CHAPTER 28 – Sources of Magnetic Field





1.	The magnetic field of a long wire depends on the distance from the wire:


		B	= (m0/4p)2I/r


			= (10–7 T · m/A)2(65 A)/(0.075 m) =        1.7 ´ 10–4 T.


	When we compare this to the Earth’s field, we get


		B/BEarth = (1.7 ´ 10–4 T)/(5.5 ´ 10–5 T) =        3.1´.





2.	We find the current from


		B = (m0/4p)2I/r;


		5.5 ´ 10–5 T = (10–7 T · m/A)2I/(0.25 m), which gives I =        69 A.





3.	The two currents in the same direction will be attracted with a force of


		F 	= I1(m0I2/2pd)L = m0I1I2L/2pd


			= (4p ´ 10–7 T · m/A)(35 A)(35 A)(45 m)/2p(0.060 m) =       0.18 N attraction.





4.	Because the force is attractive, the second current must be in the same direction as the first.  We find the magnitude from


		F/L = m0I1I2/2pd


		8.8 ´ 10–4 N/m = (4p ´ 10–7 T · m/A)(22 A)I2/2p(0.070 m), which gives I2 =       14 A upward.





5.	The magnetic field will be tangent to the circle with the current at the center.


		�








6.	The magnetic field produced by the wire must be less than 1.0% of the magnetic field of the Earth.  We find the current from


		B = (m0/4p)2I/r < 0.01BEarth ;


		(10–7 T · m/A)2I/(1.00 m) < 0.010(5.5 ´ 10–5 T), which gives I <        2.8 A.
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7.	We find the direction of the field for each wire from 


	the tangent to the circle around the wire, as shown.  


	For their magnitudes, we have


		B1	= (m0/4p)2I/r1


			= (10–7 T · m/A)2(25 A)/(0.120 m) = 4.17 ´ 10–5 T. 


		B2	= (m0/4p)2IB/r2


			= (10–7 T · m/A)2(25 A)/(0.050 m) = 1.00 ´ 10–4 T. 


	We use the property of the triangle to find the angles shown:


		r22 = r12 + d2 – 2r1d cos q1 ;


		(5.0 cm)2 = (12.0 cm)2 + (15.0 cm)2 – 2(12.0 cm)(15.0 cm) cos q1 , 


	which gives cos q1 = 0.956, q1 = 17.1°;


		r12 = r22 + d2 – 2r2d cos q2 ;


		(12.0 cm)2 = (5.0 cm)2 + (15.0 cm)2 – 2(5.0 cm)(15.0 cm) cos q2 , 


	which gives cos q2 = 0.707, q2 = 45.0°;


	From the vector diagram, we have


		B	= B1(– cos q1 i + sin q1 j) + B2 (cos q2 i + sin q2 j)


			= (4.17 ´ 10–5 T)(– cos 17.1° i + sin 17.1° j) + (1.00 ´ 10–4 T)(cos 45.0° i + sin 45.0° j) 


			=       (3.1 ´ 10–5 T) i + (8.3 ´ 10–5 T) j.


	We find the direction from


		tan a = By/Bx = (8.30 ´ 10–5 T)/(3.09 ´ 10–5 T) = 2.68, a = 70.1°.


	We find the magnitude from


		B = Bx/cos a = (3.09 ´ 10–5 T)/cos 70.1° =      8.9 ´ 10–5 T,  70° above horizontal.
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8.	The magnetic field from the wire at a point south of a 


	downward current will be to the west, with a magnitude:


		Bwire	= (m0/4p)2I/r


				= (10–7 T · m/A)2(40 A)/(0.20 m) = 4.0 ´ 10–5 T.


	Because this is perpendicular to the Earth’s field, we find the 


	direction of the resultant field, and thus of the compass needle, from


		tan q = Bwire/BEarth = (4.0 ´ 10–5 T)/(0.45 ´ 10–4 T) = 0.889,   or 


		q = 42° W of N.








9.	The magnetic field to the west of a wire with a current to the north will be up, with a magnitude:


		Bwire	= (m0/4p)2I/r


				= (10–7 T · m/A)2(22.0 A)/(0.200 m) = 2.20 ´ 10–5 T.


	The net downward field is


		Bdown = BEarth sin 40° – Bwire = (5.0 ´ 10–5 T) sin 40° – 2.20 ´ 10–5 T = 1.01 ´ 10–5 T.


	The northern component is Bnorth = BEarth cos 40° = 3.83 ´ 10–5 T.


	We find the magnitude from


		B = [(Bdown)2 + (Bnorth)2]1/2 = [(1.01 ´ 10–5 T)2 + (3.83 ´ 10–5 T)2]1/2 =       4.0 ´ 10–5 T.


	We find the direction from


		tan q = Bdown/Bnorth = (1.01 ´ 10–5 T)/(3.83 ´ 10–5 T) = 0.264,   or   q =       15° below the horizontal.





10.	Because a current represents the amount of charge that passes a given point, the effective current of the proton beam is


		I = ?q/?t = (1.5 ´ 109 protons/s)(1.60 ´ 10–19 C/proton) = 2.4 ´ 10–10 A.


	The magnetic field from this current will be


		B	= (m0/4p)2I/r


			= (10–7 T · m/A)2(2.4 ´ 10–10 A)/(2.0 m) =       2.4 ´ 10–17 T.
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11.	(a)	When the currents are in the same direction, the fields between 


		the currents will be in opposite directions, so at the midpoint we have


			Ba 	= B2 – B1 = [(m0/4p)2I2/r] – [(m0/4p)2I/r] = [(m0/4p)2/r](I2 – I)


				= (10–7 T · m/A)2/(0.010 m)(15 A – I) 


				=     (2.0 ´ 10–5 T/A)(15 A – I) up,    with the currents as shown.


