CHAPTER 35 – The Wave Nature of Light; Interference



�

1.	We draw the wavelets and see that the 

	incident wave fronts are parallel, with 

	the angle of incidence q1 being the angle 

	between the wave fronts and the surface.  

	The reflecting wave fronts are parallel, 

	with the angle of reflection q2 being the 

	angle between the wave fronts and the surface.  

	Both sets of wave fronts are in the same 

	medium, so they travel at the same speed.  

	The perpendicular distance between 

	wave fronts is BC = AD = c ?t.  

	From the triangles, we see that 

		AB = BC/sin q1 = AD/sin q2 .

	Thus we have

		sin q1 = sin q2 ,   or   q1 = q2 .



2.	For constructive interference, the path difference is a multiple of the wavelength:

		d sin q = ml,   m = 0, 1, 2, 3, … .

	For the fifth order, we have

		(1.6 ´ 10–5 m) sin 9.8° = (5)l, which gives l = 5.4 ´ 10–7 m =      540 nm.



3.	For constructive interference, the path difference is a multiple of the wavelength:

		d sin q = ml,   m = 0, 1, 2, 3, … .

	For the third order, we have

		d sin 18° = (3)(610 ´ 10–9 m), which gives d = 5.9 ´ 10–6 m =      5.9 mm.



4.	For constructive interference, the path difference is a multiple of the wavelength:

		d sin q = ml,   m = 0, 1, 2, 3, … .

	We find the location on the screen from

		y = L tan q.

	For small angles, we have

		sin q ˜ tan q, which gives

		y = L(ml/d) = mLl/d.

	For adjacent fringes, ?m = 1, so we have

		?y = Ll ?m/d;

		0.065 m = (5.00 m)l(1)/(0.048 ´ 10–3 m), which gives l = 6.24 ´ 10–7 m =      0.62 mm.

	The frequency is

		f = c/l = (3.00 ´ 108 m/s)/(6.24 ´ 10–7 m) =       4.8 ´ 1014 Hz.



5.	For constructive interference, the path difference is a multiple of the wavelength:

		d sin q = ml,   m = 0, 1, 2, 3, … .

	We find the location on the screen from

		y = L tan q.

	For small angles, we have

		sin q ˜ tan q, which gives

		y = L(ml/d) = mLl/d.

	For adjacent fringes, ?m = 1, so we have

		?y 	= Ll ?m/d;

			= (3.6 m)(656 ´ 10–9 m)(1)/(0.060 ´ 10–3 m) = 3.9 ´ 10–2 m =      3.9 cm.



6.	For constructive interference, the path difference is a multiple of the wavelength:

		d sin q = ml,   m = 0, 1, 2, 3, … .

	We find the location on the screen from

		y = L tan q.

	For small angles, we have

		sin q ˜ tan q, which gives  y = L(ml/d) = mLl/d.

	For the fourth order we have

		38 ´ 10–3 m = (2.0 m)(680 ´ 10–9 m)(4)/d, which gives d = 1.4 ´ 10–4 m =      0.14 mm.



7.	For constructive interference, the path difference is a multiple of the wavelength:

		d sin q = ml,   m = 0, 1, 2, 3, … .

	We find the location on the screen from

		y = L tan q.

	For small angles, we have

		sin q ˜ tan q, which gives  y = L(ml/d) = mLl/d.

	For the second order of the two wavelengths, we have

		?y = mL ?l/d = 2(1.0 m)[(720 – 660) ´ 10–9 m]/(0.58 ´ 10–3 m) = 2.07 ´ 10–4 m =       0.21 mm.



8.	The 180° phase shift produced by the glass is equivalent to a path length of !l.  For constructive interference on the screen, the total path difference is a multiple of the wavelength:

		!l + d sin q = ml,   m = 0, ± 1, ± 2, ± 3, … ;   or   d sin q = (m – !)l,   m = 0, ± 1, ± 2, ± 3, … .

	For destructive interference on the screen, the total path difference is

		!l + d sin q = (m + !)l,   m = 0, ± 1, ± 2, ± 3, … ;   or   d sin q = ml,   m = 0, ± 1, ± 2, ± 3, … .

	Thus the pattern is just the      reverse of the usual double-slit pattern.



9.	For constructive interference of the second order for the blue light, we have

		d sin q = mlb = (2)(460 nm) = 920 nm.

	For destructive interference of the other light, we have

		d sin q = (m¢ + !)l,   m¢ = 0, 1, 2, 3, … .

	When the two angles are equal, we get

		920 nm = (m¢ + !)l,   m¢ = 0, 1, 2, 3, … .

	For the first three values of m¢, we get

		920 nm = (0 + !)l, which gives l = 1.84 ´ 103  nm;

		920 nm = (1 + !)l, which gives l = 613  nm;

		920 nm = (2 + !)l, which gives l = 368 nm.

