CHAPTER 37 – Special Theory of Relativity



1.	(a)	[1 – (v/c)2]1/2 = {1 – [(20,000 m/s)/(3.00 ´ 108 m/s)]2}1/2 =      1.00.

	(b)	[1 – (v/c)2]1/2 = [1 – (0.0100)2]1/2 =      0.99995.

	(c)	[1 – (v/c)2]1/2 = [1 – (0.100)2]1/2 =      0.995.

	(d)	[1 – (v/c)2]1/2 = [1 – (0.900)2]1/2 =      0.436.

	(e)	[1 – (v/c)2]1/2 = [1 – (0.990)2]1/2 =      0.141.

	(f)	[1 – (v/c)2]1/2 = [1 – (0.999)2]1/2 =      0.0447.



2.	You measure the contracted length.  We find the rest length from

		L = L0[1 – (v/c)2]1/2;

		28.2 m = L0[1 – (0.750)2]1/2, which gives L0 =       42.6 m.



3.	We find the lifetime at rest from

		?t = ?t0/[1 – (v2/c2)]1/2;

		4.76 ´ 10–6 s = ?t0/{1 – [(2.70 ´ 108 m/s)/(3.00 ´ 108 m/s)]2}1/2, which gives ?t0 =      2.07 ´ 10–6 s.



4.	You measure the contracted length:

		L 	= L0[1 – (v/c)2]1/2  

			= (100 ly){1 – [(2.50 ´ 108 m/s)/(3.00 ´ 108 m/s)]2}1/2  =       55.3 ly.



5.	We determine the speed from the time dilation:

		?t = ?t0/[1 – (v2/c2)]1/2;

		4.10 ´ 10–8 s = (2.60 ´ 10–8 s)/[1 – (v/c)2]1/2, which gives v =      0.773c.



6.	We determine the speed from the length contraction:

		L = L0[1 – (v/c)2]1/2;

		25 ly = (75 ly)[1 – (v/c)2]1/2, which gives v =      0.94c.



7.	For a 1.00 per cent change, the factor in the expressions for time dilation and length contraction must equal 1 – 0.0100 = 0.9900:

		[1 – (v/c)2]1/2 = 0.9900, which gives v =      0.141c.



8.	In the Earth frame, the clock on the Enterprise will run slower.

	(a)	We find the elapsed time on the ship from

			?t = ?t0/[1 – (v2/c2)]1/2;

			5.0 yr = ?t0/[1 – (0.84)2]1/2, which gives ?t0 =      2.7 yr.

	(b)	We find the elapsed time on the Earth from

			?t 	= ?t0/[1 – (v2/c2)]1/2 

				= (5.0 yr)/[1 – (0.84)2]1/2 =      9.2 yr.



9.	(a)	To an observer on Earth, 95.0 ly is the rest length, so the time will be

			tEarth = L0/v =  (95.0 ly)/0.960c =      99.0 yr.

	(b)	We find the dilated time on the spacecraft from

			?t = ?t0/[1 – (v2/c2)]1/2; 

			99.0 yr = ?t0/[1 – (0.960)2]1/2, which gives ?t0 =      27.7 yr.

	(c)	To the spacecraft observer, the distance to the star is contracted:

			L = L0[1 – (v/c)2]1/2 = (95.0 ly)[1 – (0.960)2]1/2 =      26.6 ly.

	(d)	To the spacecraft observer, the speed of the spacecraft is

			v = L/?t = (26.6 ly)/27.7 yr =       0.960c,      as expected.





10.	(a)	You measure the contracted length.  We find the rest length from

			L = L0[1 – (v/c)2]1/2;

			4.80 m = L0[1 – (0.660)2]1/2, which gives L0 =       6.39 m.

		Distances perpendicular to the motion do not change, so the rest height is     1.25 m.

	(b)	We find the dilated time in the sports vehicle from

			?t = ?t0/[1 – (v2/c2)]1/2; 

			20.0 s = ?t0/[1 – (0.660)2]1/2, which gives ?t0 =      15.0 s.

	(c)	To your friend, you moved at the same relative speed:      0.660c.

	(d)	She would measure the same time dilation:      15.0 s.



11.	In the Earth frame, the average lifetime of the pion will be dilated:

		?t = ?t0/[1 – (v2/c2)]1/2.

	The speed as a fraction of the speed of light is

		v/c = d/c ?t = d[1 – (v2/c2)]1/2/c ?t0 ;

		v/c = (15 m)[1 – (v2/c2)]1/2/(3.00 ´ 108 m/s)(2.6 ´ 10–8 s), 

	which gives v =      0.89c = 2.7 ´ 108 m/s.



12.	With the standard orientation of the reference frames, the Galilean transformation is

		x = x¢ + vt, y = y¢, z = z¢.

	(a)	For the given data we have

			x = 25 m + (30 m/s)(2.5 s) = 100 m;  y = 20 m;  z = 0.

		Thus the coordinates of the person are      (100 m, 20 m, 0).

	(b)	For the given data we have

			x = 25 m + (30 m/s)(10.0 s) = 325 m;  y = 20 m;  z = 0.

		Thus the coordinates of the person are      (325 m, 20 m, 0).



13.	With the standard orientation of the reference frames, the Lorentz transformation is

		x¢ = g(x – vt), y = y¢, z = z¢;  

	with g = 1/[1 – (v/c)2]1/2 = 1/{1 – [(1.80 ´ 108 m/s)/(3.00 ´ 108 m/s)]2}1/2 = 1.25.