	(b)	When the currents are in opposite directions, the fields between 


		the currents will be in the same direction, so at the midpoint we have


			Bb 	= B2 + B1 = [(m0/4p)2I2/r] + [(m0/4p)2I/r] = [(m0/4p)2/r](I2 + I)


				= (10–7 T · m/A)2/(0.010 m)(15 A + I) 


				=     (2.0 ´ 10–5 T/A)(15 A + I) down,    with the currents as shown.
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12.	Because the currents are in opposite directions, the fields 


	will be in opposite directions.  For the net field we have


		B 	= B1 – B2 = [(m0/4p)2I1/r1] – [(m0/4p)2I2/r2] 


			= [(m0/4p)2I]{[1/(L – !d)] – [1/(L + !d)]}


			= [(m0/4p)2I/L]{[1/(1 – !d/L)] – [1/(1 + !d/L)]}.


	Because d « L, we can use the approximation 1/(1 ± x) ˜ 1 — x:


		B 	= [(m0/4p)2I/L][(1 + !d/L) – (1 – !d/L)]


			= [(m0/4p)2I/L](d/L) = (m0/4p)2Id/L2


			= (10–7 T · m/A)2(25 A)(2.8 ´ 10–3 m)/(0.100 m)2 


			=       1.4 ´ 10–6 T up,     with the currents as shown.


	This is 


		(1.4 ´ 10–6 T)/(5.0 ´ 10–5 T) = 0.028 =     2.8% of the Earth’s field.
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13.	The magnetic field of the Earth points in the original 


	direction of the compass needle.  The field of the wire will 


	be tangent to a circle centered at the wire.  We see from the 


	diagram that the field of the wire must be to the south to 


	produce a greater angle for the resultant field.  Thus the 


	current in the wire must be down.  From the vector diagram, 


	we have


		B sin q2 = BEarth sin q1 ;


		B cos q2 = BEarth cos q1 – Bwire .


	When we divide the two equations, we get


		tan q2  = (BEarth sin q1)/(BEarth cos q1 – Bwire);


		tan 55° = [(0.50 ´ 10–4 T) sin 20°]/[(0.50 ´ 10–4 T) cos 20° – Bwire], 


	which gives Bwire = 3.50 ´ 10–5 T.


	We find the current from


		Bwire = (m0/4p)2I/r;


		3.50 ´ 10–5 T = (10–7 T · m/A)2I/(0.120 m), which gives I =        21 A down.
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14.	The magnetic field at the loop from the wire will be into the 


	page, and will depend only on the distance from the wire r: 


		B = (m0/4p)2I1/r, 


	For the two vertical sides of the loop, the currents are in 


	opposite directions so their forces will be in opposite directions.  


	Because the current will be in the same average field, the 


	magnitudes of the forces will be equal, so Fc + Fd = 0.  


	For the sum of the two forces on the top and bottom of the loop, 


	we have


		Fnet 	= Fa – Fb = I2BaL – I2BbL  


			= I2[(m0/4p)2I1/a]L – I2[(m0/4p)2I1/(a + b)]L  


			= (m0/4p)(2I1I2L){(1/a) – [1/(a + b)]} 


			= (10–7 T · m/A)2(2.5 A)(2.5 A)(0.100 m)[(1/0.030 m) – (1/0.080 m)] 


			=      2.6 ´ 10–6 N  toward the straight wire.
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15.	Because the currents are in the same direction, between the 


	wires the fields will be in opposite directions.  


	For the net field we have


		B 	= B1 – B2 = [(m0/4p)2I1/x]j – [(m0/4p)2I2/(d – x)]j  


			= (m0/4p)2I{[(d – x) – x]/x(d – x)}j 


			=       [(m0/4p)2I(d – 2x)/x(d – x)]j .














�


16.	Because the currents are in opposite directions, between the 


	wires the fields will be in the same direction.  


	With I1 = 2I2 , for the net field we have


		B 	= B1 + B2 = – [(m0/4p)2I1/x]j – [(m0/4p)2I2/(d – x)]j  


			= – (m0/4p)2I{[2(d – x) + x]/x(d – x)}j 


			=       – [(m0/4p)2I(2d – x)/x(d – x)]j .
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17.	We find the direction of the field for each wire from the tangent to the circle around the wire, as shown.  For their magnitudes, we have


		BT 	= (m0/4p)2IT/L


			= (10–7 T · m/A)2(20.0 A)/(0.100 m) = 4.00 ´ 10–5 T. 


		BB 	= (m0/4p)2IB/L


				= (10–7 T · m/A)2(5.0 A)/(0.100 m) = 1.00 ´ 10–5 T. 


	Because the fields are perpendicular, we find the magnitude from


		B 	= (BT2 + BB2)1/2 


			= [(4.00 ´ 10–5 T)2 + (1.00 ´ 10–5 T)2]1/2 =       4.12 ´ 10–5 T.
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18.	We find the direction of the field for each wire from 


	the tangent to the circle around the wire, as shown.  


	For their magnitudes, we have


		B1	= (m0/4p)2I1/L1


			= (10–7 T · m/A)2(16.5 A)/(0.120 m) = 2.75 ´ 10–5 T. 


		B2	= (m0/4p)2I2/L2


			= (10–7 T · m/A)2(16.5 A)/(0.130 m) = 2.54 ´ 10–5 T. 


	We use the property of the triangle to find the angles shown:


		r22 = r12 + d2 – 2r1d cos q1 ;


		(13.0 cm)2 = (12.0 cm)2 + (7.0 cm)2 – 2(12.0 cm)(7.0 cm) cos q1 , 


	which gives cos q1 = 0.143, q1 = 81.8°;


		r12 = r22 + d2 – 2r2d cos q2 ;


		(12.0 cm)2 = (13.0 cm)2 + (7.0 cm)2 – 2(7.0 cm)(13.0 cm) cos q2 , 


	which gives cos q2 = 0.407, q2 = 66.0°;


	From the vector diagram, we have


		B	= B1(– sin q1 i + cos q1 j) + B2(– sin q2 i – cos q2 j)


			= (2.75 ´ 10–5 T)(– sin 81.8° i + cos 81.8° j) + (2.54 ´ 10–5 T)(– sin 66.0° i – cos 66.0° j) 


			=       (– 5.04 ´ 10–5 T) i + (– 6.41 ´ 10–6 T) j.