	The only one of these that is visible light is      613 nm.



10.	The presence of the water changes the wavelength: lwater = l/nwater = 480 nm/1.33 = 360 nm.

	For constructive interference, the path difference is a multiple of the wavelength in the water:

		d sin q = mlwater ,   m = 0, 1, 2, 3, … .

	We find the location on the screen from

		y = L tan q.

	For small angles, we have

		sin q ˜ tan q, which gives  y = L(mlwater/d) = mLlwater/d.

	For adjacent fringes, ?m = 1, so we have

		?y 	= Llwater ?m/d;

			= (0.400 m)(360 ´ 10–9 m)(1)/(6.00 ´ 10–5 m) = 2.41 ´ 10–3 m =      2.41 mm.













11.	To change the center point from constructive interference to destructive interference, the phase shift produced by the introduction of the plastic must be an odd multiple of half a wavelength, corresponding to the change in the number of wavelengths in the distance equal to the thickness of the plastic.  The minimum thickness will be for a shift of a half wavelength:

		N = (t/lplastic) – (t/l) = (tnplastic/l) – (t/l) = (t/l)(nplastic – 1) = !;

		[t/(640 nm)](1.60 – 1) = !, which gives t =      533 nm.



12.	If E0 is the amplitude of the electric field at the center of the screen from the light of one slit, for the constructive interference when both slits are open the amplitude is 2E0.  Thus the ratio of intensities is

		I01/I02 = (E0/2E0)2 =        #.



13.	The intensity of the pattern is

		Iq = I0 cos2 [(pd sin q)/l].

	At the central maximum, we have q = 0 and I = I0.

	We find the angle where the intensity is half its maximum value from

		Iq = !I0 = I0 cos2 [(pd sin q1/2)/l],   or  cos [(pd sin q1/2)/l]  = 1/v2; 

		(pd sin q1/2)/l = p/4, which gives q1/2 = sin–1 (l/4d).

	If l « d, the angle will be small, so q1/2 ˜ sin q1/2.

	The angular width is twice this angle:

		Dq1/2 ˜ 2l/4d = l/2d.



14.	A doubling of the intensity means the electric field amplitude increases by a factor of v2.  If E0 is the amplitude of the electric field of one slit, for the other slit it will be E0v2.  At an angle where the phase difference is d = 2pd (sin q)/l, the resultant electric field is

		Eq  = E0 sin(wt) + E0v2 sin(wt + d).

	If we expand the trig function, we get

		Eq  = E0 sin(wt) + E0v2 [sin wt cos d + cos wt sin d] = E0 (1 + v2 cos d) sin wt + E0v2 sin d cos wt.

	The square of this is

		Eq2 = E02 (1 + v2 cos d)2 sin2 wt + 2E02 sin2 d cos2 wt + 2v2E02 (1 + 2v2 cos d) sin d  sin wt cos wt.

	The intensity is the time average, so the contribution of the last term is zero and the average for  

	sin2 wt and cos2 wt is !.  Thus we have

		� = !E02 [(1 + v2 cos d)2 + 2 sin2 d] = !E02 (3 + 2v2 cos d).

	Thus we have

		Iq/I0 = !E02 (3 + 2v2 cos d)/!E02 (3 + 2v2) =       (3 + 2v2 cos d)/(3 + 2v2), with d = (2pd/l) sin q.
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15.	(a)	If the sources have equal intensities, their electric fields 

		will have the same magnitude:

			E10 = E20 = E30 = E0.

		From the symmetry of the phasor diagram we see that f = d, 

		where d = 2pd sin q/l is the phase difference between 

		adjacent slits.  Thus the amplitude of the resultant field is

			Eq0 = E10 cos d + E20 + E30 cos d = E0(1 + 2 cos d).

		At the center where q = 0, d = 0, we have

			E00 = 3E0.

		The ratio of intensities is

			Iq/I0 = E02(1 + 2 cos d)2/(3E0)2 = (1 + 4 cos d + 4 cos2 d)/9.

	(b)	The intensity will be maximal when 1 + 2 cos d is maximal, which will be when cos d = 1.  

		This occurs when the three phasors are parallel.  Thus we have

			d = …, – 2p, 0, 2p, 4p, … = 2mp, m = 0, ±1, ±2, … .  

�

		The angles for the maxima are given by

			sin qmax = 2mpl/2pd = ml/d, m = 0, ±1, ±2, … .   

		The intensity will be minimal when 1 + 2 cos d is 

		minimal (zero), which will be when cos d = – !.  

		This occurs when the three phasors form an 

		equilateral triangle, as shown.  Thus we have

			d = …, – 2p/3, 2p/3, 4p/3, 8p/3, 10p/3, … ; or 

			d = (m + @k)2p; k = 1, 2;  m = 0, ±1, ±2, … .  