	(a)	For the given data we have

			25 m = (1.25)[x – (1.80 ´ 108 m/s)(2.5 ´ 10–6 s)], which gives x = 470 m;  y = 20 m;  z = 0.

		Thus the coordinates of the person are      (470 m, 20 m, 0).

	(b)	For the given data we have

			25 m = (1.25)[x – (1.80 ´ 108 m/s)(10.0 ´ 10–6 s)]. which gives x = 1820 m;  y = 20 m;  z = 0.

		Thus the coordinates of the person are      (1820 m, 20 m, 0).



14.	We choose the Earth for the S frame and the rocket for the S¢ frame.  The speed of the meteor in the S¢ frame is 0.50c.  We find the speed of the meteor in the Earth frame from the velocity transformation:

		u 	= (u¢ + v)/[1 + (vu¢/c2)]

			= (0.50c + 0.50c )/[1 + (0.50c )(0.50c)/c2] =      0.80c.



15.	(a)	We choose the Earth for the S frame and spaceship 2 for the S¢ frame, so v = – 0.50c.  The speed 

		of spaceship 1 in the S frame is 0.50c.  We find the speed of spaceship 1 in S¢ from the velocity 

		transformation:

			u¢ 	= (u – v)/[1 – (vu/c2)]

				= [0.50c – (– 0.50c )]/[1 – (– 0.50c )(0.50c)/c2] =      0.80c.

	(b)	We could redefine our reference frames, but we know that the velocity of spaceship 2 relative 

		to spaceship 1 must be     – 0.80c.











16.	We take the positive direction in the direction of the first spaceship. 

	(a)	In the reference frame of the Earth, the first spaceship is moving at + 0.71c, and the second 

		spaceship is moving at + 0.87c relative to the first.  Thus the speed of the second spaceship 

		relative to the Earth is

			u = (u¢ + v)/(1 + vu¢/c2) = (+ 0.87c + 0.71c)/[1 + (0.71)(0.87)] =      0.98c.

	(b)	In the reference frame of the Earth, the first spaceship is moving at + 0.71c, and the second 

		spaceship is moving at – 0.87c relative to the first.  Thus the speed of the second spaceship 

		relative to the Earth is

			u = (u¢ + v)/(1 + vu¢/c2) = (– 0.87c + 0.71c)/[1 + (0.71)(– 0.87)] =      – 0.42c.



17.	With the standard orientation of the reference frames, the Galilean velocity transformation is

		ux = ux¢ + v,  uy = uy¢, uz = uz¢.

	For the given data we have

		ux = 25.0 m/s + 30 m/s = 55 m/s;  uy = 25.0 m/s;  uz = 0.

	The magnitude of the velocity is

		u = (ux2 + uy2)1/2 = [(55 m/s)2 + ( 25.0 m/s)2]1/2 =       60 m/s.

	We find the angle the velocity makes with the x-axis from

		tan q = uy/ux = (25 m/s)/(55 m/s) = 0.455, so q =       24°.



18.	With the standard orientation of the reference frames, the Lorentz velocity transformation is

		ux = (ux¢ + v)/[1 + (ux¢v/c2)],  uy = uy¢[1 – (v/c)2]1/2/[1 + (ux¢v/c2)],  uz = uz¢[1 – (v/c)2]1/2/[1 + (ux¢v/c2)].

	For the given data we have

		ux 	= (2.0 ´ 108 m/s + 1.80 ´ 108 m/s)/[1 + (2.0 ´ 108 m/s)(1.80 ´ 108 m/s)/(3.00 ´ 108 m/s)2] 

			= 2.71 ´ 108 m/s;

		uy 	= (2.0 ´ 108 m/s){1 – [(1.80 ´ 108 m/s)/(3.00 ´ 108 m/s)]2}1/2/

						[1 + (2.0 ´ 108 m/s)(1.80 ´ 108 m/s)/(3.00 ´ 108 m/s)2] = 1.14 ´ 108 m/s;

		uz 	= 0.

	The magnitude of the velocity is

		u = (ux2 + uy2)1/2 = [(2.71 ´ 108 m/s)2 + (1.14 ´ 108 m/s)2]1/2 =       2.9 ´ 108 m/s.

	We find the angle the velocity makes with the x-axis from

		tan q = uy/ux = (1.14 ´ 108 m/s)/(2.71 ´ 108 m/s) = 0.421, so q =       23°.  



19.	We choose the Earth for the S frame and the spaceship for the S¢ frame.  The velocity components of the module in the S¢ frame are ux¢ = 0, uy¢ = 0.82c.  We find the velocity components of the module in the Earth frame from the velocity transformation:

		ux = (ux¢ + v)/[1 + (ux¢v/c2)] = (0 + 0.66c)/(1 + 0) = 0.66c;

		uy = uy¢[1 – (v/c)2]1/2/[1 + (ux¢v/c2)] = (0.82c)[1 – (0.66)2]1/2/(1 + 0) = 0.616c.

	The magnitude of the velocity is

		u = (ux2 + uy2)1/2 = [(0.66c)2 + ( 0.616c)2]1/2 = 0.90c =       2.7 ´ 108 m/s.

	We find the angle the velocity makes with the x-axis from

		tan q = uy/ux = (0.616c)/(0.66c) = 0.933, so q =       43°.  



