CHAPTER 36 – Diffraction and Polarization



1.	We find the angle to the first minimum from

		sin q1min = ml/a = (1)(680 ´ 10–9 m)/(0.0345 ´ 10–3 m) = 0.0197, so q1min = 1.13°.

	Thus the angular width of the central diffraction peak is

		?q1 = 2q1min = 2(1.13) =      2.26°.



2.	The angle from the central maximum to the first minimum is 18.5°.

	We find the wavelength from

		a sin q1min = ml;

		(3.00 ´ 10–6 m) sin (18.5°) = (1)l, which gives l = 9.52 ´ 10–7 m =      952 nm.



3.	For constructive interference from the single slit, the path difference is

		a sin q = (m + !)l,   m = 1, 2, 3, … .

	For the first fringe away from the central maximum, we have

		(3.50 ´ 10–6 m) sin q1 = (*)(550 ´ 10–9 m), which gives q1 = 13.7°.

	We find the distance on the screen from

		y1 = L tan q1 = (10.0 m) tan 13.7° =     2.4 m.



4.	The angle from the central maximum to the first bright fringe is 19°.

	For constructive interference from the single slit, the path difference is

		a sin q = (m + !)l,   m = 1, 2, 3, … .

	For the first fringe away from the central maximum, we have

		a sin (19°) = (*)(689 ´ 10–9 m), which gives a = 3.17 ´ 10–6 m =      3.2 mm.



5.	Because the angles are small, we have

		tan q1min = !(?y1)/L = sin q1min .

	The condition for the first minimum is

		a sin q1min = !a ?y1/L = l.

	If we form the ratio of the expressions for the two wavelengths, we get

		?y1b/?y1a = lb/la ;

		?y1b/(8.0 cm) = (400 nm)/(550 nm), which gives ?y1b =      5.8 cm.



6.	(a)	There will be no diffraction minima if the angle for the first minimum is greater than 90°.  

		Thus the limiting condition is

			a sin q1min = ml;

			amax sin 90° = (1)l,   or       amax = l.

	(b)	Visible light has wavelengths from 400 nm to 750 nm, so the maximum slit width for no diffraction 

		minimum for all of these wavelengths is the one for the smallest wavelength:      400 nm.



7.	We find the angle to the first minimum from

		sin q1min = ml/a = (1)(400 ´ 10–9 m)/(0.0655 ´ 10–3 m) = 6.11 ´ 10–3, so q1min = 0.350°.

	We find the distance on the screen from

		y1 = L tan q1 = (3.50 m) tan 0.350° = 2.14 ´ 10–2 m = 2.14 cm.

	Thus the width of the peak is

		?y1 = 2y1 = 2(2.14 cm) =      4.28 cm.
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8.	The path-length difference between the top and bottom of the slit for 

	the incident wave is  a sin qi.

	The path-length difference between the top and bottom of 

	the slit for the diffracted wave is  a sin q.

	When the net path-length difference is a multiple of a 

	wavelength, there will be an even number of segments of the 

	wave which will have a path-length difference of l/2; there 

	will be minima given by

		(a sin qi) – (a sin q) = ml,  m = ± 1, ± 2, … ,   or   

		sin q = sin 30° – (ml/a),  where m = ± 1, ± 2, … . 

	When q = 30°, the net path-length difference is zero, and there will be 

	constructive interference.        

	There is a “central maximum” at 30° to the normal.





9.	(a)	If we consider the slit made up of N wavelets of amplitude ?E0 , the total amplitude at the 

		central maximum, where they are all in phase, is N ?E0.  Doubling the size of the slit doubles the 

		number of wavelets and thus the total amplitude.  Because I ~ E02, the intensity at the central 

		maximum is increased by a factor of 4.

	(b)	The first minimum occurs at

			sin q = l/a,    or   q = l/a for small angles.

		Doubling a reduces the size of the central maximum by !.  Thus the average intensity over the 

		central maximum is 4(!) = 2, in agreement with the doubling of the incident intensity.  This will be 

		true for all fringes, so energy is conserved.



10.	(a)	The intensity pattern for a single slit is

			I = I0[(sin !b)/(!b)]2 = 4I0 (sin2 !b)/b2.

		The maxima for this function do not occur for the maxima of sin !b, which are !b = (m + !)p.

	(b)	We find the location of the maxima from dI/db = 0: 

			dI/db = 4I0{[(sin !b cos !b)/b2] – [(2 sin2 !b)/b 3]} = 0, which gives

			cos !b = 2 sin !b/b,    or    tan !b = !b.

		Note that the minima (0) are given by 

�

			sin !b = 0.

	(c)	A numerical solution of tan !b = !b 

		(remember that b is in rad) gives

			!bmax1 = 4.493 rad, 

			bmax1 = 8.986 rad = 514.86°;

			!bmax2 = 7.725 rad, 

			bmax2 = 15.450 rad = 885.22°.