		The angles for the minima are given by

			sin qmin = (m + @k)l/d; k = 1, 2;  m = 0, ±1, ±2, … .
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16.	If the sources have equal intensities, their electric fields will 

	have the same magnitude:

		E10 = E20 = E30 = E40 = E0.

	From the symmetry of the phasor diagram we see that f = *d,

	where d = 2pd sin q/l is the phase difference between 

	adjacent slits.  Thus the amplitude of the resultant field is

		Eq0 	= E10 cos *d + E20 cos !d + E30 cos !d + E40 cos *d 

			= 2E0(cos !d + cos *d) = 4E0 cos d cos !d.

	At the center where q = 0, d = 0, we have

		E00 = 4E0.

	The ratio of intensities is

		Iq/I0 = (4E0)2(cos d cos !d)2/(4E0)2 = cos2 d cos2 !d.

	The intensity will be maximal when cos d = ±1 and cos !d = ±1.  

	This occurs when the four phasors are parallel.  Thus we have

		!d = …, – 2p, – p, 0, p, 2p, 3p, … = mp, m = 0, ±1, ±2, … ;  or   d = 2mp, m = 0, ±1, ±2, … .

	The angles for the maxima are given by

		sin qmax = 2mpl/2pd = ml/d, m = 0, ±1, ±2, … .
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	The intensity will be minimal when cos d = 0 or cos !d = 0. This occurs when the four phasors form a square or adjacent phasors are antiparallel.   Thus we have

		!d 	= …, – *p, – !p, !p, *p, (p, …   or   

		d 	= …, – *p, – !p, !p, *p, (p, … , which can be combined:

		d 	= …, – *p, – p, – !p, !p, p, *p, (p, …  

			=  (m + #k)2p; k = 1, 2, 3;  m = 0, ±1, ±2, … .  

	The angles for the minima are given by

		sin qmin = (m + #k)l/d; k = 1, 2, 3;  m = 0, ±1, ±2, … .  
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17.	We equate a path difference of one wavelength with a phase 

	difference of 2p.  With respect to the incident wave, the wave 

	that reflects at the top surface from the higher index of the 

	soap bubble has a phase change of   f1 = p.  

	With respect to the incident wave, the wave that reflects 

	from the air at the bottom surface of the bubble has a phase 

	change due to the additional path-length but no phase change 

	on reflection:   f2 = (2t/lfilm)2p + 0.

	For constructive interference, the net phase change is

		f = (2t/lfilm)2p – p = m2p, m = 0, 1, 2, …;   or   t = !lfilm(m + !), m = 0, 1, 2, … .

	The wavelengths in air that produce strong reflection are given by

		l = nlfilm = 2nt/(m + !) = 4(1.34)(120 nm)/(2m + 1) = (643 nm)/(2m + 1).

	Thus we see that, for the light to be in the visible spectrum, the only value of m is 0:

		l = (643 nm)/(0 + 1) = 643 nm, which is an      orange-red.



18.	Between the 25 dark lines there are 24 intervals.  When we add the half-interval at the wire end, we have 24.5 intervals, so the separation is

		26.5 cm/24.5 intervals =      1.08 cm.
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19.	We equate a path difference of one wavelength with a phase 

	difference of 2p.  With respect to the incident wave, the wave 

	that reflects at the top surface from the higher index of the 

	soap bubble has a phase change of   f1 = p.  

	With respect to the incident wave, the wave that reflects 

	from the air at the bottom surface of the bubble has a phase 

	change due to the additional path-length but no phase change 

	on reflection:   f2 = (2t/lfilm)2p + 0.

	For destructive interference, the net phase change is

		f = (2t/lfilm)2p – p = (m – !)2p, m = 0, 1, 2, …;   or   t = !lfilmm  = !(l/n)m, m = 0, 1, 2, … .

	The minimum non-zero thickness is

		tmin = ![(480 nm)/(1.34)](1) =     179 nm.
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20.	With respect to the incident wave, the wave that reflects 

	from the top surface of the coating has a phase change of

		f1 = p.  

	With respect to the incident wave, the wave that reflects 

	from the glass (n ˜ 1.5) at the bottom surface of the coating 

	has a phase change due to the additional path-length and 

	a phase change of p on reflection:

		f2 = (2t/lfilm)2p + p.

	For constructive interference, the net phase change is

		f = (2t/lfilm)2p + p – p = m2p, m = 1, 2, 3, …;   or   t = !lfilmm = !(l/nfilm)m, m = 1, 2, 3, … .

	The minimum non-zero thickness occurs for m = 1:

		tmin = l/2nfilm = (570 nm)/2(1.28) =        223 nm.

	570 nm is in the middle of the visible spectrum.  The transmitted light will be stronger in the wavelengths at the ends of the spectrum, so the lens would emphasize the red and violet wavelengths.
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21.	The phase difference for the reflected waves from the 

	path-length difference and the reflection at the 

	bottom surface is

		f = (2t/l)2p + p.