20.	The velocity components of the particle in the S frame are ux = u cos q, uy = u sin q.  We find the velocity components of the particle in the S¢ frame from the velocity transformation:

		ux¢ = (ux – v)/[1 – (uxv/c2)];

		uy¢ = uy[1 – (v/c)2]1/2/[1 – (uxv/c2)].

	We find the angle the velocity makes with the x¢-axis from

		tan q ¢ 	= uy¢/ux¢ = uy[1 – (v/c)2]1/2/(ux – v) 

				= (u sin q)[1 – (v/c)2]1/2/(u cos q – v) = (sin q)[1 – (v/c)2]1/2/(cos q – v/u).  





21.	(a)	In the frame S¢, the x-component of the stick will be contracted:

			Lx = (L0 cos q)[1 – (v/c)2]1/2.

		The y-component is unchanged:

			Ly = L0 sin q.

		The magnitude of the length in S¢ is

			L 	= (Lx2 + Ly2)1/2 = {(L0 cos q)2[1 – (v/c)2] + (L0 sin q)2}1/2 

				= L0{(cos2 q)[1 – (v/c)2] + sin2 q}1/2 =       L0[1 – (v/c)2 cos2 q]1/2.

	(b)	We find the angle that the stick makes with the x¢-axis from

			tan q ¢ = Ly/Lx = (L0 sin q)/(L0 cos q)[1 – (v/c)2]1/2 = tan q/[1 – (v/c)2]1/2.

		Thus we have

			q ¢ = tan–1{tan q/[1 – (v/c)2]1/2}.



22.	(a)	We choose the train as frame S¢ and the Earth as frame S.  Thus for the two firings we have

			?x = xB – xA = 50 m,   and   ?t¢ = tB¢ – tA¢ = 0.

		We find the separation of the two firings in the S¢ frame from

			?x = g(?x¢ + v ?t¢) = g(?x¢ + 0),   or   ?x¢ = ?x/g, which is the contraction of the length.

		We find the time interval between firings in the S frame from

			?t = g(?t¢ + v ?x¢/c2) = g(0 + v ?x¢/c2) = gv ?x¢/c2 = v ?x/c2.

		Because ?x > 0, we see that ?t > 0, so B fires after A in the S frame;      A fires first.

 	(b)	The time difference between firings in the Earth frame is

			?t 	= v ?x/c2 

				= (50 m/s)(50 m)/(3.00 ´ 108 m/s)2 =      2.8 ´ 10–14 s.

	(c)	If u is the speed of a bullet in the Earth frame and T represents the time at which a gunfighter is 

		struck, we have

			TA = (?x/u) + tB ,   and   TB = (?x/u) + tA ,    or

			TB – TA = tA – tB = – ?t.

		Thus we see that 

			?T < 0,   or       B is struck first       in the Earth frame, as expected, because A fired first.

		In frame S¢ we have

			?T¢ = g(?T – v ?x/c2) = g(– ?t – v ?x/c2).

		Because ?t > 0, and ?x > 0, we see that ?T¢ < 0, so B is hit first in the S¢ frame also.



23.	To an observer in the barn reference frame, if the boy runs fast enough, the measured contracted length of the pole will be less than 13.0 m, so the observer can say that the two ends of the pole were inside the barn simultaneously.  We find the necessary speed for the contracted pole to fit inside the barn from

		Lpole = L0pole[1 – (v/c)2]1/2;

		10.0 m = (13.0 m)[1 – (v/c)2]1/2, which gives v = 0.64c.

	To the boy, the barn is moving and thus the length of the barn, as he would measure it, is less than the length of the pole:

		Lbarn = L0barn[1 – (v/c)2]1/2 = (10.0 m)[1 – (0.64)2]1/2 = 7.7 m.

	However, simultaneity is relative.  Thus when the two ends are simultaneously inside the barn to the barn observer, those two events are not simultaneous to the boy.  Thus he would claim that the observer in the barn determined that the ends of the pole were inside the barn at different times, which is also what the boy would say.  It is      not possible in the boy’s frame       to have both ends of the pole inside the barn simultaneously.



24.	The momentum of the proton is

		p = mv/[1 – (v2/c2)]1/2 = (1.67 ´ 10–27 kg)(0.85)(3.00 ´ 108 m/s)/[1 – (0.85)2]1/2 =      8.1 ´ 10–19 kg · m/s.



25.	We find the speed from

		mrel = m/[1 – (v2/c2)]1/2;

		2m = m/[1 – (v2/c2)]1/2, which gives v =      0.866c.



26.	For the momentum to be doubled we have

		p2 = 2p1 ;

		mv2/[1 – (v22/c2)]1/2 = 2mv1/[1 – (v12/c2)]1/2;   or  

		(v2/c)2/[1 – (v2/c)2] = 4(v1/c)2/[1 – (v1/c)2] = 4(0.20)2/[1 – (0.20)2], which gives       v2 = 0.38c.



27.	The two expressions for the momentum are

		prel = mv/[1 – (v2/c2)]1/2,  and pc = mv.

	Thus the error is

		(prel – pc)/prel = ({mv/[1 – (v2/c2)]1/2} – mv)/{mv/[1 – (v2/c2)]1/2} = 1 – [1 – (v2/c2)]1/2.

	(a)	For the given speed we have

			(prel – pc)/prel = 1 – [1 – (v2/c2)]1/2 = 1 – [1 – (0.10)2]1/2 = 0.005 =      0.5%.

