CHAPTER 30 – Inductance; and Electromagnetic Oscillations



1.	The magnetic field of the long solenoid is essentially zero outside the solenoid.  Thus there will be the same linkage of flux with the second coil and the mutual inductance will be the same:

		M = m0N1N2A/¬.



2.	(a)	We find the mutual inductance from

			M 	= mN1N2A/¬ 

				= (2000)(4p ´ 10–7 T · m/A)(300 turns)(100 turns)p(0.0200 m)2/(2.44 m) 

				= 3.88 ´ 10–2 H =      38.8 mH.

	(b)	The induced emf in the second coil is

			å 	= – M ?I1/?t

				= – (3.88 ´ 10–2 H)(0 – 12.0 A)/(0.0980 s) =       4.75 V.



3.	The magnetic field inside the outer solenoid is

		B = m0n1I1.

	The magnetic flux linked with the inner solenoid is

		F21 = m0n1I1A2.

	Thus the mutual inductance with the N2 turns of the inner solenoid is

		M21 = N2F21/I1 = n2¬m0n1A2 , so the mutual inductance per unit length is

		M/¬ = m0n1n2pr22.



4.	We find the mutual inductance of the system by finding the mutual inductance of the small coil.  The magnetic field inside the long solenoid is along the axis with a magnitude

		B1 = m0n1I1 = m0N1I1/¬.

	We find the magnetic flux through the coil by using the area perpendicular to the field:

		F21 = (m0N1I1/¬)A2 sin q.

	Thus the mutual inductance with the N2 loops of the coil is

		M21 = N2F21/I1 =       (m0N1N2A2/¬) sin q.



�

5.	We find the mutual inductance of the system by finding the mutual 

	inductance of the loop.  The magnetic field of the long wire depends only 

	on the distance from the wire.  To find the magnetic flux through the 

	loop, we choose a strip a distance x from the wire with width dx:  

		�

	The mutual inductance is

		M = FB/I =        (m0w/2p) ln(¬2/¬1).



6.	We find the induced emf from 

		å = – L ?I/?t = – (180 mH)(38.0 mA – 20.0 mA)/(340 ms) =      – 9.53 mV.

	The emf is opposite to the direction of the current, to oppose the increase in the current.



7.	We estimate the inductance by using the inductance of a solenoid:

		L = m0N2A/¬ = (4p ´ 10–7 T · m/A)(20,000 turns)2p(1.85 ´ 10–2 m)2/(0.45 m) =      1.2 H.



8.	Because the current in increasing, the emf is negative.  We find the self-inductance from 

		å = – L ?I/?t;

		– 8.50 V = – L[23.0 mA – (– 22.0 mA)]/(21.0 ms), which gives L =       3.97 H.





9.	We use the result from Ex. 30–4:

		L 	= (m0¬/2p) ln(r2/r1) = (m0¬/2p) ln(D2/D1) 

			= (2 ´ 10–7 T · m/A)(22.0 m) ln(3.5 mm/2.0 mm) =      2.5 ´ 10–6 H.



10.	We find the current from

		å = – L ?I/?t;

		– 35 V = – (150 mH)(I0 – 0)/(3.0 ms), which gives I0 =       0.70 A.



11.	We use the result for the inductance from Ex. 30–4:

		L/¬ = (m0/2p) ln(r2/r1); 

		(2 ´ 10–7 T · m/A) ln(3.0 mm/r1) = 40 ´ 10–9 H/m, which gives      r1 = 2.5 mm.



12.	(a)	The magnetic flux through coil 1 is due to its own current and the current in the other coil.  

		From the definition of self-inductance, the flux from its own current is F11 = L1I1.  From the 

		definition of mutual inductance, the flux from the current in the other coil is F12 = M12I2.  

		Thus the total magnetic flux is

			F1 = F11 + F12 = L1I1 + MI2.

		Similarly for the other coil we have

			F2 = F22 + F21 = L2I2 + MI1.

	(b)	We find the induced emf from the rate of change of the flux:

			å1 = – dF1/dt = – L1 dI1/dt – M dI2/dt. 

			å2 = – dF2/dt = – L2 dI2/dt – M dI1/dt. 



13.	If D represents the diameter of the solenoid, the length of the wire is N(pD).  Because this is constant, we have

		N1pD1 = N2pD2 ,   or   N2/N1 = D1/D2 = @.

	The solenoid is tightly wound, so the length of the solenoid is ¬ = Nd, where d is the diameter of the wire.  Thus we have

		¬2/¬1 = N2/N1 = @.

	We use the inductance of a solenoid:

		L = m0AN2/¬, and form the ratio of inductances for the two conditions, so we have

		L2/L1 = (D2/D1)2(N2/N1)2/(¬2/¬1) = (3)2(@)2/(@) =      3.
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14.	We find the induced emf from 

		åinduced = – L ?I/?t = – (0.418 H)(4.50 A/s) = – 1.88 V.