	For the direction of the field, we have


		tan q = By/Bx = (– 6.41 ´ 10–6 T)/(– 5.04 ´ 10–5 T) = 0.127,  q = 187.2°.


	We find the magnitude from


		Bx = B cos q;


		– 5.04 ´ 10–6 T = B cos 187.2°, 


	which gives B =      5.08 ´ 10–5 T  187.2°  from the x-axis.
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19.	(a)	The figure shows a view looking directly at the current.  


		The sheet may be thought of as an infinite number of 


		parallel wires.  We choose a differential element of 


		width dx a distance x from the center of the strip.  


		This element has a current dI = (I/L) dx which 


		produces a magnetic field 


		dB = (m0/4p)2 dI/r = (m0I/2pL) dx/r, in the direction shown.


		Because a differential element at – x will produce a field 


		of the same magnitude but below the horizontal, the 


		symmetry means the resultant field will be parallel to the 


		strip in the x-direction.  We find the total field by adding 


		(integrating) the x-components of the differential fields:


			�


	(b)	If y » L, or L/2y « 1, the angle is small and equal to the tangent, so we have


			tan–1(L/2y) ˜ L/2y, and


			B ˜ (m0I/pL))(L/2y) =       (m0/4p)(2I/y),


		which is the magnetic field produced by a long wire.  This is what the strip will appear to be when 


		we are far from the strip.
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20.	Because the electron is moving in a plane perpendicular 


	to the magnetic field of the wire, the force will be 


	perpendicular to the velocity.  Thus the magnitude of 


	the velocity will not change.  


	For the motion in the y-direction, we have


		evB cos q = ev(m0I/2py) cos q = m dvy/dt.


	This expression contains four variables, y, q, vy , and t; 


	but we can use the chain rule and


		vy = v sin q;   dvy = v cos q dq, 


	to reduce the number to two, which we choose to be y and q:


		ev(m0I/2py) cos q = m dvy/dt = m (dvy/dy)(dy/dt );


		ev(m0I/2py) cos q = m (v cos q dq/dy)vy = mv2 cos q sin q dq/dy.


	We separate variables and integrate from the initial position to the point closest to the wire:


		�


		ln (y2/y1) = – (2pmv/m0Ie)(cos q2 – cos q1),  or  (2pmv/m0Ie)(cos q2 – cos q1) = ln (y1/y2);


		[2p(9.11 ´ 10–31 kg)(3.4 ´ 106  m/s)/(4p ´ 10–7 T · m/A)(1.60 ´ 10–19 C)I](cos 0° – cos 45°) = 


														  ln (50 cm/1.0 cm), 


	which gives I =       7.2 A.





21.	We find the current in the solenoid from


		B = m0nI = m0NI/L;


		0.385 ´ 10–3 T =  (4p ´ 10–7 T · m/A)[(1000 turns)/(0.400 m)]I, which gives I =       0.123 A.





22.	We find the number of turns in the solenoid from


		B = m0nI = m0NI/L;


		0.30 T =  (4p ´ 10–7 T · m/A)[N/(0.32 m)](5.7 A), which gives N =       1.3 ´ 104 turns.





23.	We use the results from Example 28–4.


	(a)	The magnetic field at the surface of the wire is


			Bsurface = m0I/2pR = (4p ´ 10–7 T · m/A)(40 A)/2p(1.25 ´ 10–3 m) =      6.4 ´ 10–3 T.


	(b)	Inside the wire we have


			Binside 	= (m0I/2p)(r/R2) = (4p ´ 10–7 T · m/A)(40 A)(0.75 ´ 10–3 m)/2p(1.25 ´ 10–3 m)2 


					=   3.8 ´ 10–3 T.


	(c)	Outside the wire we have


			Boutside = m0I/2pr = (4p ´ 10–7 T · m/A)(40 A)/2p(3.75 ´ 10–3 m) =      2.1 ´ 10–3 T.





24.	We use the result from Example 28–4 to find the maximum and minimum fields:


		B1 = (m0/4p)2NI/r1 = (10–7 T · m/A)2(500)(25.0 A)/(0.250 m) = 1.00 ´ 10–2 T;


		B2 = (m0/4p)2NI/r2 = (10–7 T · m/A)2(500)(25.0 A)/(0.270 m) = 0.926 ´ 10–2 T.


	Thus the range for B is       0.926 ´ 10–2 T = B = 1.00 ´ 10–2 T.





25.	(a)	If D is the diameter of the solenoid, the length of a coil is pD.  Thus the number of turns is


			N = Lwire/Lcoil = Lwire/pD.


		Because the coils are tightly wrapped, the length of the solenoid is


			Lsolenoid = Nd = Lwired/pD = (20.0 m)(2.00 ´ 10–3 m)/p(2.50 ´ 10–2 m) = 0.509 m =      50.9 cm.


	(b)	The magnetic field at the center of the solenoid is


			B = m0NI/Lsolenoid = m0I/d = (4p ´ 10–7 T · m/A)(20.0 A)/(2.00 ´ 10–3 m) =      1.26 ´ 10–2 T.
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26.	(a)	The magnetic field at a point is B = B1 + B2 , where the magnitudes are


			B1 = m0I/2pr1 , B2 = m0I/2pr2.


		The components are B = B1(– sin q1 i + cos q1 j) + B2(– sin q2 i + cos q2 j). 


		The plot of this field is Figure 28–8.


	(b)


			�





	(c)	The diagrams are similar, but not identical.        The similarity is because the electric potential 


		also depends on 1/r.  However, the magnetic field diagram is a vector diagram, while the 


		potential is a scalar.  At the midpoint N the magnetic field is zero because of the vector addition, 


		but the electrostatic potential of two positive charges is not zero.
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27.	The current densities in the wires are


		Jinner = I0/pR12    and     Jouter = I0/p(R32 – R22).


