CHAPTER 29 – Electromagnetic Induction and Faraday’s Law



1.	The average induced emf is

		å = – N ?FB/?t = – (2)[(+58 Wb) – (– 80 Wb)]/(0.72 s) =      – 3.8 ´ 102 V.



2.	Because the plane of the coil is perpendicular to the magnetic field, the initial flux through the loop is maximal.  The magnitude of the average induced emf is

		å = – ?FB/?t = – A ?B/?t = – p(0.13 m)2(0 – 0.90 T)/(0.15 s) =      0.32 V.



�

3.	As the coil is pushed into the field, the magnetic flux increases 

	into the page.  To oppose this increase, the flux produced by the 

	induced current must be out of the page, so the induced current is  

		counterclockwise.













�

4.	As the magnet is pushed into the coil, the magnetic flux 

	increases to the right.  To oppose this increase, the flux 

	produced by the induced current must be to the left, so 

	the induced current in the resistor will be

		from right to left.





















5.	The magnitude of the average induced emf is

		å = – ?FB/?t = – A ?B/?t = – p(0.036 m)2(0 – 1.3 T)/(0.20 s) =      0.026 V.





6.	We choose up as the positive direction.  The average induced emf is

		å = – ?FB/?t = – A ?B/?t = – p(0.046 m)2[(– 0.25 T) – (+ 0.63 T)]/(0.15 s) = 3.9 ´ 10–2 V =      39 mV.
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7.	(a)	The increasing current in the wire will cause an increasing 

		field into the page through the loop.    To oppose this 

		increase, the induced current in the loop will produce a flux 

		out of the page, so the direction of the induced current will be      

			counterclockwise.

	(b)	The decreasing current in the wire will cause a decreasing 

		field into the page through the loop.    To oppose this 

		decrease, the induced current in the loop will produce a flux 

		into the page, so the direction of the induced current will be      

			clockwise.

	(c)	Because the current is constant, there will be no change in flux, 

		so the induced current will be      

			zero.

	(d)	The increasing current in the wire will cause an increasing 

		field into the page through the loop.    To oppose this 

		increase, the induced current in the loop will produce a flux 

		out of the page, so the direction of the induced current will be      

			counterclockwise.
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8.	(a)	As the resistance is increased, the current in the outer loop 

		will decrease.  Thus the flux through the inner loop, which is 

		out of the page, will decrease.  To oppose this decrease, the 

		induced current in the inner loop will produce a flux out of the 

		page, so the direction of the induced current will be      

			counterclockwise.

	(b)	If the small loop is placed to the left, the flux through the 

		small loop will be into the page and will decrease.  To oppose 

		this decrease, the induced current in the inner loop will produce 

		a flux into the page, so the direction of the induced current will be 

			clockwise.
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9.	As the solenoid is pulled away from the loop, the magnetic 

	flux to the right through the loop decreases.  To oppose this 

	decrease, the flux produced by the induced current must be to 

	the right, so the induced current is  

		counterclockwise      as viewed from the solenoid.











10.	(a)	The average induced emf is

			å = – ?FB/?t = – A ?B/?t = – p(0.10 m)2[(– 0.45 T) – (+ 0.52 T)]/(0.180 s) =       0.17 V.

	(b)	The positive result for the induced emf means the induced field is away from the observer, so the 

		induced current is      clockwise.















11.	(a)	The magnetic flux through the loop is into the paper and decreasing, because the area is 

		decreasing.  To oppose this decrease, the induced current in the loop will produce a flux 

		into the paper, so the direction of the induced current will be      clockwise.

	(b)	We choose into the paper as the positive direction.  The average induced emf is

			å 	= – ?FB/?t = – B ?A/?t = – pB ?(r2)/?t 

				= – p(0.75 T)[(0.030 m)2 – (0.100 m)2]/(0.50 s) = 4.3 ´ 10–2 V =      43 mV.

	(c)	We find the average induced current from

			I = å/R = (43 mV)/(2.5 W) =      17 mA.



12.	If q is the angle between the magnetic field and the normal to the plane of the loop, the flux through the loop is

		FB = BA cos q = BA cos wt, 

	so the induced emf is

		å = – dFB /dt = BAw sin wt.

	For a sinusoidal variation, the rms value is

		årms = BAw/v2;

		70 ´ 10–3 V = B(0.15 m)2[2p rad/(45 ´ 10–3 s)]/v2. which gives B =       3.2 ´ 10–2 T.



