CHAPTER 32 – Maxwell’s Equations and Electromagnetic Waves



1.	The electric field between the plates depends on the voltage:

		E = V/d, so 

		dE/dt = (1/d) dV/dt = (1/1.3 ´ 10–3  m)(120 V/s) =       9.2 ´ 104 V/m · s.



2.	The displacement current is

		ID = Å0A (dE/dt) = (8.85 ´ 10–12 C2/N · m2)(0.038 m)2(2.0 ´ 106 V/m · s) =      2.6 ´ 10–8 A.



3.	The current in the wires must also be the displacement current in the capacitor.  We find the rate at which the electric field is changing from

		ID = Å0A (dE/dt);

		1.8 A = (8.85 ´ 10–12 C2/N · m2)(0.0160 m)2 dE/dt, which gives dE/dt =      7.9 ´ 1014 V/m · s.



4.	The current in the wires is the rate at which charge is accumulating on the plates and must also be the displacement current in the capacitor.  Because the location is outside the capacitor, we can use the expression for the magnetic field of a long wire:

		B = (m0/4p)2ID/R = (10–7 T · m/A)2(35.0 ´ 10–3 A)/(0.100 m) =      7.00 ´ 10–8 T.

	After the capacitor is fully charged, all currents will be zero, so the magnetic field will be      zero.



5.	The electric field between the plates depends on the voltage:

		E = V/d, so dE/dt = (1/d) dV/dt.

	Thus the displacement current is

		ID = Å0A (dE/dt) = (Å0A/d)(dV/dt) = C dV/dt.



6.	(a)	The current in the wires is the rate at which charge is accumulating on the plates and must also 

		be the displacement current in the capacitor:

			Imax = ID,max = 35 mA.

	(b)	At any instant, the charge on the plates is

			Q = åC, 

		so the current is

			I = dQ/dt = C då/dt = – wå0C sin wt,  or 

			Imax = wå0Å0pR2/d;

			35 ´ 10–6 A = 2p(96.0 Hz)å0(8.85 ´ 10–12 C2/N · m2)p(0.025 m)2/(2.0 ´ 10–3 m), which gives 

			å0 = 6.7 ´ 103 V.

	(c)	We can find the maximum value of dFE/dt from the maximum value of the displacement current:

			ID,max = Å0 (dFE/dt)max;

			35 ´ 10–6 A = (8.85 ´ 10–12 C2/N · m2)(dFE/dt)max , which gives       (dFE/dt)max = 4.0 ´ 106 V · m/s.



7.	Gauss’s law for electricity and Ampere’s law will not change.  

	From the analogy to Gauss’s law for electric fields, where Q is the source, Qm would be the source of the magnetic field, so we have

		ı B · dA = m0Qm. 

	From the analogy to Ampere’s law, we have an additional “current” contribution to Faraday‘s law.

		ı E · d¬ = m0 dQm/dt – dFB/dt.

	The dQm/dt term corresponds to an electric field created by the “current” of magnetic monopoles.



8.	The electric field is

		E0 = cB0 = (3.00 ´ 108 m/s)(17.5 ´ 10–9 T) =      5.25 V/m.







9.	We find the magnetic field from

		E0 = cB0;

		0.43 ´ 10–4 V/m = (3.00 ´ 108 m/s)B, which gives B =      1.4 ´ 10–13 T.



10.	The frequency of the two fields must be the same:      80.0 kHz.

	The rms strength of the electric field is

		Erms = cBrms = (3.00 ´ 108 m/s)(6.75 ´ 10–9 T) =      2.03 V/m.

	The electric field is perpendicular to both the direction of travel and the magnetic field, so the electric field oscillates along the      horizontal north-south line.



11.	(a)	If we write the argument of the cosine function as kz + wt = k(z + ct), we see that the wave is 

		traveling in the – z-direction.  

		Because E and B are perpendicular to each other and to the direction of propagation, and E is in 

		the x-direction, B can have only a y-component, with magnitude       B0 = E0/c.

		Because a rotation of E into B must give the direction of propagation, – z-direction, B must be in 

		the       – y-direction.

	(b)	The wave is traveling in the       – z-direction.  



12.	The frequency of the microwave is

		f = c/l = (3.00 ´ 108 m/s)/(1.80 ´ 10–2 m) =       1.67 ´ 1010 Hz.