	For the dark rings, this phase difference must be an odd 

	multiple of p, so we have

		f = (2t/l)2p + p = (2m + 1)p,  m = 0, 1, 2, …;    or

		t = !ml,   m = 0, 1, 2, … .

	Because m = 0 corresponds to the dark center, m represents the 

	number of the ring.  Thus the thickness of the lens is the thickness of the air at the edge of the lens:

		t = !(28)(650 nm) = 9.1 ´ 103 nm =      9.1 mm.
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22.	There is a phase difference for the reflected 

	waves from the path-length difference, (2t/l)2p, 

	and the reflection at the bottom surface, p.  

	For destructive interference, this phase difference 

	must be an odd multiple of p, so we have

		f = (2t/l)2p + p = (2m + 1)p,  m = 0, 1, 2, …;    or

		t = !ml,   m = 0, 1, 2, … .

	Because m = 0 corresponds to the edge where the glasses 

	touch, m + 1 represents the number of the fringe.  

	Thus the thickness of the foil is 

		d = !(24)(670 nm) = 8.04 ´ 103 nm =      8.04 mm.



�

23.	With respect to the incident wave, the wave that reflects from 

	the air at the top surface of the air layer has a phase change of

		f1 = 0.  

	With respect to the incident wave, the wave that reflects from 

	the glass at the bottom surface of the air layer has a phase change 

	due to the additional path-length and a change on reflection:

		f2 = (2t/l)2p + p.

	For constructive interference, the net phase change is

		f = (2t/l)2p + p – 0 = m2p, m = 1, 2, 3, …;   or   t = !l(m – !), m = 1, 2, 3, … .

	The minimum thickness is

		tmin = !(480 nm)(1 – !) =     120 nm.

	For destructive interference, the net phase change is

		f = (2t/l)2p + p – 0 = (2m + 1)p,  m = 0, 1, 2, …;   or   t = !ml,   m = 0, 1, 2, … .

	The minimum non-zero thickness is

		tmin = !(480 nm)(1) =     240 nm.
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24.	With respect to the incident wave, the wave that reflects 

	from the top surface of the alcohol has a phase change of

		f1 = p.  

	With respect to the incident wave, the wave that reflects 

	from the glass at the bottom surface of the alcohol has a 

	phase change due to the additional path-length and 

	a phase change of p on reflection:

		f2 = (2t/lfilm)2p + p.

	For constructive interference, the net phase change is

		f = (2t/l1film)2p + p – p = m12p, m1 = 1, 2, 3, …;   or   t = !l1film(m1) = !(l1/nfilm)(m1), m1 = 1, 2, 3, … .

	For destructive interference, the net phase change is

		f = (2t/l2film)2p + p – p = (2m2 + 1)p,  m2 = 0, 1, 2, …;   or   t = #(l2/nfilm)(2m2 + 1),   m2 = 0, 1, 2, … .

	When we combine the two equations, we get

		!(l1/nfilm)(m1) = #(l2/nfilm)(2m2 + 1),   or   (2m2 + 1)/2m1 = l1/l2 = (640 nm)/(512 nm) = 1.25 = 5/4.

	If we choose the smallest integers, we see that m1 = m2 = 2, and the thickness of the film is

		t = !(l1/nfilm)(m1) = ![(640 nm)/(1.36)](2) =      471 nm.
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25.	At a distance r from the center of the lens, the thickness of 

	the air space is y, and the phase difference for the reflected 

	waves from the path-length difference and the reflection at 

	the bottom surface is

		f = (2y/l)2p + p.

	For the dark rings, we have

		f = (2y/l)2p + p = (2m + 1)p,  m = 0, 1, 2, …;   or   

		y = !ml,  m = 0, 1, 2, … .

	Because m = 0 corresponds to the dark center, m represents the 

	number of the ring.  From the triangle in the diagram, we have

		r2 + (R – y)2 = R2,   or   r2 = 2yR – y2 ˜ 2yR, when y « R,

	which becomes

		r2 = 2(!ml)R = mlR,  m = 0, 1, 2, … .

	When the apparatus is immersed in the liquid, the same analysis holds, if we use the wavelength in the liquid.  If we form the ratio for the two conditions, we get

		(r1/r2)2 = l1/l2 = n,  so

		n = (2.92 cm/2.60 cm)2 =       1.26.
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26.	At a distance r from the center of the lens, the thickness of 

	the air space is y, and the phase difference for the reflected 

	waves from the path-length difference and the reflection at 

	the bottom surface is

		f = (2y/l)2p + p.

	For the bright rings, we have

		f = (2y/l)2p + p = m2p, m = 1, 2, 3, …;   or   

		y = !l(m – !), m = 1, 2, 3, … ,

	where m represents the number of the ring.  From the triangle 

	in the diagram, we have

		r2 + (R – y)2 = R2,   or   r2 = 2yR – y2 ˜ 2yR, when y « R,

	which becomes

		r2 = 2[!l(m – !)]R = l(m – !)R.