	(b)	For the given speed we have

			(prel – pc)/prel = 1 – [1 – (v2/c2)]1/2 = 1 – [1 – (0.50)2]1/2 = 0.13 =      13%.



28.	The fractional change in momentum is

		(p2 – p1)/p1	= ({mv2/[1 – (v22/c2)]1/2} – {mv1/[1 – (v12/c2)]1/2})/{mv1/[1 – (v12/c2)]1/2} 

					= {v2[1 – (v12/c2)]1/2/v1[1 – (v22/c2)]1/2} – 1.

	(a)	For the given speeds we have

			(p2 – p1)/p1	= {0.90c[1 – (0.45)2]1/2/0.45c[1 – (0.90)2]1/2} – 1 = 3.1 =      310%.

		Note that this is about 3´ what use of the classical expression would give.	

	(b)	For the given speeds we have

			(p2 – p1)/p1	= {0.98c[1 – (0.90)2]1/2/0.90c[1 – (0.98)2]1/2} – 1 = 1.4 =      140%.

		Note that this is about 15´ what use of the classical expression would give.	



29.	We find the increase in mass from

		?m = ?E/c2 = (4.82 ´ 104 J)/(3.00 ´ 108 m/s)2 =      5.36 ´ 10–13 kg.

	Note that this is so small, most chemical reactions are considered to have mass conserved.



30.	We find the loss in mass from

		?m = ?E/c2 = (200 MeV)(1.60 ´ 10–13 J/MeV)/(3.00 ´ 108 m/s)2 =      3.56 ´ 10–28 kg.



31.	The rest energy of the electron is

		E 	= mc2 = (9.109 ´ 10–31 kg)(2.998 ´ 108 m/s)2 =      8.19 ´ 10–14 J

			= (8.187 ´ 10–14 J)/(1.602 ´ 10–13 J/MeV) =      0.511 MeV.



32.	The mass of the proton is

		m = E/c2 = mc2/c2 = (1.67 ´ 10–27 kg)(3.00 ´ 108 m/s)2/(1.60 ´ 10–13 J/MeV)c2 =      939 MeV/c2.



33.	We find the necessary mass conversion from

		?m = ?E/c2 = (8 ´ 1019 J)/(3.00 ´ 108 m/s)2 =      9 ´ 102 kg.



34.	We find the energy equivalent of the mass from

		E = mc2 = (1.0 ´ 10–3 kg)(3.00 ´ 108 m/s)2 =      9.0 ´ 1013 J.

	If this energy increases the gravitational energy, we have

		E = Mgh;

		9.0 ´ 1013 J = M(9.80 m/s2)(100 m), which gives M =     9.2 ´ 1010 kg.

	

35.	If the kinetic energy is equal to the rest energy, we have

		K = {mc2/[1 – (v2/c2)]1/2} – mc2 = mc2,  or  

		1/[1 – (v2/c2)]1/2 = 2, which gives v = 0.866c.



36.	If the kinetic energy is 25% of the rest energy, we have

		K = {mc2/[1 – (v2/c2)]1/2} – mc2 = 0.25mc2,  or  

		1/[1 – (v2/c2)]1/2 = 1.25, which gives v =      0.60c.



37.	(a)	We find the work required from 

			W 	= DK = mc2({1/[1 – (v/c)2]1/2} – 1) 

				= (939 MeV)({1/[1 – (0.997)2]1/2} – 1) = 11.2 ´ 103 MeV =      11.2 GeV (1.79 ´ 10–9 J).

	(b)	The momentum of the proton is

			p 	= mv/[1 – (v/c)2]1/2 

				= (1.67 ´ 10–27 kg)(0.997)(3.00 ´ 108 m/s)/[1 – (0.997)2]1/2 =      6.45 ´ 10–18 kg · m/s.



38.	The speed of the proton is

		v = (2.60 ´ 108 m/s)/(3.00 ´ 108 m/s) = 0.867c.

	The kinetic energy is 

		K	= mc2({1/[1 – (v/c)2]1/2} – 1) 

			= (939 MeV)({1/[1 – (0.867)2]1/2} – 1) =      943 MeV (1.51 ´ 10–10 J).

	The momentum of the proton is

		p 	= mv{1/[1 – (v/c)2]1/2} 

			= (1.67 ´ 10–27 kg)(2.60 ´ 108 m/s){1/[1 – (0.867)2]1/2} =      8.70 ´ 10–19 kg · m/s.



39.	The total energy of the proton is

		E = K + mc2 = 750 MeV + 939 MeV = 1689 MeV.

	The relation between the momentum and energy is

		( pc)2 = E2 – (mc2)2;

		p2(3.00 ´ 108 m/s)2 = [(1689 MeV)2 – (939 MeV)2](1.60 ´ 10–13 J/MeV)2, 

	which gives p =      7.49 ´ 10–19 kg · m/s.



40.	The kinetic energy acquired by the proton is

		K = qV = (1 e)(95 MV) = 95 MeV.

	We find the speed from

		K = mc2({1/[1 – (v/c)2]1/2} – 1);

		95 MeV = (939 MeV)({1/[1 – (v/c)2]1/2} – 1), which gives v =      0.42c.



41.	We find the speed from

		K = mc2({1/[1 – (v/c)2]1/2} – 1);

		1.00 MeV = (0.511 MeV)({1/[1 – (v2/c2)]1/2} – 1), which gives v =      0.941c.



42.	The kinetic energy acquired by the electron is

		K = qV = (1 e)(0.025 MV) = 0.025 MeV.