	Because of the cylindrical symmetry, we know that the magnetic 


	fields will be circular.  In each case we apply Ampere’s law to a 


	circular path of radius r.


	(a)	Inside the inner wire, r < R1:  


			ı B · ds = m0Ienclosed;


			B2pr = m0Jinnerpr2 = m0I0pr2/pR12, 


		which gives      B = (m0I0/2pR12)r  circular CCW, r < R1.


	(b)	Between the wires, R1 < r < R2:


			ı B · ds = m0Ienclosed;


			B2pr = m0I0 , which gives      B = m0I0/2pr  circular CCW, R1 < r < R2.


	(c)	Inside the outer wire, R2 < r < R3:


			ı B · ds = m0Ienclosed;


			B2pr = m0[I0 – Jouter(pr2 – pR22)] 


				  = m0[I0 – I0(pr2 – pR22)/p(R32 – R22)] = m0I0[1 – (r2 – R22)/(R32 – R22)], 


		which gives      B = (m0I0/2pr)(R32 – r2)/(R32 – R22)  circular CCW, R2 < r < R3.


	(d)	Outside the outer wire, R3 < r:


			ı B · ds = m0Ienclosed;


			B2pr = m0(I0 – I0 ), which gives      B = 0, R3 < r.














28.	We find the constants in the current densities in the wires by requiring that the total current in each wire be I0.  For the inner wire we have


		�


	which gives C1 = 3I0/2pR13.


	For the outer wire we have


		�


	which gives C2 = (3I0/2p)/(R33 – R23).


	Because of the cylindrical symmetry, we know that the magnetic fields will be circular.  In each case we apply Ampere’s law to a circular path of radius r.


	(a)	Inside the inner wire, r < R1:  


			ı B · ds = m0Ienclosed;


			�


			B = m0C1r2/3 = (m0r2/3)(3I0/2pR13) =       (m0I0/2pR13)r2 circular CCW, r < R1.


	(b)	Between the wires, R1 < r < R2:


			ı B · ds = m0Ienclosed;


			B2pr = m0I0 , which gives      B = m0I0/2pr  circular CCW, R1 < r < R2.


	(c)	Inside the outer wire, R2 < r < R3:


			ı B · ds = m0Ienclosed;


			�


			B 	= (m0I0/2pr)[1 – (r3 – R23)/(R33 – R23)] 


				=      (m0I0/2pr)(R33 – r3)/(R33 – R23)  circular CCW, R2 < r < R3.


	(d)	Outside the outer wire, r > R3 .


			ı B · ds = m0Ienclosed;


			B2pr = m0(I0 – I0 ), which gives      B = 0, r > R3 .








29.	The magnetic field along the axis of a dipole far from the dipole is


		B =  (m0/2p)m/x3.


	If we form the ratio for the two distances, we have


		B2/B1 = (x1/x2)3;


		B2/(1.0 ´ 10–4 T) = [6.4 ´ 103 km/(6.4 ´ 103 km + 13 ´ 103 km)]3, which gives B2 =       3.6 ´ 10–6 T.
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30.	Because the point C is along the line of the two straight segments of 


	the wire, there is no magnetic field from these segments.  


	The magnetic field at the point C is the sum of two fields:


		B = Binner arc + Bouter arc.	


	Each field is a portion of a circular loop, with the field of the 


	inner arc out the page and that of the outer arc into the page, 


	so we subtract the two magnitudes:


		B 	= (q/2p)(m0I/2R1) – (q/2p)(m0I/2R2)


			= (m0Iq/4p)[(1/R1) – (1/R2)] 


			=       m0Iq(R2 – R1)/4pR1R2 out of the page.
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31.	Because the point C is along the line of the two straight segments of 


	the wire, there is no magnetic field from these segments.  


	The magnetic field at the point C is the sum of two fields:


		B = Blower semicircle + Bupper semicircle.	


	Each field is half that of a circular loop, with the field 


	of the lower semicircle out the page and that of the 


	upper semicircle into the page, so we subtract the 


	two magnitudes:


		B = !(m0&I/2R) – !(m0#I/2R) =       m0I/8R out of the page.
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32.	We assume that the inner loop is small enough that we can say it will 


	be in  the magnetic field at the center of the large loop, which is


		B1 = m0I1/2R1. 


	The magnetic moment of the inner loop is


		m2 = I2A = I2pR22, 


	and is perpendicular to the magnetic field.  Thus the torque is


		t 	= m2B1 = (I2pR22)(m0I1/2R1) = m0I1I2pR22/2R1 


			= (4p ´ 10–7 T · m/A)(7.0 A)(7.0 A)p(0.018 m)2/2(0.250 m) 


			=      1.3 ´ 10–7 m · N, in a direction that will align the two loops.
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33.	(a)	Because the point C is along the line of the two straight 


		segments of the wire, there is no magnetic field from 


		these segments.  The magnetic field at the point C is 


		the sum of two fields:


			B = Blower semicircle + Bupper semicircle.	


		Each field is half that of a circular loop, with both 


		fields into the page, so we add the two magnitudes:


			B 	= !(m0I/2R2) + !(m0I/2R1) 


				=       m0I(R1 + R2)/4R1R2 into the page.


	(b)	The magnetic moment of the circuit is 


			m = IA = I(!pR12 + !pR22) =      !pI(R12 + R22) into the page.
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34.	The distance the charge moves in a time dt is 


		d¬ = v dt.  


	The current at a point is 


		I = dq/dt.  


	Thus we have 


		I d¬ = (dq/dt)v dt = v dq.


	If we use this and � = r/r, in the Biot-Savart law we have


		B = (m0/4p)? (I d¬ ´ �)/r2 = (m0/4p)? (dq v ´ r)/r3 = (m0/4p)(q v ´ r)/r3.
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35.	(a)	We can treat the disk as an infinite number of rings.  