		The minima of the pattern are given by

			sin q = ml/a,   m = ± 1, ± 2, … ;

		We find the values of b corresponding to 

		the midpoint between minima from

			b = (m + !)2p,  m = ± 1, ± 2, … . 

		The first two values are

			b1 = 3p = 9.425 rad = 540.00°;

			b2 = 5p = 15.707 rad = 900.00°.

		Thus the percent differences are

			% diff1 = (b1 – bmax1)/bmax1 = (9.425 rad – 8.986 rad)/8.986 rad =       4.88%.

			% diff2 = (b2 – bmax2)/bmax2 = (15.707 rad – 15.450 rad)/15.450 rad =       1.66%.
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11.	To find the angular width at half-maximum, we find the phase 

	at half-maximum:

		I = I0[(sin !bh)/!bh]2 = !I0 ,   or   bh2 = 8 sin2 !bh.

	This equation can be solved graphically or numerically to get bh = 2.783 rad.

	We find the corresponding angle from

		bh = (2pa/l) sin qh .

	Thus the angular width at half-maximum is

		?qh = 2qh = 2 sin–1 (lbh/2pa) = 2 sin–1 (0.443l/a).

	The angle will be small, so we have

		?qh ˜ 2(0.443l/a) = 0.886l/a.

	For the given data we have

		?qh = 0.886(550 ´ 10–9 m)/(2.60 ´ 10–6 m) = 0.187 rad =       10.7°. 

	

12.	If the central diffraction peak contains 15 fringes, there will be 7 on each side of the center.  Thus the eighth maximum of the double slit must coincide with the first minimum of the diffraction pattern.  The maxima of the double slit are given by

		sin q = ml/d,  m = 0, ± 1, ± 2, … .

	The minima of the single-slit pattern are given by

		sin q = msl/a,  ms = ± 1, ± 2, … .

	Thus we have

		8l/d = l/a,   or        d = 8a.



13.	If the central diffraction peak contains 7 fringes, there will be 3 on each side of the center.  Thus the fourth maximum of the double slit must coincide with the first minimum of the diffraction pattern.  The maxima of the double slit are given by

		sin q = ml/d,  m = 0, ± 1, ± 2, … .

	The minima of the single-slit pattern are given by

		sin q = msl/a,  ms = ± 1, ± 2, … .

	Thus we have

		4l/d = l/a,   or        d = 4a.



14.	The phase for the double-slit pattern is

		d = (2pd sin q)/l, 

	and the phase for the single-slit pattern is

		b = (2pa sin q)/l.

	Thus if a = d, d = b.   

	The intensity of the pattern is

		I = I0[(sin !b)/(!b)]2 cos2 !d = I0 [(sin !b cos !b)/!b]2 = I0 [(sin b)/b]2.

	This is the intensity for a single slit with a phase of

		b ¢ = 2b = 2(2pa sin q)/l = [2p(2a) sin q)]/l, which corresponds to a single slit with width 2a.



























15.	(a)	The maxima of the double slit are given by

			sin q = ml/d,  m = 0, ± 1, ± 2, … .

		The distance of a fringe on the screen from the center of the pattern is

			y = L tan q.

		If the angles are small, we have

			y ˜ L sin q = Llm/d.

		The separation of adjacent interference fringes will be

			?y = (Ll ?m)/d = (1.0 m)(550 ´ 10–9 m)(1)/(0.030 ´ 10–3 m) = 0.018 m =      1.8 cm.

	(b)	The minima of the single-slit pattern are given by

			sin q = msl/a,  ms = ± 1, ± 2, … .

		The distance of the first minimum on the screen from the center of the pattern is

			y = L tan q.

		If the angle is small, we have

			y ˜ L sin q = Ll/a = (1.0 m)(550 ´ 10–9 m)/0.010 ´ 10–3 m) = 0.055 m = 5.5 cm.

		Thus the distance between the first minima on either side of the center is 2y =       11.0 cm.



16.	The maxima of the double slit are given by

		sin q = ml/d,  m = 0, ± 1, ± 2, … .

	The minima of the single-slit pattern are given by

		sin q = msl/a,  ms = ± 1, ± 2, … .

	Thus at the angle for the first minimum of the single slit we have

		ml/d = l/a,   or   m = d/a.

	(a)	For d = 2.00a, we have

			m = d/a = 2.00.

		Thus the m = 2 interference fringe will be missing, so there will be       3 fringes,        including the 

		central fringe.

	(b)	For d = 12.0a, we have

			m = d/a = 12.0.

		Thus the m = 12 interference fringe will be missing, so there will be       23 fringes,        including the 

		central fringe.

	(c)	For d = 4.50a, we have

			m = d/a = 4.50.

		Thus the single-slit minimum coincides with the minimum of the interference beyond the m = 4 

		fringe, so there will be       9 fringes,        including the central fringe.

	(d)	For d = 7.20a, we have

			m = d/a = 7.20.

		Thus the m = 7 interference fringe will be incomplete, so there will be       almost 15 fringes,        

		including the central fringe.