	We find the speed from

		K = mc2({1/[1 – (v/c)2]1/2} – 1);

		0.025 MeV = (0.511 MeV)({1/[1 – (v2/c2)]1/2} – 1),  which gives v =      0.302c.













43.	If M is the mass of the new particle, for conservation of energy we have

		2(K + mc2) = Mc2;

		2mc2/[1 – (v2/c2)]1/2 = Mc2, which gives M =       2m/[1 – (v2/c2)]1/2.

	Because energy is conserved, there was      no loss.

	The final particle is at rest, so the kinetic energy loss is the initial kinetic energy of the two colliding particles:

		Kloss = 2K = (M – 2m)c2 =      2mc2({1/[1 – (v2/c2)]1/2} – 1).



44.	The total energy of the proton is

		E = K + mc2;

		2K = K + mc2, which gives K = mc2.

	We find the speed from

		K = {mc2/[1 – (v2/c2)]1/2} – mc2 = mc2,  or  

		1/[1 – (v2/c2)]1/2 = 2, which gives v =       0.866c.



45.	We find the speed from

		K = {mc2/[1 – (v2/c2)]1/2} – mc2 = mc2,  or  

		1/[1 – (v2/c2)]1/2 = 2, which gives v =       0.866c.

	The momentum of the electron is

		p 	= mv/[1 – (v /c)2]1/2 

			= (9.11 ´ 10–31 kg)(0.866)(3.00 ´ 108 m/s)(2) =      4.73 ´ 10–22 kg · m/s.



46.	(a)	The kinetic energy is 

			K 	= mc2({1/[1 – (v/c)2]1/2} – 1) 

				= (27,000 kg)(3.00 ´ 108 m/s)2({1/[1 – (0.21)2]1/2} – 1) = 5.54 ´ 1019 J =      5.5 ´ 1019 J.

	(b)	When we use the classical expression, we get

			Kc = !mv2 = !(27,000 kg)[(0.21)(3.00 ´ 108 m/s)]2 = 5.35 ´ 1019 J.

		The error is

			(5.35 – 5.54)/(5.54) = – 0.03 =      – 3%.



47.	The speed of the proton is

		v = (8.4 ´ 107 m/s)/(3.00 ´ 108 m/s) = 0.280c.

	The kinetic energy is 

		K 	= mc2({1/[1 – (v/c)2]1/2} – 1) 

			= (939 MeV)({1/[1 – (0.280)2]1/2} – 1) =      39 MeV (6.3 ´ 10–12 J).

	The momentum of the proton is

		p 	= mv/[1 – (v/c)2]1/2 

			= (1.67 ´ 10–27 kg)(8.4 ´ 107 m/s){1/[1 – (0.280)2]1/2} = 1.46 ´ 10–19 kg · m/s =    1.5 ´ 10–19 kg · m/s.

	From the classical expressions, we get

		Kc = !mv2 = !(1.67 ´ 10–27 kg)(8.4 ´ 107 m/s)2 = 5.9 ´ 10–12 J, with an error of

		(5.9 – 6.3)/(6.3) = – 0.06 =       – 6%.

		p = mv = (1.67 ´ 10–27 kg)(8.4 ´ 107 m/s) = 1.40 ´ 10–19 kg · m/s, with an error of

		(1.40 – 1.46)/(1.46) = – 0.04 =       – 4%.



48.	If we ignore the recoil of the neptunium nucleus, the increase in kinetic energy is the kinetic energy of the alpha particle, which equals the loss in mass:

		Ka = [mAm – (mNp + ma)]c2;

		5.5 MeV = [241.05682 u – (mNp + 4.00260 u)]c2(931.5 MeV/uc2), which gives mNp =     237.04832 u.







49.	The increase in kinetic energy comes from the decrease in potential energy:

		K = – ?U = mc2({1/[1 – (v/c)2]1/2} – 1);

		– (– 5.60 ´ 10–14 J) =  (9.11 ´ 10–31 kg)(3.00 ´ 108 m/s)2({1/[1 – (v/c)2]1/2} – 1), 

	which gives v  =      0.804c.



50.	(a)		K = [p2c2 + (mc2)2]1/2 – mc2 		  	 (b)		K = pc.

		�





51.	The total energy of the proton is

		E = mrelc2 = K + mc2 = 900 GeV + 0.938 GeV = 901 GeV, so the relativistic mass is 901 GeV/c2.

	We find the speed from

		mrel = m/[1 – (v2/c2)]1/2;

		901 GeV/c2 = (0.938 GeV/c2)/[1 – (v2/c2)]1/2, which gives [1 – (v2/c2)]1/2 = 1.04 ´ 10–3, so v ˜ 1.00c.

	The speed is constant so the relativistic mass is constant.  The magnetic force provides the radial acceleration:

		qvB = mrelv2/r,   or   

		B 	= mrelv/qr = mv/qr[1 – (v2/c2)]1/2

			= (1.67 ´ 10–27 kg)(3.00 ´ 108 m/s)/(1.6 ´ 10–19 C)(1.0 ´ 103 m)(1.04 ´ 10–3) =      3.0 T.



52.	Because the total energy of the muons becomes electromagnetic energy, we have

		E 	= K1 + m1c2 + K2 + m2c2 = mc2/[1 – (v12/c2)]1/2 + mc2/[1 – (v22/c2)]1/2 

			= (105.7 MeV)/[1 – (0.33)2]1/2 + (105.7 MeV)/[1 – (0.50)2]1/2 =      234 MeV.