		We choose a differential element of radius r and 


		thickness dr.  The charge density on the disk is 


		s = Q/pR2, so the current in the ring is


			dI =  s dA/T = (Q/pR2)2pr dr/(2p/w) = Q wr dr/pR2.


		We find the magnetic dipole moment by integration:


			�


	(b)	The field from each of the rings is along the x-axis, 


		so we integrate the magnitudes:


			�


		Thus the magnetic field is


			�


	(c)	When x » R, we have


			B 	= (m0Q w/2pR2)x2{(R/x)2 + 2 – 2[1 + (R/x)2]1/2}/x[1 + (R/x)2]1/2 


				˜ (m0Q w/2pR2)x{[2 + (R/x)2 – 2[1 + (R/x)2/2 –  (R/x)4/8]}[1 – (R/x)2/2] 


				˜ (m0Q w/2pR2)x(R/x)4/4 =  m0Q wR2/8px3 = m0m/2px3.


		This is Eq. 28–7b, so      yes       it does apply.
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36.	(a)	We choose the y-axis along the wire.  We choose the differential 


		element dy and use the angle f indicated on the figure to specify 


		the location of the point where we want to find the magnetic field.  


		From the figure, we see that 


			tan f = y/R,  cos f = R/r,  and  sin f = y/r,  and  q = f + p/2.


		The angle f will vary from – f0 to f0 = tan–1 (¬/2R).


		We relate the change in angle to the change in y from


			y = R tan f;	


			dy = R sec2f df = (R/cos2f) df.


		The field from each  of the differential elements will be circular about 


		the wire, that is, into the page, so the integration of dB becomes a 


		scalar integration of the magnitude:


			�


			B = (m0I/4pR)(2 sin f0).  With sin f0 = (¬/2)/[(¬/2)2 + R2]1/2 = ¬/(¬2 + 4R2)1/2, we get


			B = m0I¬/2pR(¬2 + 4R2)1/2 circular. 


	(b)	We approximate an infinite wire by having ¬ » R:


			B = (m0I/2pR)/[1 + (2R/¬)2]1/2 ˜ m0I/2pR, which is the field for an infinite wire.





�


37.	(a)	With the wire along the x-axis, we choose a 


		differential element d¬ that is parallel to the 


		wire, so we have


			d¬ = dx i.


		The displacement from the element to the point Q 


		is r = r i.  We find the magnetic field of the 


		differential element from the Biot–Savart law:


			dB = (m0/4p)I(d¬ ´ r)/r3 = (m0/4p)I  [(dx i) ´ (r i)]/r3 = 0.


	(b)	With the same differential element d¬ and the 


		angle q indicated on the figure to specify the location of the 


		point P where we want to find the magnetic field, from the 


		figure, we see that 


			tan q = – y/x,  cos q = – x/r,  and  sin q = y/r.


		As x varies from – ¬ to 0, the angle q will vary from q0 = tan–1 (y/¬) to p/2.


		We relate the change in angle to the change in x from


			x = – y/tan q;	


			dx = y (sec2q /tan2q) dq = (y/sin2q) dq.


		The field from all the differential elements will be circular about the 


		wire, that is, out of the page, so the integration of dB becomes a scalar 


		integration of the magnitude:


			�


			B = – (m0I/4py)(0 – cos q0).  With cos q0 = ¬/(¬2 + y2)1/2, we get


			B = m0I¬/4py(¬2 + y2)1/2 circular. 


�





38.	Although the current is the same, we label them so 


	we can designate a side of the square.  We choose 


	the direction out of the page as positive.  We find the 


	magnetic field from each of the sides of the square:


		B1 = 0, 


	because the point P is along the line of the side.


		B2 	= m0I¬/4py(¬2 + y2)1/2 = m0I¬/4p¬(¬2 + ¬2)1/2 


			= m0I/4p¬v2. 


	For B3 we consider the field from two currents: a 


	current I3 in a wire of length 2¬ and a current – I3 in a 


	wire of length ¬.  Thus we have


		B3 = – m0I2¬/4p¬(4¬2 + ¬2)1/2 + m0I¬/4p¬(¬2 + ¬2)1/2 = (m0I/4p¬)[– (2/v5) + (1/v2)]. 


	For B4 we have


		B4 = – m0I¬/4p2¬(¬2 + 4¬2)1/2 = – m0I/4p¬(2v5).


	Thus the net field is


		B 	= B1 + B2 + B3 + B4 = (m0I/4p¬)[0 + (1/v2) – (2/v5) + (1/v2) – (1/2v5)] 


			=      (v2 – !v5)m0I/4p¬ out of the page.
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39.	(a)	The angle subtended by a side of the polygon at the center 


		point P is


			q = 2p/n.


		The length of a side is


			L = 2R sin (q/2) = 2R sin (p/n).


		The perpendicular distance from the center to the side is


			D = R cos (q/2) = R cos (p/n).


		We use the result from Problem 36 to find the magnetic field of 


		one side:


			B1 	= m0I0L/2pD(L2 + 4D2)1/2 


				= m0I0[2R sin (p/n)]/2p[R cos (p/n)][4R2 sin2 (p/n) + 4R2 cos2 (p/n)]1/2 


				= (m0I0/2pR) tan (p/n).


		Thus the field from the n sides is


			B = nB1 =      (m0I0/2pR)n tan (p/n) into the page.


	(b)	If we let n ® 8, the angle p/n ® 0, so tan (p/n) ® p/n.  Thus we have


			B ® (m0I0/2pR)n(p/n) = m0I0/2R, which is the expression for a circular loop.
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40.	With the solenoid along the x-axis, we choose a differential 


	ring of width dx a distance x from the center which contains 


	n dx turns.  From the result of Example 28–10, the magnetic 


	field of this ring is along the axis with a magnitude


		dB = [(m0nI/2) dx]R2/(R2 + x2)3/2.