	The negative sign indicates a direction opposite to the current.

	If we start at point b and add the potential changes, we get

		Vb + IR + | åinduced | = Va ,   or

		Vab = (5.00 A)(2.70 W) + 1.88 V =       15.4 V.



15.	(a)	For two inductors placed in series, the current through each inductor is the same.  This current is 

		also the current through the equivalent inductor, so the total emf is

			å = å1 + å2 

			– Lseries dI/dt = (– L1 dI/dt) + (– L2 dI/dt) = – (L1 + L2) dI/dt, which gives      Lseries = L1 + L2 .

	(b)	For two inductors placed in parallel, the potential difference across each inductor, which is the 

		emf, is the same:

			å = å1 = å2  = – L1 dI1/dt = – L2 dI2/dt = – Lparallel dI/dt.

		The total current through the equivalent inductor is 

			I = I1 + I2 ,  so we have

			dI/dt = dI1/dt + dI2/dt;

			– å/Lparallel = – å/L1 – å/L2 , which gives 1/Lparallel = (1/L1) + (1/L2),  or      Lparallel = L1L2/(L1 + L2).
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16.	From the symmetry of the toroid, the magnetic field is 

	circular.  We apply Ampere’s law to a circular path 

	to find the magnetic field inside the toroid:

		ı B · ds = m0Ienclosed;

		B2pr = m0NI, which gives B = m0NI/2pr.

	To find the magnetic flux through one turn of the toroid, 

	we integrate over the rectangular cross-section.  For a 

	differential element, we choose a vertical strip at a 

	radius r with width dr:

		�

	The flux through the entire toroidal winding is N times this, so the self-inductance is

		L = NF/I = (m0N2h/2p) ln(r2/r1).



17.	The magnetic energy in the field is

		U 	= uBV = !(B2/m0)¬pr2

			= ![(0.600 T)2/(4p ´ 10–7 T · m/A)](0.320 m)p(1.05 ´ 10–2 m)2 =       15.9 J.



18.	For the energy stored in the inductor we have

		U = !LI 2 = !(0.400 H)(9.0 A)2 =       16 J.



19.	(a)	For the energy densities we have

			uE = !Å0E2 = !(8.85 ´ 10–12 F/m)(1.0 ´ 104 V/m)2 =      4.4 ´ 10–4 J/m3;

			uB = !B2/m0 = !(2.0 T)2/(4p ´ 10–7 T · m/A) =      1.6 ´ 106 J/m3.

		We see that     uB » uE.

	(b)	We find the magnitude of the electric field from

			uE = !Å0E2; 

			1.6 ´ 106 J/m3 = !(8.85 ´ 10–12 F/m)E2, which gives       E = 6.0 ´ 108 V/m.



20.	The magnetic field at the center of the loop is 

		B = m0I/2R.

	The energy density of the magnetic field is

		uB = !B2/m0 = m0I 2/8R2 = (4p ´ 10–7 T · m/A)(30 A)2/8(0.280 m)2 =      1.8 ´ 10–3 J/m3.





21.	The magnetic field at the surface of the wire is 

		B = m0I/2pR.

	The energy density of the magnetic field is

		uB = !B2/m0 = m0I 2/8p2R2 = (4p ´ 10–7 T · m/A)(25 A)2/8p2(1.5 ´ 10–3 m)2 =      4.4 J/m3.

	If V is the potential along a length ¬ of the wire, the electric field is

		E = V/¬ = IR/¬ = Ir/A = Ir/pR2.

	The energy density of the electric field is

		uE 	= !Å0E2 = !Å0(Ir/pR2)2 

			= !(8.85 ´ 10–12 F/m)[(25 A)(1.68 ´ 10–8 W · m)/p(1.5 ´ 10–3 m)2]2 =      1.6 ´ 10–14 J/m3.
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22.	From the symmetry of the toroid, the magnetic field is 

	circular.  We apply Ampere’s law to a circular path 

	to find the magnetic field inside the toroid:

		ı B · ds = m0Ienclosed;

		B2pr = m0NI, which gives B = m0NI/2pr.

	The energy density of this field is

		u = !B2/m0 = m0N2I 2/8p2r2. 

	To find the total energy stored in the magnetic field, 

	we integrate over the volume.  For a differential 

	element, we choose a ring at a radius r with width 

	dr and height h:

		�EMBED Word.Picture.8���



23.	From Example 30–4, the magnetic field is 

		B = m0I/2pr.

	The energy density of this field is

		u = !B2/m0 = m0I 2/8p2r2. 