	For the 48th ring, we have

		(1.7 ´ 10–2 m)2 = (580 ´ 10–9 m)(48 – !)R, which gives      R = 10.5 m.

	We find the focal length of the lens from

		1/f = (n – 1)[(1/R1) + (1/R2)] = (1.51 – 1)[(1/10.5 m) + (1/8)], which gives       f = 20.6 m.
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27.	At a distance r from the center of the lens, the thickness of 

	the air space is y, and the phase difference for the reflected 

	waves from the path-length difference and the reflection at 

	the bottom surface is

		f = (2y/l)2p + p.

	For the dark rings, we have

		f = (2y/l)2p + p = (2m + 1)p,  m = 0, 1, 2, …;   or   

		y = !ml,  m = 0, 1, 2, … .

	Because m = 0 corresponds to the dark center, m represents the 

	number of the ring.  From the triangle in the diagram, we have

		r2 + (R – y)2 = R2,   or   r2 = 2yR – y2 ˜ 2yR, when y « R,

	which becomes

		r2 = 2(!ml)R = mlR,  m = 0, 1, 2, … ;   or   r = (mlR)1/2.



28.	From Problem 27 the radius of a dark ring is

		r = (mlR)1/2.

	Thus the separation of adjacent rings is

		?r = [(m + 1)lR]1/2 – (mlR)1/2 = [(m + 1)1/2 – m1/2](lR)1/2 = {[1 + (1/m)]1/2 – 1}(mlR)1/2.

	If m » 1, [1 + (1/m)]1/2 ˜ 1 + (1/2m), so we have

		?r ˜ [ 1 + (1/2m) – 1](mlR)1/2 = (lR/4m)1/2.
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29.	We assume n1 < n2 < n3 and most of the light is transmitted.  

	Thus the electric field amplitude of a reflected wave is rE0 , 

	where r « 1.  With respect to the incident wave, the wave 

	that reflects from the top surface of the coating has a phase 

	change of

		f1 = p.  

	With respect to the incident wave, the wave that reflects 

	from the glass at the bottom surface of the coating has a 

	phase change due to the additional path-length and a 

	phase change of p on reflection:

		f2 = (2t/lcoating)2p + p.

	For destructive interference, the net phase change is

		f = (2t/lcoating)2p + p – p = (2m + 1)p,  m = 0, 1, 2, …;   or   t = #(l/n2)(2m + 1),   m2 = 0, 1, 2, … .

	If we assume the thinnest coating for the 550 nm light, we have

		t = l0/4n2 .

	The phase difference for a different wavelength will be

		d = 2(l0/4n2)[1/(l/n2)]2p = (l0/l)p.

	The resultant electric field of the reflected light is

		E = rE0 sin(wt) + rE0 sin(wt + d).

	This is similar to the analysis of the double-slit interference, so the amplitude of the reflected light as a result of the interference is

		Er = 2rE0 cos !d.

	With no coating, the amplitude is rE0 , so the ratio of intensities is

		Ir/Ir0 = (2rE0)2(cos2 !d)/(rE0)2 = 4 cos2 !d =  4 cos2 [!(l0/l)p].

	For the two wavelengths we have

		Ir1/Ir0 = 4 cos2 [!(550 nm/450 nm)p] =      0.47;

		Ir2/Ir0 = 4 cos2 [!(550 nm/650 nm)p] =      0.23.

	Note that if both wavelengths are present, the reflected light will have a purplish hue.



30.	One fringe shift corresponds to a change in path length of l.  The number of fringe shifts produced by a mirror movement of ?L is

		N = 2 DL/l;

		344 = 2(0.125 ´ 10–3 m)/l, which gives l = 7.27 ´ 10–7 m =      727 nm.



31.	One fringe shift corresponds to a change in path length of l.  The number of fringe shifts produced by a mirror movement of ?L is

		N = 2 DL/l;

		750 = 2 DL/(589 ´ 10–9 m), which gives DL = 2.21 ´ 10–4 m =      0.221 mm.



32.	One fringe shift corresponds to an effective change in path length of l.  The actual distance has not changed, but the number of wavelengths in the depth of the cavity has.  If the cavity has a depth d, the number of wavelengths in vacuum is d/l, and the number with the gas present is d/lgas = ngasd/l.  Because the light passes through the cavity twice, the number of fringe shifts is

 		N = 2[(ngasd/l) – (d/l)] = 2(d/l)(ngas – 1);

		186 = 2[(1.30 ´ 10–2 m)/(610 ´ 10–9 m)](ngas – 1), which gives ngas =      1.00436.