	We can change variable to the angle q, where


		x = R tan q,  and  dx = R sec2q dq.


	The differential field is then


		dB = [(m0nI/2) (R sec2q dq)]R2/(R2 + R2 tan2q)3/2 = (m0nI/2)(sec2q dq)/sec3q  = (m0nI/2) cos q dq.


 	For a long solenoid, the angle q will vary from – p/2 to p/2.  All fields will be along the axis, so we can integrate the magnitudes to find the field:


		�

















41.	The magnetic field from each side of the loop will 


	be out of the page.  We could find the field from 


	each side by selecting a differential element and 


	using the Biot-Savart law.  We will use the result 


	from Problem 37 by considering each side to be made 


	of two pieces and adding the fields at P.  We have 


	labeled the currents to distinguish the side.  


�


	Thus we have


		�


	We can simplify the algebra by putting the constants with the field.  Thus the net field is


		�


		�


	Note that, if a = b = L, at the center of the square, where x = y = L/2, we get


		B = (m0I/4p)4(L/v2)/(L2/4) = 4m0I/pLv2.


	We can compare this to the result for Problem 39, where R = L/v2 and n = 4:


		B = (m0I/2pR)n tan (p/n) = (m0Iv2/2pL)4 tan (p/4) = 4m0I/pLv2.
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42.	(a)	We use the result from Problem 36 to find the 


		magnetic field from one side of the square;


			B1 = (m0I/2pr)¬/(¬2 + 4r2)1/2, where


			r2 = (!¬)2 + x2.


		From the symmetry, we see that the components 


		perpendicular to the x-axis of the fields from 


		the four sides will cancel, so we add the four 


		equal x-components:


			B 	= 4B1 cos q = 4[(m0I/2pr)¬/(¬2 + 4r2)1/2](¬/2r) 


				= (m0I/p)¬2/r2(¬2 + 4r2)1/2 


				= (m0I/p)¬2/[(!¬)2 + x2](¬2 + ¬2 + 4x2)1/2 


				=       4m0I¬2/p(¬2 + 4x2)(2¬2 + 4x2)1/2, along the x-axis. 


	(b) If x » ¬, we get


			B ˜ 4m0I¬2/p(4x2)(4x2)1/2 = m0I¬2/2px3.


		This is the expression for the field far from a dipole, with       m = I¬2.


43.	(a)	If the iron bar is completely magnetized, the dipoles of all of the atoms are aligned.  Thus the 


		dipole moment will be


			m 	= Nm1 = (rV/M)NAm1 


				= (7.8 ´ 103 kg/m3)(103 g/kg)(0.12 m)(1.2 ´ 10–2 m)2 ´ 


						(6.02 ´ 1023 atoms/mol)(1.8 ´ 10–23 A · m2)/(55.8 g/mol) =      26 A · m2.


	(b) Because the field is perpendicular to the dipole moment, the torque is maximal:


			t = mB = (26 A · m2)(1.2 T) =      31 m · N.





44.	For the two magnetic fields we have


		B0 = m0nI;   B = mnI.


�


	Thus the magnetic permeability is


		m = (B/B0)m0.


		B0 (10–4 T)	B (T)	m (10–4 T · m/A)


		0		0			


		0.13		0.0042		4.1


		0.25		0.010		5.0


		0.50		0.028		7.0


		0.63		0.043		8.6


		0.78		0.095		15.3


		1.0		0.45		56.6


		1.3		0.67		64.8


		1.9		1.01		66.8


		2.5		1.18		59.3


		6.3		1.44		28.7


		13.0		1.58		15.3


		130		1.72		1.7


		1300		2.26		0.22


		10,000		3.15		0.04


	Note that we have not plotted the last three points in order to show the changes at small fields.





45.	The magnetic field in the toroid is


		B = mnI


		    = (3000)(4p ´ 10–7 T · m/A)(400 turns/m)(20 A) =       30 T.





46.	We find the permeability from


		B = mnI;


		2.2 T = m[(600 turns)/(0.38 m)](48 A), which gives m =       2.9 ´ 10–5 T · m/A.
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47.	Because the currents and the separations are the same, we 


	find the force per unit length between any two wires from 


		F/L 	= I1(m0I2/2pd) = m0I2/2pd


				= (4p ´ 10–7 T · m/A)(8.00 A)2/2p(0.380 m) 


				= 3.37 ´ 10–5 N/m.


	The directions of the forces are shown on the diagram.  


	The symmetry of the force diagrams simplifies the vector 


	addition, so we have


		FM/L 	= 2(F/L) cos 30° 


				= 2(3.37 ´ 10–5 N/m) cos 30° =      5.84 ´ 10–5 N/m up.


		FN/L 	= F/L  


				=      3.37 ´ 10–5 N/m 60° below the line toward P.


		FP/L 	= F/L  


				=      3.37 ´ 10–5 N/m 60° below the line toward N.


48.	Because the currents and the separations are the same, we 


	find the force on a length L of the top wire from 


	either of the two bottom wires from 


		F	= I1(m0I2/2pd)L = m0I1I2L/2pd


			= (4p ´ 10–7 T · m/A)(20.0 A)I1L/2p(0.380 m) 


			= (1.05 ´ 10–5 N/A · m)I1L.


	The directions of the forces are shown on the diagram.  


	The symmetry of the force diagram simplifies the 


	vector addition, so for the net force to be zero, we have


�


		2F cos 30° = mg = rpr2Lg;


		2(1.05 ´ 10–5 N/A · m)I1L cos 30° = (8.9 ´ 103 kg/m3)p(1.00 ´ 10–3 m)2(9.80 m/s2)L, 


	which gives I1 =       1.50 ´ 104 A.








�


49.	The component of the velocity parallel to the field does not change.  


	The component perpendicular to the field produces a force which 


	causes the circular motion.  