13.	(a)	The wavelength of the radar signal is

			l = c/f = (3.00 ´ 108 m/s)/(27.75 ´ 109 Hz) = 1.08 ´ 10–2 m =       1.08 cm.

	(b)	The frequency of the X-ray is

			f = c/l = (3.00 ´ 108 m/s)/(0.10 ´ 10–9 m) =       3.0 ´ 1018 Hz.



14.	The frequency of the wave is

		f = c/l = (3.00 ´ 108 m/s)/(850 ´ 10–9 m) =       3.52 ´ 1014 Hz.

	This frequency is just outside the red end of the visible region, so it is      infrared.



15.	The wavelength of the wave is

		l = c/f = (3.00 ´ 108 m/s)/(9.56 ´ 1014 Hz) = 3.14 ´ 10–7 m =       314 nm.

	This wavelength is just outside the violet end of the visible region, so it is      ultraviolet.



16.	The distance that light travels in one year is

		d = (3.00 ´ 108 m/s)(3.156 ´ 107 s/yr) =      9.47 ´ 1015 m.



17.	(a)	If we assume the closest approach of Mars to Earth, we have

			?t = L/c = [(227.9 – 149.6) ´ 109 m]/(3.00 ´ 108 m/s) = 2.6 ´ 102 s =      4.3 min.

	(b)	If we assume the closest approach of Saturn to Earth, we have

			?t = L/c = [(1427 – 149.6) ´ 109 m]/(3.00 ´ 108 m/s) = 4.3 ´ 103 s =      71 min.



18.	The length of the pulse is ?d = c ?t, so the number of wavelengths in this length is

		N = (c ?t)/l = (3.00 ´ 108 m/s)(30 ´ 10–12 s)/(1062 ´ 10–9 m) =      8.5 ´ 103 wavelengths.

	The time for the length of the pulse to be one wavelength is

		?t¢ = l/c = (1062 ´ 10–9 m)/(3.00 ´ 108 m/s) = 3.54 ´ 10–15 s =      3.54 fs.



19.	The energy per unit area per unit time is

		S 	= !cÅ0E02

			= !(3.00 ´ 108 m/s)(8.85 ´ 10–12 C2/N · m2)(36.5 ´ 10–3 V/m)2 =      1.77 ´ 10–6 W/m2.





20.	The energy per unit area per unit time is

		S 	= cBrms2/m0

			= (3.00 ´ 108 m/s)(32.5 ´ 10–9 T)2/(4p ´ 10–7 T · m/A) = 0.252 W/m2.

	We find the time from

		t = U/AS = (335 J)/(1.00 ´ 10–4 m2)(0.252 J/s · m2) = 1.32 ´ 107 s = 0.419 yr =     5.03 months.



21.	The energy per unit area per unit time is

		S 	= cÅ0Erms2

			= (3.00 ´ 108 m/s)(8.85 ´ 10–12 C2/N · m2)(28.6 ´ 10–3 V/m)2 = 2.17 ´ 10–6 W/m2.

	We find the energy transported from

		U/t = AS = (1.00 ´ 10–4 m2)(2.17 ´ 10–6 W/m2)(3600 s/h) =      7.82 ´ 10–7 J/h.



22.	Because the wave spreads out uniformly over the surface of the sphere, the intensity is

		I  = P/A = (1000 W)/4p(10.0 m)2 =       0.796 W/m2.

	This intensity is represented by the Poynting vector.  We find the rms value of the electric field from

		S = cÅ0Erms2;

		0.796 W/m2 = (3.00 ´ 108 m/s)(8.85 ´ 10–12 C2/N · m2)Erms2, which gives Erms =      17.3 V/m.



23.	For the energy density, we have

		u = !Å0E02 = S/c = (1350 W/m2)/(3.00 ´ 108 m/s) = 4.50 ´ 10–6 J/m3. 

	The radiant energy is

		U = uV = (4.50 ´ 10–6 J/m3)(1.00 m3) =     4.50 ´ 10–6 J.



24.	The energy per unit area per unit time is

		S = P/A = cÅ0Erms2;

		(12.8 ´ 10–3 W)/p(1.00 ´ 10–3 m)2 = (3.00 ´ 108 m/s)(8.85 ´ 10–12 C2/N · m2)Erms2, 

	which gives Erms =       1.24 ´ 103 V/m.