13.	As the loop is pulled from the field, the flux through the loop decreases.  We find the induced emf from

		å = – ?FB/?t = – B ?A/?t = – (0 – 0.40 T)p(0.10 m)2/(100 ´ 10–3 s) = 0.126 V.

	The dissipated energy is

		Energy = P ?t = (å2/R) ?t = [(0.126 V)2/(150 W)](100 ´ 10–3 s) =      1.1 ´ 10–5 J.
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14.	As the loop is pulled from the field, the flux through the loop 

	will decrease.  We find the induced emf from

		å = – ?FB/?t = – B ?A/?t = – B¬ ?x/?t = – B¬ (– v) = B¬v.

	Because the inward flux is decreasing, the induced flux will 

	be into the page, so the induced current is clockwise, given by

		I = å/R.

	Because this current in the left hand side of the loop is in a 

	downward magnetic field, there will be a magnetic force to 

	the left.  To keep the rod moving, there must be an equal 

	external force to the right, which we find from

		F = I¬B = (å/R)¬B = B2¬2v/R = (0.450 T)2(0.350 m)2(3.40 m/s)/(0.230 W) =      0.367 N.



15.	For the resistance of the loop, we have

		R = rL/A = rpD/#pd2 = 4rD/d2.

	The induced emf is

		å = – ?FB/?t = – #pD2 ?B/?t;

	so the induced current is

		I = å/R = – (pDd2/16r) ?B/?t.

	In the time ?t the amount of charge that will pass a point is

		Q 	= I ?t 

			= – (pDd2/16r) ?B = – [p(0.156 m)(2.05 ´ 10–3 m)2/16(1.68 ´ 10–8 W · m)](0 – 0.550 T) =       4.21 C.



















16.	The flux through a loop is

		FB = [(8.8 s–1)t – (0.51 s–3)t3] ´ 10–2 T · m2.

	(a)	The induced emf is

			å 	= – N dFB/dt = – (60)[(8.8 s–1) – (1.53 s–3)t2] ´ 10–2 T · m2 

				= [– 528 + (91.8 s–2)t2] ´ 10–2 V =        – 5.3 V+ (0.92 V · s–2)t2.

	(b)	At t = 1.0 s we have

			å1 = – 5.28 V + (0.918 V · s–2)(1.0 s)2 =      – 4.4 V.

		At t = 5.0 s we have

			å5 = – 5.28 V + (0.918 V · s–2)(5.0 s)2 =      18 V.



17.	(a)	For the resistance of the loop, we have

			R = rL/A = (1.68 ´ 10–8 W · m)(20)p(0.350 m)/p(1.0 ´ 10–3 m)2 = 0.118 W.

		The induced emf is

			å = – ?FB/?t = – NA ?B/?t = – (20)p(0.175 m)2(3.20 ´ 10–3 T/s) = – 6.16 ´ 10–3 V.

		Thus the induced current is

			I = å/R = (6.16 ´ 10–3 V)/(0.118 W) =      5.2 ´ 10–2 A.

	(b)	Thermal energy is produced in the wire at the rate of

			P = I 2R = (5.2 ´ 10–2 A)2(0.118 W) = 3.2 ´ 10–4 W =       0.32 mW.



18.	Inside the solenoid, the magnetic field is B = m0nI, so the flux through the loop is

		FB = A1B = A1m0nI0 cos wt.

	The induced emf is 

		å = – dFB/dt =       A1m0nI0w sin wt.



19.	The flux through the loop is

		FB = BA.

	The induced emf is 

		å = – dFB/dt = – B dA/dt = – (0.48 T)(– 3.50 ´ 10–2 m2/s) =       1.7 ´ 10–2 V.

	Because the area changes at a constant rate, this is the induced emf for both times.



20.	The flux through the loop when it has area A is

		FB = BA = Bpr2.

	The induced emf is 

		å = – dFB/dt = – B2pr dr/dt.

	At t = 0  the radius is

		r0 = (A0/p)1/2 = (0.285 m2/p)1/2 = 0.301 m.

	At a later time t the radius is

		r = r0 + (dr/dt)t,

	so the induced emf is

		å = – 2pB[r0 + (dr/dt)t] dr/dt.

	At t = 0 we have

		å0 = – 2p(0.48 T)[0.301 m + (0.0700 m/s)(0)](0.0700 m/s) =      – 0.064 V.