17.	The phase for the double-slit pattern is d = (2pd sin q)/l, 

	and the phase for the single-slit pattern is b = (2pa sin q)/l.

	The phasor for each slit will be an arc with the curvature determined by b.  The relation between the phasors from the first slit and the second slit is determined by d.

	At the center we have 					At the first interference minimum we have

		d = b = 0:								d = p, b = pa/d:

		�

	At the next interference maximum we have	When sin q = l/a (the diffraction minimum), we have

		d = 2p, b = 2pa/d:						b = 2p, d = 2pd/a:

		�



18.	(a)	If a ˜ l, the central maximum of the diffraction pattern will be very wide.  Thus we need 

		consider only the interference between slits.  

�

		We construct a phasor diagram for the interference, 

		with d = 2pd sin q/l the phase difference between 

		adjacent slits.  The electric fields of the slits will 

		have the same magnitude:

			E10 = E20 = E30 = E0.

		From the symmetry of the phasor diagram we see that f = d, 

		where d = 2pd sin q/l is the phase difference between 

		adjacent slits.  Thus the amplitude of the resultant field is

			Eq 0 = E10 cos d + E20 + E30 cos d = E0(1 + 2 cos d).

		At the center where q = 0, d = 0, we have

			E00 = 3E0.

		The ratio of intensities is

			Iq/I0 = E02(1 + 2 cos d)2/(3E0)2 = (1 + 4 cos d + 4 cos2 d)/9,   or

			Iq = I0(1 + 4 cos d + 4 cos2 d)/9.

	(b)	We find the locations of the maxima and minima by setting the first derivative equal to zero:

			dIq/dd = I0(– 4 sin d – 8 sin d cos d) = – 4I0(1 + 2 cos d) sin d = 0.

		For sin d = 0 we get

			d = 0, p, 2p; so cos d = 1, – 1, 1; and Iq = I0 , I0/9, I0 ; which are maxima.

		For cos d = – 1/2 we get

			d = 2p/3, 4p/3; and Iq = 0, which are minima.

		Thus d = 0, 2p correspond to principal maxima; d = p corresponds to a secondary maximum.  

		Thus we see that there is only one secondary maximum between principal peaks.



19.	The minimum angular resolution is

		q = 1.22l/D = (1.22)(500 ´ 10–9 m)/(100 in)(0.0254 m/in) =      2.4 ´ 10–7 rad =  (1.4 ´ 10–5)° = 0.050².



20.	The resolution of the telescope is 

		q = 1.22l/D = (1.22)(550 ´ 10–9 m)/(0.90 m) = 7.46 ´ 10–7 rad.

	The separation of the stars is

		d = Lq = (10 ly)(9.46 ´ 1015 m/ly)(7.46 ´ 10–7 rad) =     7.1 ´ 1010 m.



21.	The minimum angular resolution is

		q = 1.22l/D.

	The distance between lines is the resolving power:

		RP = fq = 1.22lf/D= 1.22l(f-stop).

	For f/2 we have

		RP1 = (1.22)(500 ´ 10–9 m)(2) = 1.22 ´ 10–6 m = 1.22 ´ 10–3 mm, so the resolution is

		1/RP1 = 1/(1.22 ´ 10–3 mm) =      820 lines/mm.

	For f/16 we have

		RP2 = (1.22)(500 ´ 10–9 m)(16) = 9.76 ´ 10–6 m = 9.76 ´ 10–3 mm, so the resolution is

		1/RP2 = 1/(9.76 ´ 10–3 mm) =      102 lines/mm.



22.	The angular resolution of the eye, which is the required resolution using the telescope, is

		qeye = deye/Leye = (0.10 ´ 10–3 m)/(25 ´ 10–2 m) = 4.0 ´ 10–4 rad.

	The resolution without the telescope is 

		q = d/L = (7.0 km)/(3.84 ´ 105 km) = 1.82 ´ 10–5 rad.

	If we ignore the inversion of the image, the magnification is

		M = qeye/q = fo/fe ;

		(4.0 ´ 10–4 rad)/(1.82 ´ 10–5 rad) = (2.0 m)/fe , which gives fe = 0.091 m =       9.1 cm.

	The resolution limit is

		q = 1.22l/D  = (1.22)(500 ´ 10–9 m)/(0.110 m) =       5.55 ´ 10–6 rad.

	This is a distance of 2.1 km on the surface of the Moon.



23.	We find the angle for the third order from

		d sin q = ml;

		(1.35 ´ 10–5 m) sin q = (3)(440 ´ 10–9 m), which gives sin q = 9.78 ´ 10–2, so q =      5.61°. 



24.	We find the slit separation from

		d sin q = ml;

		d sin 13.0° = (3)(650 ´ 10–9 m), which gives d = 8.67 ´ 10–6 m = 8.67 ´ 10–4 cm. 

	The number of lines/cm is

		1/d = 1/(8.67 ´ 10–4 cm) =       1.15 ´ 103 lines/cm.