33.	The two fringe patterns overlap but do not interfere with each other.  When the bright fringe of one occurs where there is a dark fringe of the other, there will be a region without fringes.  When the next region occurs, the mirror movement must produce an integer number of fringe shifts for each wavelength:

		N1 = 2 DL/l1 ;  N2 = 2 DL/l2 ;

	and the difference in the number of fringe shifts must be 1.  Thus we have

		N1l2 = N2l1 ;

		N1(589.6 nm) = (N1 + 1)(589.0 nm), which gives N1 = 982.

	We find the mirror movement from

		N1 = 2 DL/l1 ; 

		982 = 2 DL/(589.0 nm), which gives DL = 2.89 ´ 105 nm =       0.289 mm.



34.	We assume the luminous intensity of the Sun is the same in all directions.  The luminous flux is

		F = EA = (105 lm/m2)4p(1.5 ´ 1011 m)2 =      3 ´ 1028 lm.

	The luminous intensity is

		I = F/(4p sr) = (3 ´ 1028 lm)/(4p sr) = 2 ´ 1027 lm/sr =       2 ´ 1027 cd.



35.	(a)	The luminous efficiency is 

			luminous efficiency = F/P = (1700 lm)/(100 W) =        17 lm/W.

	(b)	If half the luminous flux provides the illuminance of the floor, we have

			E = !NP(luminous efficiency)/A;

			250 lm/m2 = !N(40 W)(60 lm/W)/(25 m)(30 m), which gives N =       156.
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36.	There will be a phase difference between the waves at the 

	two slits because the wave at the upper slit will have 

	traveled farther.  The path difference at the two slits for 

	the incident wave is

		d sin qi .

	The path difference between the two slits for the diffracted 

	wave is

		d sin q.

	When the net path difference is a multiple of a wavelength, 

	there will be maxima given by

		(d sin qi) – (d sin q) = ml,  m = 0, ± 1, ± 2, … ;   or   

		sin q = sin qi ± (ml/d),  where m = 0, 1, 2, … . 
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37.	The wavelength of the signal is

		l = v/f = (3.00 ´ 108 m/s)/(75 ´ 106 Hz) = 4.00 m.

	(a)	There is a phase difference between the direct and 

		reflected signals from the path difference, (h/l)2p, 

		and the reflection, p.

		The total phase difference is

			f = (h/l)2p + p = [(118 m)/(4.00 m)]2p + p = 30(2p).

		Thus the interference is      constructive.

	(b)	When the plane is 22 m closer to the receiver, the phase 

		difference is

			f 	= [(h – y)/l]2p + p 

				= [(118 m – 22 m)/(4.00 m)]2p + p = 24(2p) + p.

		Thus the interference is      destructive.









38.	The wavelength of the signal is

		l = v/f = (3.00 ´ 108 m/s)/(102.1 ´ 106 Hz) = 2.94 m.

	Because measurements are made far from the antennae, we can use the analysis for the double slit.

	For constructive interference, the path difference is a multiple of the wavelength:

		d sin q = ml,   m = 0, 1, 2, 3, … ;

		(7.0 m) sin q1max = (1)(2.94 m), which gives q1max = 25°;

		(7.0 m) sin q2max = (2)(2.94 m), which gives q2max = 57°;

		(7.0 m) sin q3max = (3)(2.94 m), which gives sin q3max > 1, so there is no third maximum.

	Because the interference pattern will be symmetrical above and below the midline and on either side of the antennae, the angles for maxima are      25°, 57°, 123°, 155° above and below the midline.

	For destructive interference, the path difference is an odd multiple of half a wavelength:

		d sin q = (m – !)l,   m = 1, 2, 3, … ;   or   

		(7.0 m) sin q1min = (1 – !)(2.94 m), which gives q1min = 12°;

		(7.0 m) sin q2min = (2 – !)(2.94 m), which gives q2min = 39°;

		(7.0 m) sin q3min = (3 – !)(2.94 m), which gives sin q3min > 1, so there is no third minimum.

	Because the interference pattern will be symmetrical above and below the midline and on either side of the antennae, the angles for minima are      12°, 39°, 141°, 168° above and below the midline.



39.	For constructive interference, the path difference is a multiple of the wavelength:

		d sin q = ml,   m = 0, 1, 2, 3, … .

	We find the location on the screen from

		y = L tan q.

	For small angles, we have

		sin q ˜ tan q, which gives   y = L(ml/d) = mLl/d.

	For the second-order fringes we have

		y1 = 2Ll1/d;   y2 = 2Ll2/d.

	When we subtract the two equations, we get

		?y = y1 – y2 = (2L/d)(l1 – l2);

		(1.13 mm)(1 ´ 10–3 m/mm) = [2(1.50 m)/(0.60 ´ 10–3 m)](690 nm – l2), which gives l2 =      464 nm.
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40.	We equate a path difference of one wavelength with a phase 

	difference of 2p.  With respect to the incident wave, the 

	wave that reflects at the top surface of the film has a 

	phase change of

		f1 = p.  