	The rms value of the magnetic field is

		Brms = Erms/c = (1.24 ´ 103 V/m)/(3.00 ´ 108 m/s) =      4.13 ´ 10–6 T.



25.	The radiation from the Sun has the same intensity in all directions, so the rate at which it reaches the Earth is the rate at which it passes through a sphere centered at the Sun:

		P = S4prSE2 = (1350 W/m2)4p(1.5 ´ 1011 m)2 =      3.8 ´ 1026 W.



26.	(a)	The energy emitted in each pulse is

			U = Pt = (2.5 ´ 1011 W)(1.0 ´ 10–9 s) =      2.5 ´ 102 J.

	(b)	We find the rms electric field from

			S = P/A = cÅ0Erms2;

			(2.5 ´ 1011 W)/p(2.2 ´ 10–3 m)2 = (3.00 ´ 108 m/s)(8.85 ´ 10–12 C2/N · m2)Erms2, 

		which gives Erms =      2.5 ´ 109 V/m.





















27.	(a)	We choose the axis of the circular plates as the z-axis.  

�

		We find the electric field from the charge density:

			E = (s/Å0)k = (Q/pR2Å0)k.

		From the cylindrical symmetry, we know that the magnetic 

		field will be circular, centered on the z-axis.  We choose a 

		circular path with radius r < R to apply Ampere’s law:

			ı B · ds = m0Ienclosed + m0Å0 (d/dt) ı E · dA;

			B2pr = 0 + m0Å0 (d/dt)[(Q/pR2e0)pr2], which gives      

			B = (m0r/2pR2) dQ/dt  circular, for r = R.

		The Poynting vector, 

			S = (1/m0)E ´ B,

		will be directed toward the axis of the plates:

			S = – (1/m0)(Q/pR2Å0)(m0r/2pR2)(dQ/dt )® = – (Qr/2p2R4Å0)(dQ/dt )®.

	(b)	The energy stored in the electric field is

			U = uEpR2d = !Å0E2pR2d = !Å0(Q/pR2Å0)2pR2d =  !(d/pR2Å0)Q2.

		The rate at which this energy is being stored is

			dU/dt = (Qd/Å0pR2) dQ/dt.

		To find the energy flow into the capacitor through the cylinder at r = R, we note that S is 

		perpendicular to the surface and has a constant magnitude.  Thus

			P = ? S · dA = S(surface area) = (Qr/2p2Å0R4)(dQ/dt )(2pRd) = (Qd/Å0pR2) dQ/dt, 

		which is the rate at which energy is being stored in the electric field.



28.	We assume the light does not reflect from the surface.  We find the radiation pressure from

		F/A	= S/c = P/4pR2c 

				= (100 W)/4p(0.080 m)2(3 ´ 108 m/s) =      4.1 ´ 10–6 N/m2. 

	If we estimate an area 1 cm on a side for the fingertip, the force will be

		F = (F/A)A = (4.1 ´ 10–6 N/m2)(0.01 m)2 ˜      4 ´ 10–10 N.



29.	The force exerted by the radiation on a cross-section of a spherical particle is

		Fradiation = (pressure)A = (S/c)A = (P/4prS2)pr2/c.

	If we want the force from the radiation to be greater than the gravitational force at the surface of the Sun,  we have

		Pr2/4rS2c  > GmMS/rS2 = Gr)pr3MS/rS2,  or

		P/c > 16GrprMS/3;

		(3.8 ´ 1026 W)/(3 ´ 108 m/s) > 16(6.67 ´ 10–11 N · m2/kg2)(2.0 ´ 103 kg/m3)pr(2.0 ´ 1030 kg)/3, 

	which gives

		r  < 3 ´ 10–7 m.



30.	If a particle with momentum p collides completely inelastically with a large object, the final momentum of the particle will be zero, so the momentum change is p.  If the collision takes place in a time ?t, the force on the particle is 

		F1 = p/?t.

	From Newton’s third law, there will be a force of equal magnitude on the object.

	If a particle with momentum p collides completely elastically with a large object, the final momentum of the particle will be p in the opposite direction, so the momentum change is 2p.  If the collision takes place in a time ?t, the force on the particle is 

		F2 = 2p/?t.

	From Newton’s third law, there will be a force of equal magnitude on the object.  Thus the ratio of the pressures is equal to the ratio of the forces acting on the object, which is

		F2/F1 = 2.





31.	The resonant frequency is given by

		f02 = (1/2p)2(1/LC).