25.	Because the angle increases with wavelength, to have a complete order we use the largest visible wavelength.  The maximum angle is 90°, so we have

		d sin q = ml;

		[1/(6600 lines/cm)](10–2 m/cm) sin 90° = m(750 ´ 10–9 m), which gives m = 2.02.

	Thus only      two full orders      can be seen on each side of the central white line.



26.	We find the wavelength from

		d sin q = ml;

		[1/(3500 lines/cm)](10–2 m/cm) sin 22.0° = 3l, which gives l = 3.57 ´ 10–7 m =      357 nm.







27.	We find the wavelengths from

		d sin q = ml;

		[1/(10,000 lines/cm)](10–2 m/cm) sin 29.8° = (1)l1 , which gives l1 = 4.97 ´ 10–7 m =       497 nm;

		[1/(10,000 lines/cm)](10–2 m/cm) sin 37.7° = (1)l2 , which gives l2 = 6.12 ´ 10–7 m =       612 nm;

		[1/(10,000 lines/cm)](10–2 m/cm) sin 39.6° = (1)l3 , which gives l3 = 6.37 ´ 10–7 m =       637 nm;

		[1/(10,000 lines/cm)](10–2 m/cm) sin 48.9° = (1)l4 , which gives l4 = 7.54 ´ 10–7 m =       754 nm.



28.	We find the angles for the first order from

		d sin q = ml = l;

		[1/(7800 lines/cm)](10–2 m/cm) sin q400 = (400 ´ 10–9 m), which gives sin q400 = 0.312, so q400 = 18.2°;

		[1/(7800 lines/cm)](10–2 m/cm) sin q750 = (750 ´ 10–9 m), which gives sin q750 = 0.585, so q750 = 35.8°. 

	The distances from the central white line on the screen are

		y400 = L tan q400 = (2.80 m) tan 18.2° = 0.92 m;

		y750 = L tan q750 = (2.80 m) tan 35.8° = 2.02 m.

	Thus the width of the spectrum is

		y750 – y400 = 2.02 m – 0.92 m =       1.10 m.



29.	Because the angle increases with wavelength, we compare the maximum angle for the second order with the minimum angle for the third order:

		d sin q = ml,  or  sin q = ml/d;

		sin q2max = (2)(750 nm)/d;

		sin q3min = (3)(400 nm)/d.

	When we divide the two equations, we get

		sin q3min/sin q2max = (1200 nm)/(1500 nm) = 0.80.

	Because the value of the sine increases with angle, this means q3min < q2max , so the orders overlap.

	To determine the overlap, we find the second-order wavelength that coincides with q3min:

		(2)l2 = (3)(400 nm), which gives l2 = 600 nm.

	We find the third-order wavelength that coincides with q2max from

		(2)(750 nm) = (3)l3 , which gives l3 = 500 nm.

	Thus 600 nm to 750 nm of the second order overlaps with 400 nm to 500 nm of the third order.



30.	Because the angles on each side of the central line are not the same, the incident light is not normal to the grating.  We use the average angles:

		q1 = (26°38' + 26°18')/2 = 26°28' = 26.47°;

		q2 = (41°02' + 40°27')/2 = 40°45.5' = 40.76°.

	We find the wavelengths from

		d sin q = ml;

		[1/(9550 lines/cm)](10–2 m/cm) sin 26.47° = (1)l1 , which gives l1 = 4.67 ´ 10–7 m =      467 nm;

		[1/(9550 lines/cm)](10–2 m/cm) sin 40.76° = (1)l2 , which gives l2 = 6.84 ´ 10–7 m =      684 nm.



31.	We have the same average angles, but the path differences causing the interference must be measured in terms of the wavelengths in water.  Thus the wavelengths calculated in Problem 30 are those in water.  The wavelengths in air are

		l1air = l1nwater = (467 nm)(1.33) =       621 nm;

		l2air = l2nwater = (684 nm)(1.33) =       909 nm.

	Note that the second wavelength is not visible.











32.	We find the slit separation from

		d sin q = ml;

		d sin 15.5° = (1)(589 ´ 10–9 m), which gives d = 2.20 ´ 10–6 m =      2.20 mm. 

	We find the angle for the third order from

		d sin q = ml;

		(2.20 ´ 10–6 m) sin q3 = (3)(589 ´ 10–9 m), which gives sin q3 = 0.803,       q3 = 53.4°. 
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33.	The phase difference for waves through adjacent slits is due to the 

	path-length difference.  For a maximum, the path-length difference 

	is a multiple of the wavelength.  From the diagram, the additional 

	distance to the grating is d sin f for the incident wave and d sin q 

	for the diffracted wave.  For the maxima, we have

		d sin f – d sin q = ml,   m = 0, ± 1, ± 2, … .

	For diffracted rays at an angle q  on the other side of the normal 

	to the grating, we have

		d sin f + d sin q = ml,   m = 0, ± 1, ± 2, … .