	At t = 1.00 s we have

		å1 = – 2p(0.48 T)[0.301 m + (0.0700 m/s)(1.00 s)](0.0700 m/s) =      – 0.078 V.
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21.	At a distance r from the wire, the magnetic field is directed into 

	the paper with magnitude

		B = m0I/2pr.

	Because the field is not constant over the square, we find the 

	magnetic flux by integration.  We choose a differential element 

	parallel to the wire at position r with area a dr.  The magnetic 

	field through this element is constant, so the flux is

		�EMBED Word.Picture.8���
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22.	Because the velocity is perpendicular to the magnetic 

	field and the rod, we find the induced emf from

		å 	= B¬v 

			= (0.750 T)(0.190 m)(0.250 m/s) 

			= 3.56 ´ 10–2 V =      35.6 mV.
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23.	(a)	Because the velocity is perpendicular to the magnetic 

		field and the rod, we find the induced emf from

			å 	= B¬v 

				= (0.35 T)(0.240 m)(1.8 m/s) =      0.15 V.

	(b)	We find the induced current from

			I = å/R = (0.151 V)/(2.2 W + 26.0 W) =      5.4 ´ 10–3 A.

	(c)	The induced current in the rod will be down.  Because this 

		current is in an outward magnetic field, there will be a 

		magnetic force to the left.  To keep the rod moving, there 

		must be an equal external force to the right, which we find from

			F = I¬B = (5.4 ´ 10–3 A)(0.240 m)(0.35 T) =      4.5 ´ 10–4 N.





24.	If we assume that the movable rod starts at the bottom of the U, in a time t it will have moved a distance x = vt.  For the resistance of the U, we have

		R = rL/A = r(2vt + ¬)/A.

	The induced emf is

		å = B¬v;

	so the induced current is

		I = å/R = B¬v/[r(2vt + ¬)/A] =      B¬vA/r(2vt + ¬).
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25.	(a)	Although there is an induced emf, there is no current 

		because there is no closed circuit.  Thus the rod      

			will move at constant speed.

	(b)	When the circuit is completed, there will be a current.  

		The induced emf is B¬v.  Because the only resistance is 

		from the rod, the current is

			I = B¬v/R.

		The induced current in the rod will be down.  Because this 

		current is in an outward magnetic field, there will be a 

		magnetic force to the left, which will produce an acceleration:

			F = – IB¬ = – B2¬2v/R = ma = m dv/dt, or – (B2¬2/mR) dt = dv/v.

		We integrate to get the speed:

			�EMBED Word.Picture.8���

		The speed eventually goes to zero.  This is an application of Lenz’s law.
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26.	(a)	If the polarity of the source of emf is as indicated 

		in the figure, the current in the rod will be up, which 

		will produce a force in the outward magnetic field 

		that is to the right.  For a constant current, the 

		constant force will produce a constant acceleration:

			F = I¬B = ma.

		Thus the speed of the rod is

			v = v0 + at = 0 + (I¬B/m)t =       I¬Bt/m.

		Note that there will be an induced emf in the rod, so 

		the source must compensate to maintain the constant current.

	(b)	With a constant source emf å0 , the current will be determined by the two emfs in the circuit.  

		Because the initial motion is to the right, the induced emf will be down, opposing the source.  

		Thus we have

			I = (å0 – B¬v)/R.

		The force produced by this current provides the acceleration:

			F = I¬B = (å0 – B¬v)B¬/R = m dv/dt,  or  (B¬/mR) dt = dv/(å0 – B¬v).

		When we integrate, we get

			�EMBED Word.Picture.8���

	(c)	When the current is constant, we see that the speed continues to increase, so no terminal speed is 

		reached.  With a constant å0 , as t ® 8, the exponential term goes to 0, so there is a terminal speed:

			vterm = å0/B¬.















27.	(a)	At a distance r from the long wire, the magnetic field is 

		directed into the paper with magnitude

			B = m0I/2pr.

		Because the field is not constant over the short section, we 

		find the induced emf by integration.  We choose a differential 

		element dr a distance r from the long wire.  

		The induced emf in this element is

			då = Bv dr toward the long wire.

		We find the total emf by integrating:

�

			å = �EMBED Word.Picture.8���

	(b)	If the current is in the opposite direction to I, the only change will be in the direction of the emf:

			å = �EMBED Word.Picture.8���



28.	The maximum induced emf is

		å = NBAw.