	We find the radius of the circular motion from


		R 	= mv^/qB 


			= (9.11 ´ 10–31 kg)(1.3 ´ 107 m/s)(sin 7.0°)/(1.60 ´ 10–19 C)(3.3 ´ 10–2 T) 


			= 2.72 ´ 10–4 m =      0.27 mm.


	We find the time for one revolution:


		T = 2pR/v^ = 2p(2.72 ´ 10–4 m)/(1.3 ´ 107 m/s) sin 7.0° = 1.08 ´ 10–9 s.


	In this time, the distance the electron travels along the field, which is the pitch, is


		p = v||T = (1.3 ´ 107 m/s)(cos 7.0°)(1.08 ´ 10–9 s) = 1.4 ´ 10–2 m =      1.4 cm.
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50.	(a)	The magnetic field at the loop from the wire will be out 


		of the page, and will depend only on the distance from 


		the wire r: 


			B = (m0/4p)2I1/r, 


		For the two horizontal sides of the loop, the currents are 


		in opposite directions so their forces will be in opposite 


		directions.  Because the current will be in the same average 


		field, the magnitudes of the forces will be equal, so 


			Fc + Fd = 0.  


		For the sum of the two forces on the vertical sides  of the 


		loop, we have


			Fnet 	= Fa – Fb = I2BaL – I2BbL 


				= I2[(m0/4p)2I1/a]L – I2[(m0/4p)2I1/(a + b)]L  


				= (m0/4p)(2I1I2L){(1/a) – [1/(a + b)]} 


				= (10–7 T · m/A)2(10.0 A)(2.0 A)(0.26 m)[(1/0.10 m) – (1/0.22 m)] 


				=      5.7 ´ 10–6 N  toward the wire.


	(b)	Because all forces on the loop lie in the same plane, the net torque is        0.
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51.	The sheet may be thought of as an infinite number of parallel 


	wires.  The figure shows a view looking directly at the current.  


	If we consider a point above the sheet, the wire directly 


	underneath produces a magnetic field parallel to the sheet.  


	By considering a pair of wires symmetrically placed about the 


	first one, we see that the net field will be parallel to the sheet.  


	Below the sheet, the field will be in the opposite direction.  


	We apply Ampere’s law to the rectangular path shown in the 


	diagram.  For the sides perpendicular to the sheet, B is 


	perpendicular to ds.  For the sides parallel to the sheet, B is 


	parallel to ds and constant in magnitude, because the upper and lower paths are equidistant from the sheet.  We have


		�


	This gives 


		B = m0jt/2 parallel to the sheet, perpendicular to the current (opposite directions on the two sides).
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52.	(a)	For the force produced by the magnetic field of the upper wire to 


		balance the weight, it must be up, i. e., an attractive force.  Thus 


		the currents must be in the same direction.  When we equate the 


		magnitudes of the two forces for a length L, we get


			IBBTL = mg;


			(m0/4p)2IBITL/d = r(pr2L)g;


			(10–7 T · m/A)2IB(48 A)/(0.15 m) = 


							(8.9 ´ 103 kg/m3)p(1.25 ´ 10–3 m)2(9.80 m/s2), 


		which gives IB =       6.7 ´ 103 A to the right.


	(b)	The magnetic force will decrease with increasing separation.  If the wire is moved a small distance 


		above or below the equilibrium position, there will be a net force, away from equilibrium, and the 


		wire will be       unstable.


	(c)	If the second wire is above the first, there must be a repulsive magnetic force between the two wires 


		to balance the weight, which means the currents must be opposite.  Because the separation is the 


		same, the magnitude of the current is the same:


			I2 =       6.7 ´ 103 A to the left.


		The magnetic force will decrease with increasing separation.  If the wire is moved a small distance 


		above or below the equilibrium position, there will be a net force back toward equilibrium, and the 


		wire will be        stable for vertical displacements.












































53.	The mass, and thus the volume, of the wire is fixed, so we have pr2L = k; a smaller radius will give a greater length.  If we assume a given current (a variable voltage supply), the magnetic field of the solenoid will be determined by the density of turns: B = m0nI.  The greatest density will be when the wires are closely wound.  In this case, the separation of turns is 2r, so the density of turns is 1/2r, which would indicate that the radius should be very small.  


	If D is the diameter of the solenoid, the number of turns is 


		N = L/pD,


	so the length of the solenoid is N2r = 2Lr/pD = 2k/p2rD.


	The length of the solenoid must be much greater than the diameter, which will be true for small r, as long as the diameter is not large, which is the only restriction on the diameter.  These considerations indicate that a long and thin wire should be used.  However, we must be concerned with the resistance of the wire, because the thermal power generation, I 2R, must be dissipated in the solenoid.  The resistance is


		R = rL/pr2 = rk/p2r4.


	Thus a very thin wire will create thermal dissipation problems, which means that the insulation and/or wire could melt.  Thus the wire should be something       between long, thin and short, fat.
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54.	The total field is the vector sum of the fields from the two currents.  


	We can write the path integral on the circular path for the total 


	field as the sum of two such integrals:


		ı B · d¬ = ı B1 · d¬ + ı B2 · d¬.


	To evaluate the integral for B2 we consider a differential angle dq 


	based at I2 which crosses the path at two locations at distances ra 


	and rb from I2 .  If we integrate clockwise around the path, the 


	components of d¬ parallel to the field will be + ra dq and – rb dq.  


	Thus the contribution to the integral from these two segments will be


		? (B2ara dq – B2brb dq) = (m0I2/2pra)ra dq – (m0I2/2prb)rb dq  = 0.


	The total integral will be composed of similar pairs and thus 


		ı B2 · d¬ = 0.  


	Because the circular path is centered on I1 , d¬ will be parallel to 


	B1 , and B1 will have a constant magnitude, so we have


		ı B · d¬ = ı B1 · d¬ = B1 ı d¬ = (m0I1/2pr)(2pr) = m0I1 .  