	When we form the ratio for the two stations, we get

		(f02/f01)2 = C1/C2 ;

		(1550 kHz/550 kHz)2 = (2400 pF)/C2 , which gives C2 =      302 pF.



32.	We find the capacitance from the resonant frequency:

		f0 = (1/2p)(1/LC)1/2;

		96.1 ´ 106 Hz = (1/2p)[1/(1.8 ´ 10–6 H)C]1/2, which gives C = 1.5 ´ 10–12 F =      1.5 pF.



33.	We find the inductance for the first frequency:

		f01 = (1/2p)(1/L1C)1/2;

		88 ´ 106 Hz = (1/2p)[1/L1(840 ´ 10–12 F)]1/2, which gives L1 = 3.89 ´ 10–9 H = 3.89 nH.

	For the second frequency we have

		f02 = (1/2p)(1/L2C)1/2;

		108 ´ 106 Hz = (1/2p)[1/L2(840 ´ 10–12 F)]1/2, which gives L2 = 2.59 ´ 10–9 H = 2.59 nH.

	Thus the range of inductances is

		2.59 nH = L = 3.89 nH.



34.	(a)	The minimum value of C corresponds to the higher frequency, so we have

			f01 = (1/2p)(1/LC1)1/2;

			15.0 ´ 106 Hz = (1/2p)[1/L(92 ´ 10–12 F)]1/2, which gives L = 1.22 ´ 10–6 H =     1.22 mH.

	(b)	The maximum value of C corresponds to the lower frequency, so we have

			f02 = (1/2p)(1/LC2)1/2;

			14.0 ´ 106 Hz = (1/2p)[1/(1.22 ´ 10–6 H)C2]1/2, which gives C2 = 1.06 ´ 10–10 F =     106 pF.



35.	(a)	The wavelength of the AM station is

			l = c/f = (3.00 ´ 108 m/s)/(680 ´ 103 Hz) =      441 m.

	(b)	The wavelength of the FM station is

			l = c/f = (3.00 ´ 108 m/s)/(100.7 ´ 106 Hz) =      2.979 m.



36.	The frequencies are 940 kHz on the AM dial and 94 MHz on the FM dial.  From c = fl, we see that the lower frequency will have the longer wavelength:      the AM station.

	When we form the ratio of wavelengths, we get

		l2/l1 = f1/f2 = (94 ´ 106 Hz)/(940 ´ 103 Hz) =      100´.



37.	The wavelength of Channel 2 is

		l2 = c/f2 = (3.00 ´ 108 m/s)/(54.0 ´ 106 Hz) =      5.56 m.

	The wavelength of Channel 69 is

		l69 =  c/f69 = (3.00 ´ 108 m/s)/(806 ´ 106 Hz) =      0.372 m.



38.	After the change occurred, we would find out when the change in radiation reached the Earth:

		?t = L/c = (1.50 ´ 1011 m)/(3.00 ´ 108 m/s) = 5.00 ´ 102 s =      8.33 min.





39.	(a)	The time for a signal to travel to the Moon is

			?t = L/c = (3.84 ´ 108 m)/(3.00 ´ 108 m/s) =      1.28 s.

	(b)	The time for a signal to travel to Mars at the closest approach is

			?t = L/c = (78 ´ 109 m)/(3.00 ´ 108 m/s) = 260 s =      4.3 min.





40.	The time consists of the time for the radio signal to travel to Earth and the time for the sound to travel from the loudspeaker:

		t 	= tradio + tsound = (dradio/c) + (dsound/vsound) 

			= (3.84 ´ 108 m/3.00 ´ 108 m/s) + (50 m/343 m/s) =      1.43 s.

	Note that about 10% of the time is for the sound wave.



41.	The light has the same intensity in all directions, so the energy per unit area per unit time over a sphere centered at the source is

		S = P0/A = P0/4pr2 = !cÅ0E02 = !c(1/c2m0)E0 2, which gives   E0 = (m0cP0/2pr2)1/2.



42.	The light has the same intensity in all directions, so the energy per unit area per unit time over a sphere centered at the source is

		S = P0/A = P0/4pr2 = (100 W)/4p(2.00 m)2 = 1.99 W/m2.