53.	The magnetic force provides the radial acceleration:

		qvB = mrelv2/r,   or   

		mrel = qBr/v = E/c2.

	With v ˜ c, and q = 1 e, we get

		E (eV) = (1)Brc2/c = Brc.

	Note that the relativistic mass is constant during the revolution.



54.	The total energy is

		E = K + mc2

	and is related to the momentum by

		E2 = p2c2 + m2c4 = (K + mc2)2 = K2 + 2Kmc2 + m2c4,

	which gives

		p2c2 = K2 + 2Kmc2,   or   p = (K2 + 2Kmc2)1/2/c.















55.	(a)	We let m be the mass of the particle.  Its velocity has an x-component only, ux , so its momentum 

		components in frame S are

			px = mux/[1 – (ux2/c2)]1/2, py = 0, pz = 0.

		The energy of the particle in frame S is

			E = K + mc2 = mc2/[1 – (ux2/c2)]1/2.

		The velocity in frame S¢ is

			u¢x = (ux – v)/[1 – (uxv/c2)], u¢y = 0, u¢z = 0;

		so the particle’s momentum is

			p¢x = mu¢x/[1 – (u¢x2/c2)]1/2, p¢y = 0 = py , p¢z = 0 = pz .

		If we consider the denominator, we have

			�

		When we use this and the velocity transformation in the expression for the momentum, we have

			�

		For the transformation of the energy we have

			�

	(b)	To simplify the expressions, we use g = 1/[1 – (v2/c2)]1/2.  The transformations are

			x¢ = g [x – (v/c)ct],  y¢ = y,  z¢ = z, ct¢ = g [ct – (vx/c)];

			p¢x = g [px – (v/c)E/c],  p¢y = py ,  p¢z = pz ,  E¢/c = g [(E/c) – (vpx/c)].

		Thus we see that px , py , pz , E/c transform in the same way as x, y, z, ct.



56.	For a source moving away from us the Doppler shift is

		f = f0[(c – v)/(c + v)]1/2.

	Thus we have

		(f0 – f)/f0 = 1 – [(c – v)/(c + v)]1/2;

		0.797 = 1 – {[1 – (v/c)]/[1 + (v/c)]}1/2, which gives v =      0.921c.



57.	From c = fl, we see that f = f0/3.0, so the quasar is moving away from us.

	(a)	For the Doppler shift we have

			f = f0[(c – v)/(c + v)]1/2;

			f0/3.0 = f0{[1 – (v/c)]/[1 + (v/c)]}1/2, which gives v =      0.80c.

	(b)	For the “classical” Doppler shift, the wavelength from the quasar is

			l = (v + c)/f0 , 

		and the received frequency is

			f = c/l = f0c/(v + c);

			f0/3.0 = f0/[1 + (v/c)], which gives v =      2.0c.



58.	For a source moving toward the Earth the Doppler shift is

		f 	= f0[(c + v)/(c – v)]1/2 = f0{[1 + (v/c)]/[1 – (v/c)]}1/2 

			= (95.0 MHz)[(1 + 0.80)/(1 – 0.80]1/2 =       285 MHz.

59.	For a source moving away from us the Doppler shift is

		l = l0{[1 + (v/c)]/[1 – (v/c)]}1/2.

	If v « c, we can use the approximation 1/(1 – x) ˜ 1 + x:

		l ˜ l0{[1 + (v/c)]2}1/2 = l0[1 + (v/c)].

	Thus the fractional change is

		?l/l0 = (l – l0)/l0 = 1 + (v/c) – 1 = v/c.



60.	The electrostatic force provides the radial acceleration:

		ke2/r2 = mv2/r.

	Thus we find the speed from

		v2 = (9.0 ´ 109 N · m2/C2)(1.6 ´ 10–19 C)2/(9.11 ´ 10–31 kg)(0.5 ´ 10–10 m), 

	which gives v = 2 ´ 106 m/s.

	Because this is less than 0.1c, the electron is       not relativistic.



61.	Because the North Pole has no tangential velocity, the clock there will measure a year (3.16 ´ 107 s). 

	The clock at the equator has the tangential velocity of the equator:

		v = rEw = (6.38 ´ 106 m)(2p rad)/(24 h)(3600 s/h) = 464 m/s.

	The clock at the equator will run slow:

		tequator = tNorth[1 – (v2/c2)]1/2 ˜ tNorth[1 – !(v/c)2].

	Thus the difference in times is

		tNorth – tequator = tNorth!(v/c)2 = (3.16 ´ 107 s)![(464 m/s)/(3.00 ´ 108 m/s)]2 =      3.8 ´ 10–5 s.



62.	(a)	To travelers on the spacecraft, the distance to the star is contracted:

			L = L0[1 – (v/c)2]1/2 = (4.3 ly)[1 – (v/c)2]1/2.

		Because the star is moving toward the spacecraft, to cover this distance in 4.0 yr, the speed of the 

		star must be

			v = L/t = (4.3 ly/4.0 yr)[1 – (v/c)2]1/2 = (1.075c)[1 – (v/c)2]1/2, which gives v = 0.73c.

		Thus relative to the Earth-star system, the speed of the spacecraft is     0.73c.