	To find the total energy stored in the magnetic field, we integrate over the volume.  For a differential 

	element, we choose a ring at a radius r with width dr and length ¬:

		�EMBED Word.Picture.8���

	This is the same as found in Example 30–5.



24.	For an LR circuit, we have

		I = Imax(1 – e – t/t), which we can write as

		e – t/t = 1 – (I/Imax),   or   t/t = – ln[1 – (I/Imax)] = – ln[(Imax – I)/Imax].

	(a)	ta/t = – ln(0.10), which gives ta/t =       2.3.

	(b)	tb/t = – ln(0.010), which gives tb/t =       4.6.

	(c)	tc/t = – ln(0.0010), which gives tc/t =       6.9.



25.	The potential difference across the resistor in Fig. 30–6 is

		VR = IR =  ImaxRe – t/t.

	We find the time to drop to 1.0 percent of its maximum value from

		0.010 = e – t/t, which gives       t/t = 4.6.



26.	Power is being dissipated as       thermal energy       in the resistor.

	At the instant the current is 0.20 A in Example 30–6, the rate at which energy is being dissipated is

		PR = I2R = (0.20 A)2(30 W) = 1.2 W.

	This is the difference between the 2.4 W delivered by the battery and the 1.2 W rate at which energy is being stored in the inductor.

	In general, the current in the circuit is

		I = Imax(1 – e – t/t) = (V0/R)(1 – e – t/t).

	The power dissipated in the resistor is

		PR = I2R = (V02/R)(1 – e – t/t)2 = (V02/R)(1 – 2e – t/t + e – 2t/t).

	The rate at which energy is being stored in the inductor is

		PL = LI dI/dt = (LV02/R2)(1 – e – t/t)(e – t/t/t) = (V02/R)(e – t/t – e – 2t/t).

	The sum is

		PR + PL = (V02/R)(1 – 2e – t/t + e – 2t/t + e – t/t – e – 2t/t) = (V02/R)(1 – e – t/t) = IV0 = PB.

	Thus energy is conserved at any time.



27.	At t = 0 there is no voltage drop across the resistor, so we have

		V0 = L(dI/dt)0 ,   or         (dI/dt)0 = V0/L.

	The maximum value of the current is reached after a long time, when there is no voltage across the inductor:

		V0 = ImaxR,   or   Imax = V0/R.

	We find the time to reach maximum if the initial rate were maintained from

		V0/R = (dI/dt)0t = (V0/L)t, which gives t = L/R = t.



28.	(a)	For an LR circuit, we have

			I = Imax(1 – e – t/t);

			! = 1 – e – t/t,   or   – t/t = – (2.56 ms)/t = ln !, which gives t =       3.69 ms.

	(b)	We find the resistance from

			t = L/R;

			3.69 ´ 10–3 s = (310 H)/R, which gives R = 8.39 ´ 104 W =       83.9 kW.



29.	(a)	The current in the circuit is

			I = Imax(1 – e – t/t) = (V/R)(1 – e – t/t).

		The energy stored in the inductor is

			UL = !LI2 = !(LV2/R2)(1 – e – t/t)2 =       (LV2/2R2)(1 – 2e – t/t + e – 2t/t).

	(b)	We find the time for the stored energy to reach 99 percent of the maximum from 

			0.99 = (1 – e – t/t)2 =, which gives

			e – t/t = 0.00501,   or        t/t = 5.3.



�

30.	(a)	Immediately after the switch is closed, the induced emf in 

		the inductor is maximum while the current in the inductor 

		is zero, so we have

			I3 = 0.

		For loop 1, we have

			I1 = I2 = å/(R1 + R2).

	(b)	After a long time, the currents will be constant, and there will be 

		no induced emf in the inductor.  For the junction at point a, we have 

			I1 = I2 + I3 .

		For loop 1, we have 	

			å – I1R1 – I2R2 = 0.

		For loop 2, we have 	

			+ I2R2 – I3R3 = 0,  or   I2 = (R3/R2)I3.

		When we use this in the junction equation, we get

			I1 = [1 + (R3/R2)]I3 = [(R2 + R3)/R2]I3.

		From the loop 1 equation we get 

			å = [(R2 + R3)/R2]I3R1 + (R3/R2)I3R2 , which gives      I3 = R2å/(R1R2 + R1R3 + R2R3).

		Then      I1 = (R2 + R3)å/(R1R2 + R1R3 + R2R3),  I2 = R3å/(R1R2 + R1R3 + R2R3).

	(c)	Immediately after the switch is opened, the current in R1 is zero, so we have

			I1 = 0,  

		and the current I3 starts to decay in the LR circuit.  Thus we have

			– I2 = I3 = R2å/(R1R2 + R1R3 + R2R3). 

	(d)	After a long time, all currents will be zero:       I1 = I2 = I3 = 0.