55.	We use the expression for the magnetic field on the axis of a circular loop:


		B = (m0I/2)R2/(R2 + x2)3/2 = (m0I/2)RE2/(RE2 + RE2)3/2 = m0I/4REv2;


		1 ´ 10–4 T = (4p ´ 10–7 T · m/A)I/4v2(6.4 ´ 106 m), which gives I =        3 ´ 109 A. 





56.	The magnetic field from each of the sides will be directed out of the page.  We can use the result of Problem 36 for the magnitude of the field from one side:


		Bside = m0IL/2pR(L2 + 4R2)1/2.


	At the center of the square, we have R = !L.  The field will be the same for each side, so the 


	total field is


		Bsquare = 4m0IL/2p!L[L2 + 4(!L)2]1/2 = 2v2 m0I/pL.





57.	For the circular loop to have the same length, 2pR = 4L, so the radius will be R = 2L/p.  The magnetic field at the center is 


		Bcircle = m0I/2R = m0I/2(2L/p) = m0Ip/4L.


	If we form the ratio for the two shapes, we get


		Bcircle/Bsquare = (m0Ip/4L)/(2v2 m0I/pL) = p2/8v2 = 0.87.


	Thus       B will decrease.








�





58.	(a)	We choose x = 0 at the left coil.  The magnetic fields on the 


		axis from the coils are in the same direction, so we find the 


		magnitude of the total field from


			�


	(c)	At x = R/2, we have


			B(R/2) 	= (m0NI/2R)({1/[1 + (1/2)2]3/2} + 


									{1/[2 – 2(1/2) + (1/2)2]3/2}) 


					= 0.716m0NI/R = 0.716(4p ´ 10–7 T · m/A)(350 turns)(35 A)/(0.200 m) =       5.5 ´ 10–2 T.


	(d)	When we differentiate the expression for B, we get	


			�


		At x = R/2, we have


			�








59.	Because the airplane is flying parallel to the wire, the circular magnetic field of the wire will be perpendicular to the velocity.  Thus we have


		qvB = ma, which gives


		a	= qvB/m = qv[(m0/4p)2I/r]/m


			= (18.0 ´ 10–3 C)(2.8 m/s)(10–7 T · m/A)2(30 A)/(0.086 m)(0.175 kg)(9.80 m/s2/g) =      2.1 ´ 10–6 g.


60.	(a)	We let Rw represent the resistance of the wire, to distinguish it from the radius of the coil R.


		We find the required length of wire from the voltage at the maximum power:


			P = IV = V2/Rw = V2/(rL/A), which gives


			L = V2A/rP.


		Thus the number of turns is


			N 	= L/2pR = V2A/2prPR 


				= (50 V)2(2.0 ´ 10–3 m)2/2p(1.68 ´ 10–8 W · m)(1.0 ´ 103 W)(1.0 m) =      95 turns.


	(b)	The magnetic field strength at the center of the coil is


			B 	= m0NI/2R = m0NP/V2R 


				= (4p ´ 10–7 T · m/A)(95 turns)(1.0 ´ 103 W)/(50 V)2(1.0 m) =      1.2 ´ 10–3 T.


	(c)	We assume the same diameter for the coil, so a greater number of turns means a greater length of 


		wire.  The power supply produces a constant voltage, so the increased resistance of the wire means a 


		lower power output.  Thus we have


			I = V/Rw = VA/rL.


		The magnetic field strength at the center of the coil is


			B = m0NI/2R = m0(L/2pR)(VA/rL)/2R = m0VA/4prR2.


		Thus we see that the magnetic field strength is       unchanged.
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61.	Although the currents are equal, we label them to 


	show the individual fields.  


	The magnitudes of the individual fields are equal:


		B1 = B2 = B3 = B4 = (m0/2p)I/(¬/v2) = m0I/¬pv2.


	From the symmetry of the diagram we see that the 


	resultant field will be in the – x-direction, with magnitude


		B = 4B1 cos 45° = 4(m0I/¬pv2)(1/v2) =       2m0I/¬p (left).
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62.	Although the current is the same, we label them so 


	we can designate a segment of the wire.  We choose 


	the direction into the page as positive.  We find the 


	magnetic field from each of the segments of the wire.


	Because the point P is along the line of the I1 and I5 :


		B1 = B5 = 0.


	The magnetic field from the other three segments 


	will be into the page.  For segments 2 and 4 we use 


	the result from Problem 37:


		B2 	= B4 = m0Ia/4p(!a)[a2 + (!a)2]1/2 


			= m0I/2pa(1 + #)1/2 = m0I/pav5.


	For segment 3 we use the result from Problem 36:


		B3 	= m0Ia/2pa[a2 + (2a)2]1/2 


			= m0I/2pa(1 + 4)1/2 = m0I/2pav5.


	Thus the net field is


		B = B2 + B3 + B4 = (m0I/pa)[(2/v5) + (1/2v5)] =      m0Iv5/2pa into the page.
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63.	At any instant the currents will be in opposite directions, with


		Irms = P/V = (40 ´ 106 W)/(10 ´ 103 V) = 4.0 ´ 103 A.


	The maximal current will be


		Imax = Irmsv2.


	We show the directions of each field on the diagram, with 


		tan q = d/2H,   and sin q = d/2r, where r2 = H2 + #d2.


	Because the magnitudes of the two fields are the same, the net field 


	will be down with a magnitude given by


		Bmax 	= 2B1 sin q = 2[(m0/4p)2Imax/r](d/2r) = 2(m0/4p)Imaxd/r2 


				= 2(10–7 T · m/A)(4.0 ´ 103 A)v2(3 m)/[(30 m)2 + #(3 m)2] 


				=      4 ´ 10–6 T.


	When we compare to the Earth’s field, we get


		Bmax/BE = (4 ´ 10–6 T)/(5 ´ 10–5 T) ˜ 0.1, 


	so it is       about 10% of the Earth’s field.
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