	(b)	According to observers on Earth, clocks on the spacecraft run slow:

			tEarth = t/[1 – (v2/c2)]1/2 = (4.0 yr)/[1 – (0.73)2]1/2 =      5.9 yr.

		Note that this agrees with the time found from distance and speed:

			tEarth = L0/v = (4.3 ly)/(0.73c) = 5.9 yr. 





63.	The dependence of the relativistic mass on the speed is

		mrel = m/[1 – (v2/c2)]1/2.

	If we consider a box with sides x0 , y0 , and z0 , dimensions perpendicular to the motion, which we take to be the x-axis, do not change, but the length in the direction of motion will contract:

		x = x0[1 – (v/c)2]1/2.

	Thus the density is

		r = mrel/xyz = m/[1 – (v2/c2)]1/2x0[1 – (v2/c2)]1/2y0z0 =      r0/[1 – (v2/c2)].





64.	We convert the speed: (1500 km/h)/(3.6 ks/h) = 417 m/s.

	The flight time as observed on Earth is

		tEarth = 2prE/v = 2p(6.38 ´ 106 m)/(417 m/s) = 9.62 ´ 104 s.

	The clock on the plane will run slow:

		tplane = tEarth[1 – (v2/c2)]1/2 ˜ tEarth[1 – !(v/c)2].

	Thus the difference in times is

		tEarth – tplane = tEarth!(v/c)2 = (9.62 ´ 104 s)![(417 m/s)/(3.00 ´ 108 m/s)]2 =      9.3 ´ 10–8 s.



65.	(a)	We find the speed from

			K = mc2({1/[1 – (v/c)2]1/2} – 1);

			10,000mc2 = mc2({1/[1 – (v2/c2)]1/2} – 1), which gives  

			[1 – (v2/c2)]1/2  = 1.00 ´ 10–4,  or  (v/c)2 = 1 – 1.00 ´ 10–8.

		When we take the square root, we get

			v/c = (1 – 1.00 ´ 10–8)1/2 ˜ 1 – !(1.00 ´ 10–8) = 1 – 0.50 ´ 10–8. 

		Thus the speed is       1.5 m/s less than c.

	(b)	The contracted length of the tube is

			L = L0[1 – (v/c)2]1/2 = (3.0 km)(1.00 ´ 10–4)  = 3.0 ´ 10–4 km =      30 cm.



66.	We find the mass change from the required energy:

		E = Pt = mc2;

		(100 W)(3.16 ´ 107 s) = m(3.00 ´ 108 m/s)2, which gives m =     3.5 ´ 10–8 kg.



67.	The minimum energy is required to produce the pair at rest:

		Emin = 2mc2 = 2(0.511 MeV) =      1.02 MeV (1.64 ´ 10–13 J).



68.	(a)	Because the spring is at rest on the spaceship, its period is

			T = 2p(m/k)1/2 = 2p[(1.68 kg)/(48.7 N/m)]1/2 =     1.17 s.

	(b)	The oscillating mass is a clock.  According to observers on Earth, clocks on the spacecraft run slow:

			TEarth = T/[1 – (v2/c2)]1/2 = (1.17 s)/[1 – (0.900)2]1/2 =      2.68 s.



69.	The speed is constant so the relativistic mass is constant.  The magnetic force provides the radial acceleration:

		qvB = mrelv2/r,   or   

		r 	= mrelv/qB = mv/qB[1 – (v2/c2)]1/2 

			= (9.11 ´ 10–31 kg)(0.92)(3.00 ´ 108 m/s)/(1.6 ´ 10–19 C)(1.8 T)[1 – (0.92)2]1/2 

			= 2.2 ´ 10–3 m =      2.2 mm.



70.	We take the positive direction in the direction of the Enterprise.  In the reference frame of the alien vessel, the Earth is moving at – 0.60c, and the Enterprise is moving at + 0.90c relative to the Earth.  Thus the speed of the Enterprise relative to the alien vessel is

		u = (v + u¢)/(1 + vu¢/c2) = (– 0.60c + 0.90c)/[1 + (– 0.60)(+ 0.90)] =      0.65c.

	Note that the relative speed of the two vessels as seen on Earth is 0.90c – 0.60c = 0.30c.



71.	The kinetic energy comes from the decrease in mass:

		K	= [mn– (mp + me + mn)]c2 

			= [1.008665 u – (1.00728 u + 0.000549 u + 0)]c2(931.5 MeV/uc2) =      0.78 MeV.





72.	(a)	We find the rate of mass loss from

			Dm/Dt 	= (DE/Dt)/c2 

					= (4 ´ 1026 W)/(3 ´ 108 m/s)2 =        4 ´ 109 kg/s.

	(b)	We find the time from

			?t = ?m/rate = (5.98 ´ 1024 kg)/(4.4 ´ 109 kg/s)(3.16 ´ 107 s/yr) =       4 ´ 107 yr.

	(c)	We find the time for the Sun to lose all of its mass at this rate from

			?t = ?m/rate = (2.0 ´ 1030 kg)/(4.4 ´ 109 kg/s)(3.16 ´ 107 s/yr) =       1 ´ 1013 yr.











73.	The speed of the particle is

		v = (2.24 ´ 108 m/s)/(3.00 ´ 108 m/s) = 0.747c.

	We use the momentum to find the rest mass:

		p = mv/[1 – (v /c)2]1/2;

		3.07 ´ 10–22 kg · m/s = m(0.747)(3.00 ´ 108 m/s)/[1 – (0.747)2]1/2, 

	which gives m = 9.11 ´ 10–31 kg.