31.	(a)	The resonant frequency is given by

			f02 = (1/2p)2(1/LC).

		When we form the ratio for the two stations, we get

			(f02/f01)2 = C1/C2 ;

			(1600 kHz/550 kHz)2 = (1800 pF)/C2 , which gives C2 =      213 pF.

	(b)	We find the inductance from the first frequency:

			f01 = (1/2p)(1/LC1)1/2;

			550 ´ 103 Hz = (1/2p)[1/L(1800 ´ 10–12 F)]1/2, which gives L = 4.65 ´ 10–5 H =      46.5 mH.



32.	(a)	To have maximum current at t = 0, we can write the sinusoidal variation as

			I = I0 cos wt.

		Because there is a 90° phase difference between the current and the charge, we have

			Q = Q0 sin wt.

		To determine Q0 we differentiate:

			I = dQ/dt = Q0w cos wt, so Q0 = I0/w:         Q = (I0/w) sin wt.

	(b)	We could set up these initial conditions by having an inductor and a switch connected to a battery.  

		When the switch is thrown to disconnect the battery and connect the inductor to a capacitor, the 

		initial charge on the capacitor is zero.



33.	We reduce the units to their basic elements.  From Q = CV, for the farad we have

		F = C/V = C2/J = C2/(kg · m2/s2) = C2 · s2/kg · m2.

	From L = F/I = BA/I = FA/QvI, we have

		H = N · m2/(C · m · C/s2) = (kg · m/s2) · m2/(C2 · m/s2) = kg · m2/C2.

	Thus LC has the units

		HF = [kg · m2/C2][C2 · s2/kg · m2] = s2,  so  1/(LC)1/2 has the units of s–1.



34.	(a)	The resonant frequency is

			f0 = (1/2p)(1/LC)1/2 = (1/2p)[1/(175 ´ 10–3 H)(760 ´ 10–12 F)]1/2 = 1.38 ´ 104 Hz =       13.8 kHz.

	(b)	The maximum charge on the capacitor is

			Q0 = CV, 

		so the peak value of the current is

			I0 = Q0w = CVw = (760 ´ 10–12 F)(135 V)2p(1.38 ´ 104 Hz) = 8.90 ´ 10–3 A =       8.90 mA.

	(c)	The maximum energy stored in the inductor is

			ULmax = !LI02 = !(175 ´ 10–3 H)(8.90 ´ 10–3 A)2 =      6.93 ´ 10–6 J. 



35.	(a)	The initial energy is the energy stored in the capacitor at t = 0:

			U0 = !Q02/C.

		When the capacitor has half the energy, we have

			UC/U0 = Q2/Q02 = !, which gives       Q = Q0/v2.

	(b)	The charge on the capacitor is

			Q = Q0 cos wt = Q0/v2.

		This gives 

			wt = p/4;

			(2p/T)t = p/4, which gives t =      T/8.



36.	If R « (4L/C)1/2, the motion is underdamped.  The charge on the capacitor is 

		Q = Q0e – Rt/2L cos (w¢t + f).

	The energy stored in the capacitor and inductor can be expressed in terms of the amplitude of the cosine function:

		U = Q2/2C = Q02e – Rt/L/2C = U0e – Rt/L.

	When this is half its initial value, we have

		!U0 = U0e – Rt/L, which gives Rt/L = ln 2,   or       t = (L/R) ln 2.



37.	We assume underdamping, with

		w¢ ˜ w0 = 1/(LC)1/2,   and   T = 2p/w0 = 2p(LC)1/2.

	The charge on the capacitor is 

		Q = Q0e – Rt/2L cos (w¢t + f).

	The energy stored in the capacitor and inductor can be expressed in terms of the amplitude of the cosine function:

		U = Q2/2C = Q02e – Rt/L/2C = U0e – Rt/L.

	In one period the energy is reduced by 5.5 percent, so we have

		0.945U0 = U0e – RT/L, which gives ln (1/0.945) = RT/L = 2pR(C/L)1/2;

		ln (1/0.945) = 2pR[(1.00 ´ 10–6 F)/(65 ´ 10–3 H)]1/2, which gives      R = 2.30 W.

	We can check to see if we have underdamping:

		R2 = (2.30 W)2 = 5.3 W2;

		4L/C = 4(65 ´ 10–3 H)/(1.00 ´ 10–6 F) = 2.6 ´ 105 W2.

	Thus R2 « 4L/C.



38.	(a)	The differential equation for the charge on the capacitor is

			�

		Because I = – dQ/dt, when we differentiate we get

			�EMBED Word.Picture.8���

	(b)	If Q = Q0 at t = 0, we have

			Q = Q0e – Rt/2L cos w¢t.

		Because the differential equation for the current has the same form as the one for the charge, the 

		solution for the current in an underdamped circuit is

			I = I0e – Rt/2L cos (w¢t + d).