	We find the electric field from

		S = !cÅ0E02;

		1.99 W/m2 = !(3.00 ´ 108 m/s)(8.85 ´ 10–12 C2/N · m2)E02, which gives E0 =      38.7 V/m.

	The magnetic field is

		B0 = E0/c = (38.7 V/m)/(3.00 ´ 108 m/s) =      1.29 ´ 10–7 T.



43.	The radiation from the Sun has the same intensity in all directions, so the rate at which it passes through a sphere centered at the Sun is

		P = S4pR2.

	The rate must be the same for the two spheres, one containing the Earth and one containing Mars.  When we form the ratio, we get 

		PMars/PEarth = (SMars/SEarth)(RMars/REarth)2;

		1 = (SMars/1350 W/m2)(1.52)2, which gives SMars = 584.3 W/m2.

	We find the rms value of the electric field from

		SMars = cÅ0Erms2;

		584.3 W/m2 = (3.00 ´ 108 m/s)(8.85 ´ 10–12 C2/N · m2)Erms2, which gives Erms =      469 V/m.



44.	If we curl the fingers of our right hand from the direction of the electric field (south) into the direction of the magnetic field (west), our thumb points down, so the direction of the wave is      downward.

	We find the electric field from

		S = !cÅ0E02;

		500 W/m2 = !(3.00 ´ 108 m/s)(8.85 ´ 10–12 C2/N · m2)E02, which gives E0 =       614 V/m.

	The magnetic field is

		B0 = E0/c = (614 V/m)/(3.00 ´ 108 m/s) =      2.05 ´ 10–6 T.



45.	If we ignore the time for the sound to travel to the microphone, the time difference is

		?t 	= tradio – tsound = (dradio/c) – (dsound/vsound) = (3000 ´ 103 m/3.00 ´ 108 m/s) – (50 m/343 m/s) 

			= – 0.14 s,

	so the       person at the radio hears the voice 0.14 s sooner.



46.	To produce the voltage over the length of the antenna, we have

		Erms = Vrms/d = (1.0 ´ 10–3 V)/(1.80 m) =      5.6 ´ 10–4 V/m.

	The rate of energy transport is

		S 	= cÅ0Erms2

			= (3.00 ´ 108 m/s)(8.85 ´ 10–12 C2/N · m2)(5.56 ´ 10–4 V/m)2 =       8.2 ´ 10–10 W/m2.







47.	(a)	The radio waves have the same intensity in all directions, so the energy per unit area per unit 

		time over a sphere centered at the source with a radius of 100 m is

			S = P0/A = P0/4pr2 = (50 ´ 103 W)/4p(100 m)2 = 0.398 W/m2.

		Thus the power through the area is

			P = SA = (0.398 W/m2)(1.0 m2) =       0.40 W.

	(b)	We find the rms value of the electric field from

			S = cÅ0Erms2;

			0.398 W/m2 = (3.00 ´ 108 m/s)(8.85 ´ 10–12 C2/N · m2)Erms2, which gives Erms =       12 V/m.

	(c)	If the electric field is parallel to the antenna, the voltage over the length of the antenna is

			Vrms = Ermsd = (12 V/m)(1.0 m) =      12 V.



48.	(a)	The radio waves have the same intensity in all directions, so the energy per unit area per unit 

		time over a sphere centered at the source with a radius of 100 km is

			S = P0/A = P0/4pr2 = (50 ´ 103 W)/4p(100 ´ 103 m)2 = 3.98 ´ 10–7 W/m2.

		Thus the power through the area is

			P = SA = (3.98 ´ 10–7 W/m2)(1.0 m2) = 3.98 ´ 10–7 W =     0.40 mW.

	(b)	We find the rms value of the electric field from

			S = cÅ0Erms2;

			3.98 ´ 10–7 W/m2 = (3.00 ´ 108 m/s)(8.85 ´ 10–12 C2/N · m2)Erms2, 

		which gives Erms =      0.012 V/m.

	(c)	The voltage over the length of the antenna is

			Vrms = Ermsd = (0.012 V/m)(1.0 m) =     0.012 V.



49.	The energy per unit area per unit time is

		S 	= !cÅ0E02;

			= !(3.00 ´ 108 m/s)(8.85 ´ 10–12 C2/N · m2)(3 ´ 106 V/m)2 = 1.20 ´ 1010 W/m2.

	The power output is

		P = S4pr2 = (1.20 ´ 1010 W/m2)4p(1.0 m)2 =      1.5 ´ 1011 W.