	Thus we have

		d(sin f ± sin q) = ml,   m = 0, ± 1, ± 2, … .



34.	(a)	The interference maxima of the grating are given by

			sin q = m1l/d,  m1 = 0, ± 1, ± 2, … .

		The minima of the single-slit pattern are given by

			sin q = m2l/a,  m2 = ± 1, ± 2, … .

		If d = 2a, the angles for the maxima are given by 

			sin q = m1l/2a, = (m1/2)l/a,  m1 = 0, ± 1, ± 2, … .

		Thus whenever m1/2 = an integer, this will be at a minimum of the single-slit pattern and the 

		fringe will be missing:

			m1/2 = 1, 2, 3, … ;   or   m1 = 2, 4, 6, … .

	(b)	For a maximum of the interference pattern to coincide with a minimum of the diffraction pattern, 

		we must have

			sin q = m1l/d  = m2l/a,   or   d/a = m1/m2.	

	(c)	If d = a, the large number of lines of the grating means that there will be an effective opening much 

		larger than the wavelength.  Thus q ˜ 0; there will be negligible diffraction.  There will just be an 

		image of the slit.







































35.	(a)	The maximum angle is 90°, so we have

			d sin q = ml;

			(1200 nm) sin 90° = m(580 nm), which gives m = 2.07.

		Thus there are     two orders      on each side of the central maximum.

	(b)	The half width of an order is

			?qm = l/Nd cos qm.

		Because Nd = L, the width of the grating, the full width is

			2 ?qm = 2l/L cos qm.

		For the principal maxima, we have

			m = 0:

				q0 = 0;

				2 ?q0 = 2(580 ´ 10–9 m)/(1.80 ´ 10–2 m) cos 0° =      6.44 ´ 10–5 rad = 13.3².

			m = 1:

				sin q1 = (1)(580 nm)/1200 nm) = 0.483, q1 = 28.9°;

				2 ?q1 = 2(580 ´ 10–9 m)/(1.80 ´ 10–2 m) cos 28.9° =      7.36 ´ 10–5 rad = 15.2².

			m = 2:

				sin q2 = (2)(580 nm)/1200 nm) = 0.967, q2 = 75.2°;

				2 ?q2 = 2(580 ´ 10–9 m)/(1.80 ´ 10–2 m) cos 75.2° =      2.52 ´ 10–4 rad = 52.0².



36.	We find the number of orders from

		d sin q = ml;

		[1/(6500 lines/cm)](10–2 m/cm) sin 90° = m(624 ´ 10–9 m), which gives m = 2.5.

	Thus there are two orders.

	We find the resolving power from

		R = mN; 

		R1 = 1(6500 lines/cm)(3.61 cm) = 2.35 ´ 104;

		R2 = 2(6500 lines/cm)(3.61 cm) = 4.69 ´ 104.

	For the minimum-wavelength separation, we have

		Dl = l/R; 

		Dl1 = (624 nm)/(2.35 ´ 104) = 0.0266 nm; 

		Dl2 = (624 nm)/(4.69 ´ 104) = 0.0133 nm.

	Thus the limiting wavelength difference that can be resolved in any order is       Dl1 = 0.0266 nm.

	The higher order        m = 2      gives the better resolution.



37.	(a)	We find the resolving power from

			R = mN; 

			R1 = 1(16,000 lines) =       1.60 ´ 104;

			R2 = 2(16,000 lines) =       3.20 ´ 104.

	(b)	For the minimum-wavelength resolution, we have

			Dl = l/R; 

			Dl1 = (410 nm)/(1.60 ´ 104) =       0.026 nm; 

			Dl2 = (410 nm)/(3.20 ´ 104) =       0.013 nm.



38.	The interference maxima of the grating are given by

		sin q = ml/d,  m = 0, ± 1, ± 2, … ;   or    m = (d sin q)/l.

	The resolving power is 

		R = mN = (Nd sin q)/l.

	Thus if l and q are fixed, R µ Nd.







39.	The frequency is f = c/l.  If we approximate the changes as differentials, we have

		?f = – (c/l2) ?l.

	Disregarding the negative sign, we get

		?f = (c/l)(?l/l) = fR = f/mN.



40.	For the diffraction from the crystal, we have

		ml = 2d sin f; m = 1, 2, 3, … .

	For the first maximum, we get

		(1)(0.138 nm) = 2(0.265 nm) sin f, which gives f =     15.1°.



41.	(a)	For the diffraction from the crystal, we have

			ml = 2d sin f; m = 1, 2, 3, … .

		When we form the ratio for the two orders, we get

			m2/m1 = (sin f2)/(sin f1);

			2/1 = (sin f2)/(sin 26.2°), which gives f2 =      62.0°.

	(b)	We find the wavelength from

			m1l = 2d sin f1 ; 

			(1)l = 2(0.24 nm) sin 26.2°, which gives l =      0.21 nm.



42.	For the diffraction from the crystal, we have

		ml = 2d sin f; m = 1, 2, 3, … ;

		(1)l = 2d sin f1 ;

		(2)l = 2d sin f2 ;

		(3)l = 2d sin f3 .