		At t = 0, I = 0, so we can find the phase constant:

			0 = I0 cos d, which gives d = ± p/2.

		Because I = – dQ/dt, we choose d = – p/2, and write the current as

			I = I0e – Rt/2L sin w¢t.

	(c)	This is the       same result       as in Example 30–8.

	(d)	If R ˜ (L/C)1/2, the circuit would be critically or over damped.  The solution would no longer be 

		sinusoidal, but the charge and current would decay to zero.





�



39.	The charge is given by

		Q = Q0e – Rt/2L cos w¢t.

	We find the current by differentiating:

		I 	= – dQ/dt = – Q0(– R/2L)e – Rt/2L cos w¢t + Q0w¢ e – Rt/2L sin w¢t 

			= + Q0 e – Rt/2L [w¢ sin w¢t + (R/2L) cos w¢t].

	We form the triangle shown so we can express the terms in the bracket 

	as a combination of trig functions:

		I 	= Q0 e – Rt/2L [w¢2 + (R/2L)2]1/2({w¢/[w¢2 + (R/2L)2]1/2} sin w¢t + {(R/2L)/[w¢2 + (R/2L)2]1/2} cos w¢t) 

			= Q0 e – Rt/2L [w¢2 + (R/2L)2]1/2(cos d sin w¢t + sin d  cos w¢t), where tan d = R/2Lw¢.

	If we use the expression for w¢, we find

		[w¢2 + (R/2L)2]1/2 = [(1/LC) – (R/2L)2 + (R/2L)2]1/2 = 1/(LC)1/2.

	Thus we have

		I = [Q0/(LC)1/2] e – Rt/2L sin (w¢t + d), with d = tan–1 (R/2Lw¢).



40.	If R « (4L/C)1/2, the motion is underdamped, with w¢ = [(1/LC) – (R/2L)2]1/2 ˜ 1/(LC)1/2 = w0.  

	If I = 0 when t = 0, the charge on the capacitor is 

		Q = Q0e – Rt/2L cos (w¢t + f).

	We find the current by differentiating:

		I 	= – dQ/dt = – Q0(– R/2L)e – Rt/2L cos (w¢t + f) + Q0w¢ e – Rt/2L sin (w¢t + f)

			= + Q0 e – Rt/2L [w¢ sin (w¢t + f) + (R/2L) cos (w¢t + f)].

	At t = 0  we have

		0 = Q0[w¢ sin f + (R/2L) cos f],   or   cot f = – (2Lw¢/R) = – (4L/R2C)1/2,  or  f = – cot–1 (4L/R2C)1/2.



41.	The frequency of the LC circuit is

		w0 = 1/(LC)1/2.

	When the resistance is added the frequency becomes

		w¢ = [(1/LC) – (R2/4L2)]1/2 = (1/(LC)1/2)[1 – (R2C/4L)]1/2 = w0[1 – (R2C/4L)]1/2.

	Thus we see that the frequency will       decrease.

	If we write the new frequency as w¢ = (1 – x)w0, we have 

		1 – (R2C/4L) = (1 – x)2 ˜ 1 – 2x,   or 

		R2(1800 ´ 10–12 F)/4(300 ´ 10–3 H) = 2(0.10 ´ 10–2), which gives R = 1.15 ´ 103 W =       1.15 kW.
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42.	(a)	If a battery is added to the LRC circuit, a loop equation gives

			V0 – (Q/C) – IR – L dI/dt = 0.

		We see from the direction of the current in the circuit diagram 

		that  I = dQ/dt, so this becomes

			(L d2Q/dt2) + (R dQ/dt) + Q/C = V0 .

		From the theory of differential equations, the general solution 

		is the sum of the solution to the equation with V0 = 0 and a 

		particular solution.  By inspection a particular solution is 

		Q = CV0 .  To find the solution when V0 = 0, we let Q = a e bt.  

		When we use this in the differential equation, we get

			Lb2a e bt + Rba e bt + (a/C) e bt = 0,  or  Lb2 + Rb + (1/C) = 0.

		This is a quadratic equation for b, with the solutions

			b 	= (1/2L){– R ± [R2 – (4L/C)]1/2} = – (R/2L) ± (R/2L)[1 – (4L/R2C)]1/2 

				= (R/2L){– 1 ± [1 – (4L/R2C)]1/2}.

		When R2 » 4L/C, this becomes

			b ˜ (R/2L){– 1 ± [1 – (2L/R2C)]} = – 1/RC,   and    – (R/2L)[2 – (2L/R2C)] ˜ – R/L.

		The general solution for the charge is

			Q = a1 e – t/RC + a2 e –Rt/L + CV0 .

