = F/2pr2.


		Because the magnitudes are the same and the tensile strength of 


		aluminum is equal to the shear strength, we can use either condition 


		to determine the minimum diameter.  With a safety factor of 10, we have


			10(F/2pr2) < Strength;


			10(8.25 N)/2pr2 < 200 ´ 106 N/m2, which gives r > 2.56 ´ 10–4 m = 0.256 mm.


		Thus the minimum diameter is       0.512 mm.


	(b)	The resistance of a single loop is


			R = r4L/A = r4L/pr2 = (2.65 ´ 10–8 W · m)(4)(0.200 m)/p(2.56 ´ 10–4 m)2 =      0.103 W.





63.	We find the required acceleration from


		v2 = v02 + 2ax;


		(30 m/s)2 = 0 + 2a(1.0 m), which gives a = 450 m/s2.


	This acceleration is provided by the force from the  magnetic field:


		F = ILB = ma;


		I(0.20 m)(1.7 T) = (1.5 ´ 10–3 kg)(450 m/s2), which gives I =       2.0 A.


	The force is away from the battery, so fingers in the direction of I would have to curl down; thus the field points      down.
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64.	(a)	To make the path straight, the forces from the electric field 


		and the magnetic field balance:


			eE = evB ;


			10,000 V/m = (4.8 ´ 106 m/s)B, which gives B =      2.1 ´ 10–3 T.


	(b)	Because the electric force is down, the magnetic force must be up, so 


		the magnetic field is     out of the page.


	(c)	If there is only the magnetic field, the radius of the circular orbit is


			r = mv/qB.


		The time to complete a circle is 


			T = 2pr/v = 2pm/qB, so the frequency is


			f = 1/T = qB/2pm = (1.60 ´ 10–19 C)(2.08 ´ 10–3 T)/2p(9.11 ´ 10–31 kg) =      5.8 ´ 107 Hz.


















































65.	We find the speed acquired from the accelerating 


	voltage from energy conservation:


		0 = ?K + ?U;


		0 = !mv2 – 0 + (– e)(V),   or   v = (2eV/m)1/2.


	In the uniform magnetic field, the magnetic force 


	provides the radial acceleration for the circular arc:


		evB = mv2/r, so  B = mv/er =  (2mV/e)1/2/r.


	Thus we need to determine the radius from the 


	geometry.  Because the velocity is perpendicular to 


	the radial line from the center of curvature, the angle 


	leaving the magnetic field is also the angle the arc


	subtends:  sin q = d/r. 


�


	We also see that 


		h0 = r(1 – cos q), where h0 is the deflection caused by the magnetic field.


	From the linear motion after leaving the magnetic field we have


		tan q = (h – h0)/(L  – d). 


	The trigonometric functions make the solution for r rather messy.  The equations can be combined to eliminate h0 and q to give a cubic equation  for r.  Instead we will use a trial approach and assume a value of 1.0 cm for the deflection h0.  We can then find the angle from


		tan q = (h – h0)/(L  – d) = (11 cm – 1.0 cm)/(22 cm – 3.5 cm) = 0.541, so q = 28.4°.


	We find the radius from


		sin q = d/r;


		sin 28.4° = (3.5 cm)/r, which gives r = 7.36 cm.


	To test our assumption we find h0 from


		h0 = r(1 – cos q) = (7.36 cm)(1 – cos 28.4°) = 0.89 cm.


	Thus we refine our assumption and choose h0 = 0.9 cm.  We now get


		tan q = (h – h0)/(L  – d) = (11 cm – 0.9 cm)/(22 cm – 3.5 cm) = 0.546, so q = 28.6°.


		sin 28.6° = (3.5 cm)/r, which gives r = 7.30 cm.


		h0 = r(1 – cos q) = (7.30 cm)(1 – cos 28.6°) = 0.89 cm.


	Finally we find the magnetic field from


		B 	=  (2mV/e)1/2/r 


			= [2(9.11 ´ 10–31 kg)(25 ´ 103 V)/(1.60 ´ 10–19 C)]1/2/(7.3 ´ 10–2 m) =       7.3 ´ 10–3 T.





66.	(a)	For a particle moving at speed v in a circle of radius r the frequency is 


			f = 1/T = v/2pr,   or   v = 2prf.


		When there is no magnetic field, the radial acceleration is provided by the electrostatic 


		attraction:


			ke2/r2 = mv02/r = 4p2mrf02.


		When there is a magnetic field perpendicular to the plane of rotation, we have


			ke2/r2 ± evB = mv2/r,  or


			f02 ± (eB/2pm)f – f 2 = 0.


		From this quadratic equation we get


			f = !{± (eB/2pm) ± [(eB/2pm)2 + 4f02]1/2} = ± (eB/4pm) ± [f02 + (eB/4pm)2]1/2.


		If the force from the magnetic field is much less than that due to electrostatic attraction, 


			(eB/4pm) « f0 , so we have


			f ˜ ± (eB/4pm) + f0 , 


		where we have chosen the positive sign for the square root to get a positive value for f.


		Thus we have


			f – f0 = ?f = ± eB/4pm.


	(b)	The ± sign indicates that the circulation of the electron may be clockwise or counterclockwise with 


		respect to the magnetic field.








67.	The magnetic force provides the centripetal acceleration of the circular motion:


		evB = mv2/r,   or    mv = eBr.


	The kinetic energy of the proton is


		K = !mv2 = !(eBr)2/m = (e2B2/2m)r2.


	Thus the change in the kinetic energy is


		?K = (e2B2/2m)(rQ2 – rP2)


			= [(1.60 ´ 10–19 C)2(0.010 T)2/2(1.67 ´ 10–27 kg)][(8.5 ´ 10–3 m)2 – (10.0 ´ 10–3 m)2] 


			=       – 2.1 ´ 10–20 J.
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68.	For the two horizontal sides of the loop, the 


	currents are in opposite directions so their 


	forces will be in opposite directions.  


	Although the magnetic field varies along 


	the side, the current will be in the same 


	average field and the magnitudes of the 


	forces will be equal, so F3 + F4 = 0.  


	For the sum of the two forces on the vertical 


	sides of the loop, we have


		Fnet 	= F1 + F2 =  IL1 ´ B1 + IL2 ´ B2 


			= Iaj ´ B0[1 – (a + b)/d]k + Ia(– j) ´ B0[1 – b/d]k  


			= IaB0{[1 – (a + b)/d] – (1 – b/d)}i  


			=       – (Ia2B0/d)i  (left). 








Chapter 27   p. �	