	We see that each equation contains the ratio l/d, so the wavelength and lattice spacing 

		cannot be separately determined.



43.	If the initial intensity is I0 , through the two sheets we have

		I1 = !I0 ,

		I2 = I1 cos2 q = !I0 cos2 q, which gives

		I2/I0 = ! cos2 q = ! cos2 75° =       0.033.





44.	If I0 is the intensity passed by the first Polaroid, the intensity passed by the second will be I0 when the two axes are parallel.  To reduce the intensity by half, we have

		I = I0 cos2 q = !I0 , which gives q =      45°.





45.	Because the light is coming from air to glass, we find the angle from the vertical from

		tan qp = nglass = 1.56, which gives       qp = 57.3°. 



46.	Because the light is coming from water to diamond, we find the angle from the vertical from

		tan qp = ndiamond/nwater = 2.42/1.33 = 1.82, which gives       qp = 61.2°. 



47.	If the original intensity is I0 , the first Polaroid sheet will reduce the intensity of the original beam to 

		I1 = !I0 .  

	If the axis of the second Polaroid sheet is oriented at an angle q, the intensity is 

		I2 = I1 cos2 q = !I0 cos2 q.

	(a)	I2 = !I0 cos2 q = @I0 , which gives q =      35°.

	(b)	I2 = !I0 cos2 q = 0.10I0 , which gives q =      63°.





48.	For the refraction at the critical angle, with n2 the higher index, we have

		n1 sin q1 = n2 sin q2 ;

		n1 sin 90° = n2 sin 52°, which gives n2/n1 = 1.27.

	If the light is coming from lower index to higher index, we find the angle from

		tan qp = n2/n1 = 1.27, which gives       qp = 52°. 

	If the light is coming from higher index to lower index, we find the angle from

		tan qp¢ = n1/n2 = 1/1.27, which gives       qp¢ = 38°. 



49.	If the light is coming from water to air, we find Brewster’s angle from

		tan qp = nair/nwater = 1.00/1.33 = 0.752, which gives       qp = 36.9°. 

	For the refraction at the critical angle from water to air, we have

		nair sin q1 = nwater sin q2 ;

		(1.00) sin 90° = (1.33) sin qc , which gives      qc = 48.8°.

	If the light is coming from air to water, we find Brewster’s angle from

		tan qp¢ = nwater/nair = 1.33/1.00 = 1.33, which gives       qp¢ = 53.1°. 

	Thus qp + qp¢ = 90.0°.



50.	Through the successive sheets we have

		I1 = I0 cos2 q1 , 

		I2 = I1 cos2 q2 , which gives

		I2 = I0 cos2 q1 cos2 q2 = I0 (cos2 17.0°)(cos2 34.0°) = 0.629I0 .

	Thus the reduction is      37.1%.



51.	Through the successive polarizers we have

		I1 = !I0 ; 

		I2 = I1 cos2 q2 = !I0 cos2 q2 ;

		I3 = I2 cos2 q3 = !I0 cos2 q2  cos2 q3 ;

		I4 = I3 cos2 q4 = !I0 cos2 q2  cos2 q3 cos2 q4 ;

		I5 = I4 cos2 q5 = !I0 cos2 q2  cos2 q3 cos2 q4 cos2 q5 = !I0 (cos2 45)4 =       I0 /32.



52.	If we have N polarizers, we set the angle between adjacent polarizers as q, so that Nq = 90°.

	Through the successive polarizers, we have

		I1 = I0 cos2 q, 

		I2 = I1 cos2 q = I0 cos2 q cos2 q = I0 cos4 q;

		I3 = I2 cos2 q = I0 cos4 q cos2 q = I0 cos6 q; … .

	Thus for N polarizers, we have

		IN = I0 cos2N q = I0 cos2N (90°/N) = 0.90I0 .

	By using a numerical method, such as a spreadsheet, or trial and error, we find N = 24, q = 3.75°.

	Thus we use      24 polarizers, with each at an angle of 3.75° with the previous one.
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53.	From the definition of the percent polarization we have

		p = P/100 = (Imax – Imin)/(Imax + Imin), 

	which can be written 

		Imin = (1 – p)Imax/(1 + p).

	The components of the electric field amplitudes along the 

	polarization direction are

		Emax cos f,  and Emin sin f.

	Because the intensity is proportional to E2 and the intensities add, the intensity transmitted 

	by the polarizer is

		I	= Emax2 cos2 f + Emin2 sin2 f = Imax cos2 f + Imin sin2 f = Imax{cos2 f + [(1 – p)/(1 + p)] sin2 f} 

			= [(1 + p) cos2 f + (1 – p) sin2 f]Imax/(1 + p) = [ cos2 f + sin2 f + p(cos2 f – sin2 f)]Imax/(1 + p) 

			= [(1 + p cos 2f)/(1 + p)]Imax.