		The current solution is

			I = dQ/dt = – (a1/RC) e – t/RC – (a2R/L) e – Rt/L.

		At t = 0, Q = 0, and I = 0, which allows us to determine a1 and a2:

			0 = a1 + a2 + CV0 ;

			0 = – (a1/RC) – (a2R/L), which gives a2 = – (L/R2C)a1.

		When we use this in the previous equation, we get

			a1 = – CV0/[1 – (L/R2C)] ˜ – CV0 .

		Thus 

			a2 = – (L/R2C){– CV0/[1 – (L/R2C)]}  = LV0/[R2 – (L/C)] ˜ LV0/R2.

		Our result for the current is

			I 	= (CV0/RC) e – t/RC – [(LV0/R2)R/L] e – Rt/L 
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				=       (V0/R)(e – t/RC – e – Rt/L).

	(b)	We scale the current by plotting IR/V0 

		and scale the time by plotting Rt/L.

	(c)	In an RC circuit the charge is

			Q = CV0(1 – e – t/RC), so the current is

			I = dQ/dt = CV0(1/RC)e – t/RC = (V0/R)e – t/RC.

		In an RC circuit the current starts at maximum and 

		decays.  For the LRC circuit there is an additional 

		term of opposite sign.  The current starts at zero but 

		the magnitude of the additional term decreases 

		rapidly, so there is initial rapid growth and then 

		decay.  Eventually the current coincides with the result for an RC circuit.







43.	We use the inductance of a solenoid:

		L = m0AN2/¬ = (4p ´ 10–7 T · m/A)p(1.25 ´ 10–2 m)2(3000 turns)2/(0.282 m) = 1.97 ´ 10–2 H =     20 mH.

	If we form the ratio of inductances for the two conditions, we have

		L2/L1 = (m/m0)(N2/N1)2;

		1 = (1000)[N2/(3000 turns)]2, which gives N2 =      95 turns.



44.	The initial energy stored in the inductor is

		U0 = !LI 02 = !(60.0 ´ 10–3 H)(50.0 ´ 10–3 A)2 =       7.50 ´ 10–5 J.

	For the increase in energy, we have

		U/U0 = (I /I 0)2;

		10 = (I /50.0 mA)2, which gives I  = 158 mA.

	We find the time from

		?I /?t = 100 mA/s = (158 mA – 50.0 mA)/?t, which gives ?t =      1.08 s.



45.	(a)	The frequency of oscillation is the resonance frequency.  We find the inductance from

			f0 = (1/2p)(1/LC)1/2;

			20 ´ 103 Hz = (1/2p)[1/L(3000 ´ 10–12 F)]1/2, which gives L = 2.11 ´ 10–2 H =      21 mH.

	(b)	The energy initially stored in the capacitor will oscillate between the capacitor and the inductor.  

		We find the maximum current, when all of the energy is stored in the inductor, by equating the 

		maximum energies:

			!CV02 = !LImax2;

			(3000 ´ 10–12 F)(120 V)2 = (2.11 ´ 10–2 H)Imax2, which gives Imax = 4.52 ´ 10–2 A =       45 mA.

	(c)	The maximum energy stored in the inductor is

			ULmax = !LImax2 = !(2.11 ´ 10–2 H)(4.52 ´ 10–2 A)2 =      2.2 ´ 10–5 J. 



46.	We find the mutual inductance by finding the linkage of the magnetic field of loop 1 with loop 2.  Because the loops are small, we can assume the field from loop 1 at loop 2 is constant and equal to the magnitude at the center of the loop:

		B1 = m0I1r12/2(r12 + ¬2)3/2.

	Because r1 « ¬, this becomes

		B1 ˜ m0I1r12/2¬3.

	The flux linking with loop 2 is

		F21 = B1pr22 cos q,

	so the mutual inductance is

		M = F21/I1 =       (m0pr12r22/2¬3) cos q.



47.	We use the inductance of a solenoid:

		L = m0AN2/¬; 

		25 ´ 10–3 H = (4p ´ 10–7 T · m/A)p(1.1 ´ 10–2 m)2N2/(0.170 m), which gives N =       3.0 ´ 103 turns.

	If we form the ratio of inductances for the two conditions, we have

		L2/L1 = (m/m0)(N2/N1)2;

		1 = (103)[N2/(3.0 ´ 103 turns)]2, which gives N2 =      95 turns.

































48.	(a)	From the symmetry of the toroid, the magnetic field is circular.  We apply Ampere’s law to a 

		circular path along the axis of the toroid to find the magnetic field inside the toroid:

			ı B · ds = m0Ienclosed;

			B2pr0 = m0NI, which gives B = m0NI/2pr0 .

		If we assume that the field is uniform inside the toroid (because the field varies with the distance 

		from the center of the toroid, this is not actually true, but will be a good approximation if r0 » r), 

		the magnetic flux through one turn of the toroid is 

			F ˜ B#pd2 = m0NId2/8r0 .