	If the only change is in the rotation speed, for the two conditions we have

		å2/å1 = w2/w1 ;

		å2/(12.4 V) = (2500 rpm)/(950 rpm) which gives å2 =      32.6 V.



29.	The induced emf is

		å = NBAw sin wt.

	For the rms value of the output, we have

		Vrms = [(å2)av]1/2 = [(NBAw)2(sin2 wt)av]1/2 = NBAw [(sin2 wt)av]1/2.

	The sin2 wt function varies from 0 to 1, with an average value of 1/2, so we get

		Vrms = NBAw(1/v2) = NBAw/v2.



30.	We find the rotation speed from

		åpeak = NBAw;

		120 V = (420 turns)(0.350 T)(0.210 m)2w, which gives w = 18.5 rad/s =       2.95 rev/s.



31.	We find the peak emf from

		åpeak = NBAw = (350 turns)(0.45 T)p(0.050 m)2(60 rev/s)(2p rad/rev) = 466 V.

	The rms voltage output is 

		Vrms = åpeak/v2 = (466 V)/v2 = 330 V =      0.33 kV.

	If only the rotation frequency changes, to double the rms voltage output, we must double the rotation speed, so we have

		f2 = 2f1 = 2(60 rev/s) =       120 rev/s.



32.	We find the counter emf from

		å – åback = IR;

		120 V – åback = (9.20 A)(3.75 W), which gives åback =      86 V.



33.	Because the counter emf is proportional to the rotation speed, for the two conditions we have

		åback2/åback1 = w2/w1 ;

		åback2/(72 V) = (2500 rpm)/(1800 rpm), which gives åback2 =      100 V.



34.	Because the counter emf is proportional to both the rotation speed and the magnetic field, for the two conditions we have

		åback2/åback1 = (w2/w1)(B2/B1);

		(75 V)/(100 V) = [(2500 rpm)/(1000 rpm)](B2/B1), which gives       B2/B1 = 0.30.

35.	Because the counter emf is proportional to the rotation speed, we find the new value from

		åback2/åback1 = w2/w1 ;

		åback2/(108 V) = (1/2), which gives åback2 = 54 V.

	We find the new current from

		å – åback = IR;

		120 V – 54 V = I(5.0 W), which gives I =      13 A.



36.	(a)	We find the emf of the generator from the load conditions: 

			V = å – IarmatureRarmature;

			200 V = å – (50 A)(0.40 W), which gives å = 220 V.

		When there is no load on the generator, the current is zero, so the voltage will be the emf:       220 V.

		Note that no-load means little torque required to turn the generator.

	(b)	Because the generator emf is proportional to the rotation speed, we find the new value from

			å2/å1 = w2/w1 ;

			å2/(220 V) = (800 rpm/1000 rpm), which gives å2 = 176 V.

		We find the new load voltage from

			V2 = å2 – IarmatureRarmature  = 176 V – (50 A)(0.40 W) =      156 V.

		Note that the power output is reduced to 7.8 kW.



37.	We find the number of turns in the secondary from

		VS/VP = NS/NP ;

		(8500V)/(120 V) = NS/(500 turns), which gives NS =       3.54 ´ 104 turns.



38.	Because NS < NP , this is a      step-down     transformer.

	We find the ratio of the voltages from

		VS/VP = NS/NP = (120 turns)/(720 turns) =      0.167.

	With 100% efficiency, for the ratio of currents we have

		IS/IP = NP/NS = (720 turns)/(120 turns) =     6.00.



39.	With 100% efficiency, the power on each side of the transformer is the same:

		IPVP = ISVS , so we have

		IS/IP = VP/VS = (22 V)/(120) =      0.18.



40.	We find the ratio of the number of turns from

		NS/NP = VS/VP = (12 ´ 103 V)/(220 V) =      55.

	If the transformer is connected backward, the role of the turns will be reversed:

		VS/VP = NS/NP ;

		VS/(220 V) = 1/55, which gives VS =       4.0 V.



41.	(a)	We assume 100% efficiency, so we have

			IPVP = ISVS ;

			(0.65 A)(120 V) = (15 A)VS , which gives VS =       5.2 V.

	(b)	Because VS < VP , this is a      step-down     transformer.



42.	(a)	We assume 100% efficiency, so we find the input voltage from

			P= IPVP ;

			100 W = (26 A)VP , which gives VP = 3.8 V.

		Because VS > VP , this is a      step-up     transformer.

	(b)	For the voltage ratio we have

			VS/VP = (12 V)/(3.84 V) =      3.1.