54.	We find the angle to the first minimum from the distances:

		tan q1min = !(9.20 cm)/(255 cm) = 0.0180 = sin q1min , because the angle is small.

	We find the slit width from

		a sin q1min = ml;

		a (0.0180) = (1)(415 ´ 10–9 m), which gives a = 2.30 ´ 10–5 m =      0.0230 mm.



55.	The wavelength of the sound is

		l = v/f = (343 m/s)/(750 Hz) = 0.457 m.

	We find the angles of the minima from

		a sin q = ml,   m = 1, 2, 3, … ;

		(0.88 m) sin q1 = (1)(0.457 m), which gives sin q1 = 0.520, so q1 = 31°;

		(0.88 m) sin q2 = (2)(0.457 m), which gives sin q2 = 1.04, so there is no q2 .

	Thus the whistle would not be heard clearly at angles of       31° on either side of the normal.



56.	The lines act like a grating.  Assuming the first order, we find the separation of the lines from

		d sin q = ml;

		d sin 50° = (1)(460 ´ 10–9 m), which gives d = 6.0 ´ 10–7 m =       600 nm. 



57.	Because the angle increases with wavelength, to miss a complete order we use the smallest visible wavelength.  The maximum angle is 90°.  We find the slit separation from

		d sin q = ml;

		d sin 90° = (2)(400 ´ 10–9 m), which gives d = 8.00 ´ 10–7 m = 8.00 ´ 10–5 cm. 

	The number of lines/cm is

		1/d = 1/(8.00 ´ 10–5 cm) =       12,500 lines/cm.





58.	We find the angles for the first order from

		d sin q = ml = l;

		[1/(7500 lines/cm)](10–2 m/cm) sin q1 = 4.4 ´ 10–7 m, which gives sin q1 = 0.330, so q1 = 19.3°;

		[1/(7500 lines/cm)](10–2 m/cm) sin q2 = 6.3 ´ 10–7 m, which gives sin q2 = 0.473, so q2 = 28.2°. 

	The distances from the central white line on the screen are

		y1 = L tan q1 = (2.5 m) tan 19.3° = 0.87 m;

		y2 = L tan q2 = (2.5 m) tan 28.2° = 1.34 m.

	Thus the separation of the lines is

		y2 – y1 = 1.34 m – 0.87 m =      0.47 m.
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59.	The path difference between the top and bottom of the slit for 

	the incident wave is

		a sin qi .

	The path difference between the top and bottom of the slit for 

	the diffracted wave is

		a sin q.

	When q = qi , the net path difference is zero, and there will be 

	constructive interference.       There is a central maximum at q = 20°.

	When the net path difference is a multiple of a wavelength, 

	there will be minima given by

		(a sin qi) – (a sin q) = ml,  m = ± 1, ± 2, … ,   or   

		sin q = sin 20°– (ml/a),  where m = ± 1, ± 2, … . 





60.	We find the angles for the first order from the distances:

		tan q1 = y1/L = (3.32 cm)/(60.0 cm) = 0.0553, so q1 = 3.17°;

		tan q2 = y2/L = (3.71 cm)/(60.0 cm) = 0.0618, so q2 = 3.54°.

	We find the separation of lines from

		d sin q1 = ml1 ;

		d sin 3.17° = (1)(589 ´ 10–9 m), which gives d = 1.066 ´ 10–5 m = 1.066 ´ 10–3 cm.

	For the second wavelength we have

		d sin q2 = ml2 ;

		(1.066 ´ 10–5 m) sin 3.54° = (1)l2 , which gives l2 = 6.58 ´ 10–7 m =      658 nm.

	The number of lines/cm is

		1/d = 1/(1.066 ´ 10–3 cm) =      938 lines/cm.



61.	The maximum angle is 90°, so we have

		d sin q = ml;

		[1/(6000 lines/cm)](10–2 m/cm) sin 90° = m(633 ´ 10–9 m), which gives m = 2.63.

	Thus      two orders      can be seen on each side of the central white line.



62.	Because the angle increases with wavelength, to have a full order we use the highest visible wavelength.  The maximum angle is 90°, so we find the minimum separation from

		d sin q = ml;

		dmin sin 90° = (2)(750 ´ 10–9 m), which gives dmin = 1.50 ´ 10–6 m = 1.50 ´ 10–4 cm. 

	The maximum number of lines/cm is

		1/dmin = 1/(1.50 ´ 10–4 cm) =      6.67 ´ 103 lines/cm.



63.	We find the angles for the first order from

		d sin q = ml = l;

		[1/(7600 lines/cm)](10–2 m/cm) sin qa = 656 ´ 10–9 m, which gives sin qa = 0.499, so qa = 29.9°;

		[1/(7600 lines/cm)](10–2 m/cm) sin qd = 410 ´ 10–9 m, which gives sin qd = 0.312, so qd = 18.2°. 

	Thus the angular separation is

		qa – qd = 29.9° – 18.2° =      11.7°.