		Thus the self-inductance is

			L = NF/I = m0N2d2/8r0 .

		The length of the toroid is ¬ = 2pr0 , and the cross-sectional area is #pd2, so we have

			L = m0AN2/¬, which is      consistent      with that of a solenoid, as it should be.

	(b)	For the given data we have

			L 	= m0N2d2/8r0

				= (4p ´ 10–7 T · m/A)(550 turns)2(2.0 ´ 10–2 m)2/8(0.25 m) = 7.6 ´ 10–5 H =      76 mH.



�

49.	We find the inductance by finding the flux linking 

	the two wires, which we assume can be treated as 

	two long wires.  Because the currents are in opposite 

	directions, the magnetic field a distance x from one 

	wire is

		B 	= (m0/2p)(I/x) + (m0/2p)I/(¬ – x) 

			= (m0/2p)I¬/x(¬ – x).

	To find the magnetic flux through the area between 

	a length D of the wires, we integrate over the 

	rectangular cross-section.  For a differential element, 

	we choose a strip at a distance x with width dx parallel to the wires:

		�

	Thus the inductance per unit length is

		L/D = F/ID = (m0/p) ln[(¬ – r)/r].





50.	The potential difference across the coil is

		V = L dI/dt + IR.

	For the two conditions we have

		2.55 V = L(340 ´ 10–3 A/s) + (360 ´ 10–3 A)R;

		1.82 V = L(– 180 ´ 10–3 A/s) + (420 ´ 10–3 A)R.

	When we solve these two equations for the two unknowns, we get

		L = 2.00 H, R = 5.19 W.



















51.	(a)	For two coils placed in series, the current through each coil is the same and  is 

		also the current through the equivalent inductor.  The total induced emf is

			å = å1 + å2 + å21 + å12 

			– Lseries dI/dt 	= (– L1 dI/dt) + (– L2 dI/dt) ± [(– M dI/dt) + (– M dI/dt)]  

							= – (L1 + L2 ± 2M) dI/dt, which gives      Lseries = L1 + L2 ± 2M.

		The sign of the mutual inductance term is determined by the orientation of one winding with 

		respect to the other.  The upper sign is used when the emf from the mutual inductance is in the 

		same sense as the emf produced by the self-inductance.  The lower sign is used when the emf from 

		the mutual inductance is in the opposite sense as the emf produced by the self-inductance.

	(b)	To reduce the value of M the flux linkage must be reduced.  If the separation cannot be increased, 

		the coils can be oriented so the magnetic field of one coil is parallel to the other coil.  This can be 

		achieved by       positioning one coil perpendicular to the other.

	(c)	For two coils placed in parallel, the potential difference across each coil, which is the 

		emf, is the same.  With no mutual inductance we have

			å = å1 = å2  = – L1 dI1/dt = – L2 dI2/dt = – Lparallel dI/dt.

		The total current through the equivalent inductor is 

			I = I1 + I2 ,  so we have

			dI/dt = dI1/dt + dI2/dt;

			– å/Lparallel = – å/L1 – å/L2 , which gives 1/Lparallel = (1/L1) + (1/L2),  or      Lparallel = L1L2/(L1 + L2).

		If we cannot ignore the mutual inductance, we have

			å = å1 = – L1 dI1/dt — M dI2/dt = å2 = – L2 dI2/dt — M dI1/dt.

		When these equations are combined, we get

			dI1/dt = – (L2 — M)å/(L1L2 – M2),  and  dI2/dt = – (L1 — M)å/(L1L2 – M2).

		Because I = I1 + I2 , we have

			dI/dt = dI1/dt + dI2/dt;

			– å/Lparallel = – (L2 — M)å/(L1L2 – M2) – (L1 — M)å/(L1L2 – M2), 

		which gives 

			Lparallel = (L1L2 – M2)/(L1 + L2 — 2M).

		The sign of the mutual inductance term in the denominator is determined by the orientation of one 

		winding with respect to the other.  The upper sign is used when the emf from the mutual inductance 

		is in the same sense as the emf produced by the self-inductance.  The lower sign is used when the

		emf from the mutual inductance is in the opposite sense as the emf produced by the self-inductance.





52.	The magnetic energy in the field is

		U 	= uBV = !(B2/m0)h4pr2

			= ![(0.50 ´ 10–4 T)2/(4p ´ 10–7 T · m/A)](10 ´ 103 m)4p(6.38 ´ 106 m)2 =       5.1 ´ 1015 J.





53.	For lightly damped motion, 

		R « (4L/C)1/2, w¢ ˜ w = 1/(LC)1/2, and T ˜ 2p/w = 2p(LC)1/2.  