43.	We find the output voltage of this step-up transformer from

		VS/VP = NS/NP ;

		VS/(120 V) = (1510 turns)/(330 turns), which gives VS =       549 V.

	We find the input current from

		IS/IP = NP/NS ;

		(15.0 A)/IP = (330 turns)/(1510 turns), which gives IP =     68.6 A.



44.	(a)	We can find the current in the transmission lines from the output emf:

			Pout = IVout ;

			30 ´ 106 W = I(45 ´ 103 V), which gives I = 667 A.

		We find the input emf from

			åin = Vout + IRlines = 45 ´ 103 V + (667 A)(3.0 W) = 47 ´ 103  =      47 kV.

	(b)	The power loss in the lines is

			Ploss = I 2Rlines = (667 A)2(3.0 W) = 1.33 ´ 106 W = 1.33 MW.

		The total power is

			Ptotal = Pout + Ploss = 30 MW + 1.33 MW = 31.3 MW,

		so the fraction lost is

			(1.33 MW)/(31.3 MW) =     0.042 (4.2%).



45.	Without the transformers, we can find the delivered current, which is the current in the transmission lines, from the delivered power:

		Pout = IVout ;

		65 ´ 103 W = I(120V), which gives I = 542 A.

	The power loss in the lines is

		PL0 = I 2Rlines = (542 A)2(2)(0.100 W) = 5.87 ´ 104 W = 58.7 kW.

	With the transformers, to deliver the same power at 120 V, the delivered current from the step-down transformer is still 542 A.

	If the step-down transformer is 99% efficient, we have

		(0.99)IP2VP2 = IS2VS2 ;

		(0.99)IP2(1200 V) = (542 A)(120 V), which gives IP2 = 54.7 A.

	Because this is the current in the lines, the power loss in the lines is

		PL2 = IP22Rlines = (54.7 A)2(2)(0.100 W) = 5.99 ´ 102 W = 0.599 kW.

	For the 1% losses in the transformers, we approximate the power in each transformer:

		PLt = (0.01)(65 kW + 65.6 kW) = 1.31 kW.

	The total power loss using the transformers is

		PL = 0.599 kW + 1.31 kW = 1.9 kW.

	The power saved by using the transformers is

		Psaved = PL0 – PL = 58.7 kW – 1.9 kW =       56.8 kW.



46.	We can find the delivered current, which is the current in the transmission lines, from the delivered power:

		Pout = IVout ;

		300 ´ 106 W = I(600 ´ 103 V), which gives I = 500 A.

	The 2% loss means Pout = 0.98 Pin .   Thus the power loss in the lines is

		PL = (0.02)Pin = (0.02)Pout /(0.98)= I 2Rlines ;

		(0.02)(300 ´ 106 W)/(0.98) = (500 A)2Rlines , which gives Rlines = 24.5 W.

	We find the radius of the 2 lines, each 200 km long, from

		R = rL/A ;

		24.5 W = (2.65 ´ 10–8 W · m)(2)(200 ´ 103 m)/pr2 , which gives r = 1.174 ´ 10–2 m.

	Thus the diameter of the lines should be      2.35 cm.



47.	We find the electric field from 

		åinduced = B¬v = ý E · d¬ = E¬, which gives

		E = Bv = (0.750 T)(0.250 m/s) =       0.188 V/m.
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48.	The induced emf around a circle is

		å = – dFB /dt = – A dB/dt.

	Because A and dB/dt are the same for the two circular 

	paths, å is the same.  Even though E is greater in the 

	region of the outer circle, the integral ý E · d¬ is the 

	same.  Note that for part of the path the component 

	of E is parallel to d¬ and for part it is antiparallel.























49.	(a)	The changing magnetic field through the area defined by the circular vacuum tube produces a 

		circular electric field along the axis of the tube.  This electric field along the electron path creates 

		the acceleration to increase the speed of the electron.

	(b)	The magnetic force on the electron provides the centripetal acceleration.  To get a force toward the 

		center, the current must be in on the right and out on the left, that is, counterclockwise.  Because 

		electrons have a negative charge, they must be moving       clockwise.

	(c)	The electric field along the electron path is given by the rate of change of the magnetic flux:

			ý E · d¬ = – dFB/dt = – A dB/dt.

		If we choose clockwise (the direction of the electron motion) for the positive direction, the electric 
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		field must be negative, so        dB/dt > 0.