64.	We find the wavelengths from

		d sin q = ml;

		[1/(9850 lines/cm)](10–2 m/cm) sin 31.2° = (1)l1 , which gives l1 = 5.26 ´ 10–7 m =      526 nm;

		[1/(9850 lines/cm)](10–2 m/cm) sin 36.4° = (1)l2 , which gives l2 = 6.02 ´ 10–7 m =      602 nm;

		[1/(9850 lines/cm)](10–2 m/cm) sin 47.5° = (1)l3 , which gives l3 = 7.49 ´ 10–7 m =      749 nm.





65.	(a)	The resolution of the eye is

			q = 1.22l/D = (1.22)(500 ´ 10–9 m)/(5.0 ´ 10–3 m) = 1.22 ´ 10–4 rad.

		We find the maximum distance from

			d = Lq ;

			2.0 m = L(1.22 ´ 10–4 rad), which gives L = 1.6 ´ 104 m =       16 km.

	(b)	The angular separation is the resolution:

			q = 1.22 ´ 10–4 rad = (6.99 ´ 10–3)° =     0.42'.

		Our answer is less than the real resolution, which includes the effects of aberrations.



66.	Because the light is coming from air to water, we find the angle from the vertical from

		tan qp = nwater = 1.33, which gives qp = 53.1°. 

	Thus the angle above the horizon is 90.0° – 53.1° =      36.9°.



67.	(a)	If the initial intensity is I0 , through the two sheets we have

			I1 = !I0 ;

			I2 = I1 cos2 q = !I0 cos2 90° =       0.

	(b)	With the third polarizer inserted, we have

			I1 = !I0 ;

			I2 = I1 cos2 q1 = !I0 cos2 60°;

			I3 = I2 cos2 q2 = !I0 cos2 60° cos2 30° =      0.094I0.

	(c)	If the third polarizer is placed in front of the other two, we have the same situation as in (a), with 

		I0 being less.  Thus      no light gets transmitted.



68.	(a)	Through the successive polarizers we have

			I1 = !I0 ; 

			I2 = I1 cos2 q2 = !I0 cos2 q2 ;

			I3 = I2 cos2 q3 = !I0 cos2 q2  cos2 q3 ;

			I4 = I3 cos2 q4 = !I0 cos2 q2  cos2 q3 cos2 q4 = !I0 cos2 30°  cos2 30°  cos2 30°  =      0.21I0 .

	(b)	If we remove the second polarizer, we get

			I1 = !I0 ; 

			I3 = I1 cos2 q3¢ = !I0  cos2 q3¢;

			I4 = I3 cos2 q4 = !I0 cos2 q3¢ cos2 q4 = !I0 cos2 60°  cos2 30°  = 0.094I0 .

		Thus we can decrease the intensity by removing either the      second or third polarizer.

	(c)	If we remove the      second and third polarizers,      we will have two polarizers with their axes 

		perpendicular, so no light will be transmitted.



69.	If the original intensity is I0 , the first Polaroid sheet will reduce the intensity of the original beam to 

		I1 = !I0 .  

	If the axis of the second Polaroid sheet is oriented at an angle q, the intensity is 

		I2 = I1 cos2 q.

	(a)	I2 = I1 cos2 q = 0.75I1 , which gives q =      30°.

	(b)	I2 = I1 cos2 q = 0.90I1 , which gives q =      18°.

	(c)	I2 = I1 cos2 q = 0.99I1 , which gives q =      5.7°.



70.	If the initial intensity is I0 , through the two sheets we have

		I1 = I0 cos2 q1 ;

		I2 = I1 cos2 q2 = I0 cos2 q1 cos2 q2 ;

		0.15I0 = I0  cos2 q1 cos2 40°, which gives q1 =      60°.





71.	We can write the electric field amplitude as

		E = E1i + E2j, so E2 = E12 + E22.

	Because the intensity is proportional to E2, we have

		I = I1 + I2, 

	so the intensities add, with no interference.



72.	For the minimum aperture the angle subtended at the lens by the smallest feature is the angular resolution:

		q = d/L = 1.22l/D ;

		(5 ´ 10–2 m)/(25 ´ 103 m) = (1.22)(550 ´ 10–9 m)/D, which gives D = 0.34 m =      34 cm.



73.	We find the spacing from

		ml = 2d sin f; m = 1, 2, 3, … .

		(2)(0.0973 nm) = 2d sin 23.4°, which gives d =     0.245 nm.



�

74.	We find the angles for the Bragg scattering from

		2d sin f = ml;

		2(0.25 nm) sin f1 = (1)(0.10 nm), which gives f1 = 11.5 °;

		2(0.25 nm) sin f2 = (2)(0.10 nm), which gives f2 = 23.6 °.

	The radii of the diffraction rings are

		R1 = L tan 2f1 = (10 cm) tan 2(11.5 °) =       4.2 cm;

		R2 = L tan 2f2 = (10 cm) tan 2(23.6 °) =       11 cm.





Ch. 36   p. �	