	The charge on the capacitor is 

		Q = Q0e – Rt/2L cos (w¢t + f).

	The energy stored in the capacitor and inductor can be expressed in terms of the amplitude of the cosine function:

		U = Q2/2C = Q02e – Rt/L/2C = U0e – Rt/L.

	In one cycle the exponent is

		RT/L = 2pR/Lw = 2pR(C/L)1/2, which for lightly damped motion is « 1.

	If we use the energy lost from t = 0 to t = T, we have

		?U/U0 = (U0 – U)/U0 = 1 – e – RT/L ˜ 1 – (1 – RT/L) = RT/L = 2pR/Lw = 2p/Q, where Q = Lw/R.





54.	(a)	We use the inductance of a solenoid:

			L = m0AN2/¬.

		Because they are tightly wound, the number of turns is determined by the diameter of the wire: 

			N = ¬/d.  

		If we form the ratio of inductances for the two conditions, we have

			L1/L2 = (N1/N2)2 = (d2/d1)2 = 22 =      4.

	(b)	The length of wire used for the turns is ¬wire = N(pD), where D is the diameter of the solenoid.		Thus for the ratio of resistances, we have

			R1/R2 = (¬wire1/¬wire2)(d2/d1)2 = (N1/N2)(d2/d1)2 = (d2/d1)3.

		For the ratio of the time constants, we get

			t1/t2 = (L1/L2)(R2/R1) = (L1/L2)(d1/d2)3 = (4)(!)3 =       !.





55.	(a)	For lightly damped motion, 

			R « (4L/C)1/2, w¢ ˜ w = 1/(LC)1/2, T = 2p/w¢ ˜ 2p(LC)1/2, and R/Lw¢ ˜ R(C/L)1/2 « 1.  

		The charge on the capacitor is 

			Q = Q0e – Rt/2L cos (w¢t + f).

		We find the current by differentiating:

			I 	= – dQ/dt = – Q0(– R/2L)e – Rt/2L cos (w¢t + f) + Q0w¢ e – Rt/2L sin (w¢t + f) 

				= + Q0 e – Rt/2L [w¢ sin (w¢t + f) + (R/2L) cos (w¢t + f)].

		Because the values for the sine and cosine functions range over ± 1, and w¢ » R/2L, we neglect the 	second term to get

			I ˜ Q0 e – Rt/2L w¢ sin (w¢t + f).

		The total energy is

			U 	= UE + UB = !(Q2/C) + !LI2 

				= !(Q02/C)e – Rt/L cos2 (w¢t + f) + !LQ02w¢2 e – Rt/L sin2 (w¢t + f).

		When we use w¢2 ˜ 1/LC, we get

			U = !(Q02/C)e – Rt/L [cos2 (w¢t + f) + sin2 (w¢t + f)] =       !(Q02/C)e – Rt/L.

	(b)	The rate at which the stored energy changes is

			dU/dt = !(Q02/C)(– R/L)e – Rt/L = – !(Q02R/LC)e – Rt/L.

		The rate at which thermal energy is produced in the resistor is

			I2R = Q02w¢2R  e – Rt/L sin2 (w¢t + f) = (Q02R/LC) e – Rt/L sin2 (w¢t + f).

		For lightly damped motion, the amplitude does not change significantly over a period, while the 

		average value for sin2 (w¢t + f) is !.  Thus we get

			I2R = !(Q02R/LC) e – Rt/L = – dU/dt.

		Thus the loss of stored energy becomes the thermal energy produced in the resistor.





56.	Because we need a final current, we use an inductor in series with the device for an LR circuit.  

	The current in the circuit is

		I = Imax(1 – e – Rt/L),  or  e – Rt/L = 1 – (I/Imax), which can be written as

		– Rt/L = ln [1 – (I/Imax)].

	For the limiting current after 100 ms, we have

		– (150 W)(100 ´ 10–6 s)/L = ln [1 – (7.5 mA/50 mA)], which gives L = 9.2 ´ 10–2 H = 92 mH.

	We note that a larger value of L will cause the current to rise more slowly, so we need an inductor with

		L = 92 mH.













�

57.	From the circuit we see that 

		Vin = IR + L dI/dt,   or  RI/L + dI/dt = Vin /L.

	We  multiply both sides by the integrating factor e Rt/L:

		e Rt/LRI/L + e Rt/L dI/dt = d(I e Rt/L)/dt = e Rt/LVin /L.

	If we assume I = 0 when t = 0, when we integrate we get

		�

	If t « L/R, the exponent is small, e Rt/L ˜ 1 and e Rt¢/L ˜ 1, so we have

		�

	Thus the output voltage is

		Vout = IR = �

	This is the area under the curve when Vin is plotted against Rt/L.

	For the square wave input, we get



		�
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