	(d)	To provide the radial acceleration, the magnetic field 

		must be down (positive).  To provide the tangential 

		acceleration, the magnetic field must be increasing.  

		In a sinusoidal variation, these two conditions exist 

		only for # of the cycle.







50.	We find the electric field along the electron’s path at a radius R by applying Faraday’s law:

		ý E · d¬ = – dFB/dt = – A dBav/dt;

		E2pR = – pR2 dBav/dt,  or  E = – !R dBav/dt.

	Thus for the tangential acceleration we have

		atan = dv/dt = – eE/m = !(eR/m) dBav/dt. 

	The magnetic force at the position of the electron orbit provides the centripetal acceleration:

		evB0 = mv2/R, which gives v = eB0R/m.

	If we differentiate this we get

		dv/dt = (eR/m) dB0/dt. 

	When we compare this to the previous result, we see that 

		dB0/dt = ! dBav/dt, at any moment.

	This is satisfied at any time if B0 = !Bav .



51.	(a)	Because the current in the rod is constant, the potential difference across the rod must be 

		constant: V = IR.  The net electric field is the potential gradient along the rod:

			Enet = V/¬ =       IR/¬ (constant).

	(b)	With a constant source emf å0 , the potential difference across the rod will be

			V = IR = å0 – B¬v.

		If we use the result for the velocity from Problem 26, we have

			�

		The net electric field is the potential gradient along the rod:

			�EMBED Word.Picture.8���





52.	(a)	The clockwise current in the left-hand loop produces a magnetic field which is into the page 

		within the loop and out of the page outside the loop.  Thus the right-hand loop is in a magnetic 

		field out of the page.  Before the current in the left-hand loop reaches its steady state, there will 

		be an induced current in the right-hand loop that will produce a magnetic field into the page to 

		oppose the increase of the field from the left-hand loop.  Thus the induced current will be     

			clockwise. 

	(b)	After a long time, the current in the left-hand loop will be constant, so there will be    

			no induced current.

	(c)	If the second loop is pulled to the right, the magnetic field out of the page from the left-hand loop 

		through the second loop will decrease.  During the motion, there will be an induced current in the 

		right-hand loop that will produce a magnetic field out of the page to oppose the decrease of the 

		field from the left-hand loop.  Thus the induced current will be     counterclockwise. 



53.	We find the number of turns from

		åpeak = NBAw;

		24.0 V = N(0.420 T)(0.070 m)2(60 rev/s)(2p rad/rev), which gives N =      31 turns.



54.	The average induced emf is

		å = – ?FB/?t = – A ?B/?t = – (0.240 m)2(0 – 0.755 T)/(0.0400 s) = 1.087 V.

	The average current is

		I = å/R = (1.087 V)/(6.50 W) = 0.167 A.

	The energy dissipated is 

		Energy = I2R ?t = (0.167 A)2(6.50 W)(0.0400 s) =      7.27 ´ 10–3 J.
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55.	A side view of the rail and bar is shown in the figure.  The 

	component of the velocity of the bar that is perpendicular to 

	the magnetic field is v cos q, so the induced emf is 

		å = B¬v cos q.

	If we assume the resistance of the copper bar can be neglected, 

	this produces a current in the bar

		I = å/R = (B¬v cos q)/R into the page.

	Because the current is perpendicular to the magnetic field, the 

	force on the bar from the magnetic field will be horizontal, 

	as shown, with magnitude

		FB = I¬B = (B2¬2v cos q)/R.

	For the bar to slide down at a steady speed, the net force must be zero.  If we consider the components along the rail, we have

		FB cos q – mg sin q = 0,   or

		[(B2¬2v cos q)/R] cos q = (B2¬2v cos2 q)/R = mg sin q;

		(0.55 T)2(0.30 m)2v(cos2 5.0°)/(0.60 W) = (0.040 kg)(9.80 m/s2) sin 5.0°, which gives      v = 0.76 m/s.



56.	(a)	The voltage drop across the lines is

			?V = 2IR = 2(700 A)(0.80 W) = 1.12 ´ 103 V = 1.12 kV.

		Thus the voltage at the other end is

			Vout = Vin – ?V = 42 kV – 1.12 kV =       41 kV.

	(b)	The power input is

			Pin = IVin = (0.700 kA)(42 kV) =       29.4 MW.

	(c)	The power loss in the lines is

			Ploss = 2I 2R = 2(0.700 kA)2(0.80 W) =       0.78 MW.