	If we assume that the film has an index less than glass, the 

	wave that reflects from the glass has a phase change due to 

	the additional path-length and a phase change on reflection:

		f2 = (2t/lfilm)2p + p.

	For destructive interference, the net phase change is

		f = (2t/lfilm)2p + p – p = (m – !)2p, m = 1, 2, …;   or   t = !lfilm(m – !) = !(l/n)(m – !), m = 1, 2, … .

	For the minimum thickness, m = 1, we have

		150 nm = ![(600 nm)/(n)](1 – !), which gives n = 1, so      no film with n < nglass is possible.

	If we assume that the film has an index greater than glass, the wave that reflects from the glass has a phase change due to the additional path-length and no phase change on reflection:

		f2 = (2t/lfilm)2p + 0.

	For destructive interference, the net phase change is

		f = (2t/lfilm)2p – p = (m – !)2p, m = 1, 2, …;   or   t = !lfilmm = !(ml/n), m = 1, 2, … .

	For the minimum thickness, m = 1, we have

		150 nm = !(1)(600 nm)/n, which gives n =       2.00.
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41.	With respect to the incident wave, the wave that reflects at 

	the top surface of the film has a phase change of

		f1 = p.  

	The wave that reflects from the bottom surface has a phase 

	change due to the additional path-length and no phase change 

	on reflection:

		f2 = (2t/lfilm)2p + 0.

	For destructive interference, the net phase change is

		f = (2t/lfilm)2p – p = (m – !)2p, m = 1, 2, …;   or   t = !lfilmm = !(ml/n), m = 1, 2, … .

	For the two wavelengths we have

		t = !(m1l1/n) = !(m2l2/n),   or   m1/m2 = l2/l1 = 680 nm/510 nm = 1.333 = 4/3.

	Thus m1 = 4, and m2 = 3.  For the thickness we have

		t = !(m1l1/n) = !(4)(510 nm)/1.58 =     646 nm.



42.	For destructive interference, the path difference is

		d sin q = (m – !)l,   m = 1, 2, 3, … ;   or   

		sin q = (m – !)(3.5 cm)/(6.0 cm) = (m – !)(0.583),   m = 1, 2, 3, … .

	The angles for the first three regions of complete destructive interference are

		sin q1 = (m – !)l/d = (1 – !)(0.583) = 0.29, q1 = 17°;

		sin q2 = (m – !)l/d = (2 – !)(0.583) = 0.87, q2 = 61°;

		sin q3 = (m – !)l/d = (3 – !)(0.583) = 1.46, therefore, no third region.

	We find the locations at the end of the tank from

		y = L tan q;

		y1 = (2.0 m) tan 17° = 0.61 m;

		y2 = (2.0 m) tan 61° = 3.6 m.

	Thus you could stand 

		0.61 m, or 3.6m away from the line perpendicular to the board midway between the openings.
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43.	With respect to the incident wave, the wave that reflects 

	from the top surface of the coating has a phase change of

		f1 = p.  

	With respect to the incident wave, the wave that reflects 

	from the glass (n ˜ 1.5) at the bottom surface of the coating 

	has a phase change due to the additional path-length and 

	a phase change of p on reflection:

		f2 = (2t/lfilm)2p + p.

	For destructive interference, this phase difference 

	must be an odd multiple of p, so we have

		f = (2t/lfilm)2p + p – p = (2m + 1)p,  m = 0, 1, 2, …;    or   t = #(2m + 1)lfilm ,   m = 0, 1, 2, … .

	Thus the minimum thickness is

		tmin = #l/n.

	(a)	For the blue light we get

			tmin = #(450 nm)/(1.38) =      81.5 nm.

	(b)	For the red light we get

			tmin = #(700 nm)/(1.38) =      127 nm.
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44.	If we consider the two rays shown in the diagram, we see 

	that the second ray has reflected twice.  If nfilm < nglass , the 

	first reflection from the glass produces a shift equivalent 

	to !lfilm , while the second reflection from the air produces 

	no shift.  When we compare the two rays at the film-glass 

	surface, we see that the second ray has a total shift of 

		d2 – d1 = 2t + !lfilm .

	For maxima, we have

		2t + !lfilm = mlfilm , m = 1, 2, 3, … ;   or       t = !(m – !)l/nfilm ,  m = 1, 2, 3, … (maxima, nfilm < nglass).

	For minima, we have

		2t + !lfilm = (m + !)lfilm , m = 0, 1, 2, 3, … ;   or       t = !ml/nfilm ,  m = 0, 1, 2, 3, … (minima, nfilm < nglass).

	We see that for a film of “zero” thickness, that is, t « lfilm , there will be a minimum.

	If nfilm > nglass , the first reflection from the glass produces no shift, while the second reflection from the air also produces no shift.  When we compare the two rays at the film-glass surface, we see that the second ray has a total shift of

		d2 – d1 = 2t.