50.	We find the magnetic field from

		S = !(c/m0)B02;

		1.0 ´ 10–4 W/m2 = ![(3.00 ´ 108 m/s)/(4p ´ 10–7 T · m/A)]B02, which gives B0 = 9.15 ´ 10–10 T.

	Because this field oscillates through the coil at w = 2pf, the maximum emf is

		å0 = NAB0w = (380 turns)p(0.011 m)2(9.15 ´ 10–10 T)2p(810 ´ 103 Hz) = 6.72 ´ 10–4 V = 0.672 mV.

	The rms emf is

		årms = å0/v2 = (0.672 mV)/v2 =      0.48 mV.
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51.	(a)	We see from the diagram that all positive plates are 

		connected to the positive side of the battery, and that all 

		negative plates are connected to the negative side of the 

		battery, so the 11 capacitors are connected in     parallel.

	(b)	For parallel capacitors, the total capacitance is the sum, 

		so we have

			Cmin 	= 11(Å0Amin/d) 

					= 11(8.85 ´ 10–12 C2/N · m2)(1.0 ´ 10–4 m2)/(1.1 ´ 10–3 m) = 8.85 ´ 10–12 F = 8.9 pF;

			Cmax 	= 11(Å0Amax/d) 

					= 11(8.85 ´ 10–12 C2/N · m2)(9.0 ´ 10–4 m2)/(1.1 ´ 10–3 m) = 79.7 ´ 10–12 F = 80 pF.

		Thus the range is      8.9 pF = C = 80 pF.

	(c)	The lowest resonant frequency requires the maximum capacitance. 

		We find the inductance for the lowest frequency:

			f01 = (1/2p)(1/L1Cmax)1/2;

			550 ´ 103 Hz = (1/2p)[1/L1(79.7 ´ 10–12 F)]1/2, which gives L1 = 1.05 ´ 10–3 H = 1.05 mH.

		We must check to make sure that the highest frequency can be reached.

		We find the resonant frequency using this inductance and the minimum capacitance:

			f0max 	= (1/2p)(1/L1Cmin)1/2

					= (1/2p)[1/(1.05 ´ 10–3 H)(8.85 ´ 10–12 F)]1/2 = 1.65 ´ 106 Hz = 1650 kHz.

		Because this is greater than the highest frequency desired, the inductor will work.

		We could also start with the highest frequency.

		We find the inductance for the highest frequency:

			f02 = (1/2p)(1/L2Cmin)1/2;

			1600 ´ 103 Hz = (1/2p)[1/L2(8.85 ´ 10–12 F)]1/2, which gives L2 = 1.12 ´ 10–3 H = 1.12 mH.

		We must check to make sure that the lowest frequency can be reached.

		We find the resonant frequency using this inductance and the maximum capacitance:

			f0min 	= (1/2p)(1/L2Cmax)1/2

					= (1/2p)[1/(1.12 ´ 10–3 H)(79.7 ´ 10–12 F)]1/2 = 533 ´ 105 Hz = 533 kHz.

		Because this is less than the lowest frequency desired, this inductor will also work.

		Thus the range of inductances is      1.05 mH = L = 1.12 mH.



�

52.	(a)	We choose the direction of current as the z-axis.  

		We find the electric field inside and on the surface 

		from the current density:

			E = J/s = (I/As)k =       (I/pr2s)k       = (IR/L)k, 

		where R is the resistance of a length L.

	(b)	From the cylindrical symmetry, we know that the 

		magnetic field will be circular, centered on the axis 

		of the wire.  We choose a circular path with radius 

		r1 > r to apply Ampere’s law:

			ı B · ds = m0Ienclosed;

			B2pr1 = m0I, which gives 

			B = m0I/2pr1  circular, for r1 > r.

	(c)	The Poynting vector on the surface of the wire at r1 = r,

			S = (1/m0)E ´ B,

		will be directed toward the axis of the wire (radially inward):

			S = – (1/m0)(I/pr2s)(m0I/2pr)® =       – (I 2/2p 2s r3)®.

	(d)	To find the energy flow into a length L of the conductor at r1 = r, we note that S is perpendicular 

		to the surface and has a constant magnitude.  Thus

			P = ? S · dA = S(surface area) = (I 2/2p 2s r3)(2prL) = I 2L/sp r2 = I 2R,

		which is the rate at which energy is being dissipated in the conductor.
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