	(d)	The power output is

			Pout = IVout = (0.700 kA)(40.9 kV) =       28.6 MW.

		Note that this is Pin – Ploss .



57.	If we assume perfect transformers, the only losses will be the energy dissipated in the transmission lines.  The resistance of the lines is

		R = (0.10 W/km)(100 km) = 10 W.

	If Pin is the power supplied to the town, we have

		Pin/(Pin + Iline2R) = 0.985;

		(50 ´ 106 W)/[50 ´ 106 W + Iline2(10 W)] = 0.985, which gives Iline = 276 A.

	For the perfect transformer at the town end of the line, we have

		Pin = IlineV2 ;

		50 ´ 103 kW = (276 A)V2 , which gives V2 = 181 kV.

	The voltage drop in the transmission line is

		Vdrop = IlineR = (0.276 kA)(10 W) = 2.76 kV.

	Thus the voltage at the station must be stepped up to 

		V1 = V2 + Vdrop = 181 kV + 2.76 kV =      184 kV.
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58.	The magnetic field through the loop is B = m0nI inside the 

	solenoid only, so the flux through the loop is

		FB = NBA = Nm0nIprsolenoid2.

	The current induced in the loop is

		I¢ 	= å/R = – (1/R) dFB /dt = – (Nm0nprsolenoid2/R) dI/dt 

			= – [(150 turns)(4p ´ 10–7 T · m/A)(200 ´ 102 turns/m)p(0.045 m)2/(11.0 W)][(2.0 A)/(0.10 s)] 

			=      – 4.4 ´ 10–2 A (opposite to the direction of the current in the solenoid).

	This assumes the windings of the coil and the solenoid are in the same direction.
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59.	The magnitude of the average induced emf is

		å = ?FB/?t,

	so the average current is 

		I = å/R = (1/R) ?FB/?t.

	The charge moving past a fixed point is

		q = I ?t = ?FB/R = (B/R) ?A.

	The number of electrons is

		N = q/e = (B/eR) ?A.

	The maximum number of electrons occurs for the maximum change in area in a 90° rotation.  The area perpendicular to the field varies sinusoidally.  From the plot we see that the greatest change occurs when the coil moves from an angle of 45° with the field to an angle of 45° on the other side.  Thus we have

		Nmax = [(0.15 T)p(0.030 m)2/(1.60 ´ 10–19 C)(0.025 W)][cos 45° – (– cos 45°)] =      1.5 ´ 1017.

60.	We find the peak emf from

		åpeak = NBAw = (125 turns)(0.200 T)(0.0660 m)2(120 rev/s)(2p rad/rev) =      82.1 V.



61.	(a)	Because we have direct coupling, the torque provided by the motor balances the torque of the 

		friction force:

			NIAB = Fr;

			(300 turns)I(0.10 m)(0.15 m)(0.60 T) = (250 N)(0.25 m), which gives I =       23 A.

	(b)	To maintain the speed, we have a force equal to the friction force, so the power required is 

			Fv = (250 N)(30 km/h)/(3.6 ks/h) = 2.08 ´ 103 W.

		This must be provided by the net power from the motor, which is 

			Pnet = IVin – I 2R = I(Vin – IR) = Iåback = Fv;

			(23 A)åback = 2.08 ´ 103 W, which gives åback =      90 V.

	(c)	The power dissipation in the coils is

			Ploss = Pin – Pnet = (23 A)(10)(12 V) – 2.08 ´ 103 W =       6.9 ´ 102 W.

	(d)	The useful power percentage is

			(Pnet/Pin)(100) = (Iåback/IVin)(100) = (90 V/120 V)(100) =      75%.



62.	The average induced emf is

		å = – ?FB/?t = – NA ?B/?t = – NA[(– B) – (+ B)]/?t = 2NAB/?t.

	The average current is

		I = å/R = 2NAB/R ?t,

	so the total charge that passes through the galvanometer is

		Q = I ?t = (2NAB/R ?t) ?t = 2NAB/R,   or   B = QR/2NA. 



63.	(a)	From the efficiency of the transformer, we have PS = 0.80PP.  

		For the power input to the transformer, we have

			PP = IPVP ;

			(75 W)/0.80 = IP(110 V), which gives IP =       0.85 A.

	(b)	We find the secondary voltage from

			PS = VS2/RS ;

			75 W = VS2/(2.4 W), which gives VS = 13.4 V.

		We find the ratio of the number of turns from

			NP/NS = VP/VS = (110 V)/(13.4 V) =      8.2.