	For maxima, we have

		2t = mlfilm , m = 0, 1, 2, 3, … ;   or       t = !ml/nfilm ,  m = 0, 1, 2, 3, … (maxima, nfilm > nglass).

	For minima, we have

		2t = (m – !)lfilm , m = 1, 2, 3, … ;   or       t = !(m – !)l/nfilm ,  m = 1, 2, 3, … (minima, nfilm > nglass).

	We see that for a film of “zero” thickness, that is, t « lfilm , there will be a maximum.

	Because there will be some decrease in the electric field amplitude at each reflection, the transmitted minima will not be zero and the transmitted maxima will be less than the incident light.



45.	The phase difference caused by the path back and forth through the coating must correspond to half a wavelength to produce destructive interference:

		2t = l/2, so t = l/4 = (2 cm)/4 =      0.5 cm.



�

46.	To maximize reflection, we want the three rays shown on the 

	diagram to be in phase.  We first compare rays 2 and 3.  We want 

	them to be in phase when leaving the boundary between n1 and n2 .  

	Ray 2 reflects from n2 > n1 , so there will be a phase shift of p.  

	Ray 3 will have a phase change due to the additional path-length 

	and no phase change on reflection from the next n1 layer:

		f3 = (2d2/l2)2p + 0.

	For constructive interference, the net phase change is

		f = (2d2/l2)2p – p = m2p, m = 0, 1, 2, … ;   or   d2 = !l2(m + !) = !(l/n2)(m + !), m = 0, 1, 2, … .

	Thus for the minimum thickness (m = 0), we get

		d2 = #(l/n2).

	We want rays 1 and 2 to be in phase when leaving the first surface.  Ray 1 reflects from n1 > 1 , so there will be a phase shift of p.  Ray 2 will have a phase change due to the additional path-length and a phase change on reflection from the n2 layer:

		f2 = (2d1/l1)2p + p.

	For constructive interference, the net phase change is

		f = (2d1/l1)2p + p – p = m2p, m = 1, 2, 3, … ;   or   d1 = !l1m, m = 1, 2, 3, … .

	Thus for the minimum thickness (m = 1), we get

		d1 = !(l/n1).
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47.	From the diagram we see that

		sin q 	= v/vp = c/nvp 

				= (3.00 ´ 108 m/s)/(1.52)(2.21 ´ 108 m/s) = 0.893, so       

		q = 63.3°.
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48.	With respect to the incident wave, the wave that reflects from 

	the air at the top surface of the air layer has a phase change of

		f1 = 0.  

	With respect to the incident wave, the wave that reflects from 

	the glass at the bottom surface of the air layer has a phase change 

	due to the additional path-length and a change on reflection:

		f2 = (2t/l)2p + p.

	For destructive interference, the net phase change is

		f = (2t/l)2p + p – 0 = (2m + 1)p,  m = 0, 1, 2, …;   or   t = !ml,   m = 0, 1, 2, … .

	The minimum non-zero thickness is

		tmin = !(640 nm)(1) =     320 nm.

	For constructive interference, the net phase change is

		f = (2t/l)2p + p – 0 = m2p, m = 1, 2, 3, …;   or   t = !l(m – !), m = 1, 2, 3, … .

	The minimum thickness is

		tmin = !(640 nm)(1 – !) =     160 nm.



49.	The reflected wave appears to be coming from the virtual image, so this corresponds to a double slit, with the separation being d = 2S.  The reflection from the mirror produces a p phase shift, however, so the maxima and minima are interchanged:

		sin qmax = (m + !)l/2S, m = 0, 1, 2, …;

		sin qmin = ml/2S, m = 0, 1, 2, … .
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50.	The phase difference from the path-length difference is

		f = (DL/l)2p = {[(l/2) sin q]/l}2p = p sin q.

	When the signals are 180° out of phase, there will be 

		an additional phase shift of p:  d = p(1 + sin q).

		The radiated intensity is

			I = I0 cos2 (d/2) = I0 cos2 [p(1 + sin q)/2].

		The intensity will be        maximum when sin q = ± 1,  q = 90°  and   270°.

		The intensity will be        minimum when sin q = 0,   q = 0°  and   180°.

	When the signals are in phase, the phase difference is from the path-length difference:

			d = p sin q.

		The radiated intensity is

			I = I0 cos2 (d/2) =        I0 cos2 [(p sin q)/2].

		The intensity will be         maximum when sin q = 0, q = 0°  and   180°.

		The intensity will be         minimum when sin q = ± 1, q = 90°  and   270°.

	The maxima and minima are interchanged by the 180° phase difference.



51.	When the mirror is moved a distance x, the path length changes by 2x.  Thus the additional phase shift is

		d = (2x/l)2p. 

	The ratio of the new intensity to the bright maximum is

		I/I0 = cos2 (d/2) = cos2 (2px/l).

Ch. 35   p. �	