64.	The induced emf is 

		å = – dFB/dt = – Npr2 dB/dt = (Npr2B0/t)e – t/t.

	Thus the rate at which energy is dissipated is

		P = I2R = å2/R = [(Npr2B0/t)2/R]e – 2t/t.

	Because this rate is a function of time, we find the energy dissipated by integrating:

		�EMBED Word.Picture.8���
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65.	We choose a differential element dr a distance r from the 

	center of rotation.  The speed of this element is v = wr, so 

	the differential induced emf is

		då = Bv dr = Bwr dr.

	We integrate to find the total emf:

		å = �EMBED Word.Picture.8���





















66.	(a)	Because VS < VP , this is a      step-down     transformer.

	(b)	We assume 100% efficiency, so we find the current in the secondary from

			P= ISVS ;

			40 W = IS(12 V), which gives IS =       3.3 A.

	(c)	We find the current in the primary from

			P= IPVP ;

			40 W = IP(120 V), which gives IP =       0.33 A.

	(d)	We find the resistance of the bulb from

			VS = ISRS ;

			12 V = (3.33 A)RS , which gives RS =       3.6 W.



67.	We can find the current in the transmission lines from the power transmitted to the user:

		PT = IV,   or   I = PT/V.

	The power loss in the lines is

		PL = I 2RL = (PT/V)2RL = (PT)2RL/V2.
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68.	(b)	At start up there will be no induced emf in the 		(a)

		armature.  Because the line voltage is across each 

		resistor, we find the currents from

			Ifield0 = å/Rfield = (115 V)/(36.0 W) = 3.19 A;

			Iarmature0 = å/Rarmature = (115 V)/(3.00 W) = 38.3 A.

		We use the junction condition to find the total current:

			I0 = Ifield0 + Iarmature0 = 3.19 A + 38.3 A =       41.5 A.

	(c)	At full speed, the back emf is maximum.  Because the 

		line voltage is across the field resistor, we find the 

		field current from

			Ifield = å/Rfield = (115 V)/(36.0 W) = 3.19 A.

		We find the armature current from

			å – åback = IarmatureRarmature ;

			115 V – 105 V = Iarmature(3.00 W), 

		which gives Iarmature = 3.33 A.

		Thus the total current is

			I0 = Ifield + Iarmature = 3.19 A + 3.33 A =       6.52 A.
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69.	If we apply Faraday’s law to a counterclockwise path around the square, 

	we have

		ý E · d¬ = – dFB/dt = 0, 

	because the electric field is static.  We can express the integral as

		ý E · d¬ = ?bottom E · d¬ + ?sides E · d¬ + ?top E · d¬ = 0.

	On the bottom segment E and d¬ are parallel, so ?bottom E · d¬ > 0.  

	If there were no fringing, 

		?sides E · d¬ = 0 because E and d¬ are perpendicular, and

		?top E · d¬ = 0 because E = 0.

	However, we must have 

		?sides E · d¬ + ?top E · d¬ < 0, so there must be a fringing field outside 

	the edge of the plates.  We see that on the side and the top segments there 

	will be a component of E antiparallel to d¬.
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70.	We find the flux through the area swept out by a radial line 

	on the disk:

		FB = B(q/2p)pR2 = !BwtR2.

	The magnitude of the induced emf is

		å = dFB/dt =       !BwR2.

	The magnetic flux through the area is increasing out of 

	the page, so the induced flux will be in, which means the 

	induced emf along the radial line is radially out from 

	the axis, and the rim is at the higher potential.
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71.	We choose a differential element dr a distance r from the 

	center of rotation.  The speed of this element is v = wr, so 

	the radial differential induced emf is

		då = Bv dr = Bwr dr.

	The electric field is the potential gradient:

		E = då/dr =       Bwr, radially out from the axis.
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72.	We approximate the small area as a square with side D.  

	Because the area A = D2 is small, the speed of the area is 

	v = w¬.  Thus the induced radial emf is

		å = BDv = BDw¬.

	This emf produces a radial current in the area.  If we 

	neglect the resistance of the outside return path of the 

	current, the approximate resistance is 

		R = rD/Dd = r/d.

	The current is approximately 

		I = å/R = BDw¬d/r.

	This current in the magnetic field produces a tangential 

	force and thus a torque about the axis:

		t = F¬ = IBD¬ = B2D2w¬2d/r =       B2Aw¬2d/r.
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