	Because the particle has a negative charge, it is      an electron.



74.	The binding energy is the energy required to provide the increase in mass:

		E	= [(2mp + 2mn) – mHe]c2 

			= [2(1.00783 u) + 2(1.00867 u) – 4.00260 u ]c2(931.5 MeV/uc2) =       28.3 MeV.

	Note that the two electron masses included in the hydrogen atoms and the helium atom cancel.



75.	We convert the speed: (110 km/h)/(3.6 ks/h) = 30.6 m/s.

	Because this is much smaller than c, the relativistic mass of the car is

		mrel = m/[1 – (v2/c2)]1/2 ˜ m[1 + !(v/c)2].

	The fractional change in mass is

		(mrel – m)/m 	= [1 + !(v/c)2] – 1 = !(v/c)2 

						= ![(30.6 m/s)/(3.00 ´ 108 m/s)]2 = 5.19 ´ 10–15 =      5.19 ´ 10–13 %.



76.	(a)	The magnitudes of the momenta are equal:

			p 	= mv/[1 – (v/c)2]1/2 

				= (1.67 ´ 10–27 kg)(0.935)(3.00 ´ 108 m/s)/[1 – (0.935)2]1/2 =      1.32 ´ 10–18 kg · m/s.

	(b)	Because the protons are moving in opposite directions, the sum of the momenta is      0.

	(c)	In the reference frame of one proton, the laboratory is moving at 0.935c.  The other

		proton is moving at + 0.935c relative to the laboratory.  Thus the speed of the other proton 

		relative to the first is

			u = (v + u¢)/(1 + vu¢/c2) = [+ 0.935c + (+ 0.935c)]/[1 + (+ 0.935)(+ 0.935)] = 0.998c.

		The magnitude of the momentum of the other proton is

			p 	= mu/[1 – (u/c)2]1/2 

				= (1.67 ´ 10–27 kg)(0.998)(3.00 ´ 108 m/s)/[1 – (0.998)2]1/2 =      7.45 ´ 10–18 kg · m/s.



77.	The relation between energy and momentum is

		E = (m2c4 + p2c2)1/2 = c(m2c2 + p2)1/2.

	For the momentum, we have

		p = mv/[1 – (v/c)2]1/2 = Ev/c2,   or   

		v = pc2/E = pc/(m2c2 + p2)1/2.

































78.	The speed of light in the medium at rest is c/n.  We find the speed in the medium according to the observer from the addition of velocities:

		v¢ 	= [(c/n) + v)/[1 + (c/n)v/c2] 

			= [(c/n) + v]/[1 + (v/cn)] = (c/n)[1 + (vn/c)]/[1 + (v/cn)].

	The thickness of the glass to the observer is contracted:

		d ¢ = d[1 – (v/c)2]1/2.

	Thus the time for light to go from A to B is

		t ¢ 	= [(L – d¢)/c] + (d¢/v¢) = (L/c) – d¢[(1/c) – (1/v¢)]

			= (L/c) – d[1 – (v/c)2]1/2[(1/c) – (n/c)(1 + v/cn)/(1 + vn/c)] 

			=       (L/c) + [1 – (v/c)2]1/2(d/c)(n – 1)(1 – v/c)/(1 + vn/c).

	If v = 0, we have

		t ¢ = (L/c) + (d/c)(n – 1) = [(L – d)/c] + [d/(c/n)],

	which is the time for light to travel through the air plus the time to travel through the glass.

	If n = 1, we have

		t ¢ = L/c,

	which is the same as the time in the case where the glass is not present.

	If v = c, we have

		t ¢ = L/c,

	which agrees with the fact that the velocity c transforms into c.



79.	From the Lorentz transformation we have

		x¢ = g [x – (v/c)ct],  t ¢ = g [t – (vx/c2)],   or  ?x¢ = g [?x – (v/c)c ?t],  c?t ¢ = g [c ?t – (v ?x/c)].

	Thus we have

		(c ?t ¢)2 – (?x¢)2	= g 2[(c ?t)2 – 2v ?x ?t + v2 (?x)2/c2] – g 2[(?x)2 – 2v ?x ?t + v2 (c ?t)2/c2] 

						= g 2[(c ?t)2(1 – v2/c2) – (?x)2(1 – v2/c2)] = g 2(1 – v2/c2)[(c ?t)2 – (?x)2] 

						= (c ?t)2 – (?x)2.



80.	Because the speed achieved is 0.1c, we can assume the mass converted is a small fraction of the mass of the Enterprise.  We find the mass converted from

		K = mc2({1/[1 – (v/c)2]1/2} – 1) = ?m c2;

		m({1/[1 – (0.1)2]1/2} – 1)  = ?m, which gives 

		?m = 0.005m = (0.005)(5 ´ 109 kg) =      3 ´ 107 kg.



81.	(a)	The velocity components of the light in the S¢ frame are

			u¢x = 0,  u¢y = c.

		We find the velocity components in the Earth frame from the velocity transformation:

			ux = (ux¢ + v)/[1 + (ux¢v/c2)] = (0 + v)/(1 + 0) = v;

			uy = uy¢(1 – v2/c2)1/2/[1 + (ux¢v/c2)] = c[1 – v2/c2]1/2/(1 + 0) = c(1 – v2/c2)1/2.

		We find the angle the velocity makes with the x-axis from

			tan a = uy/ux = c(1 – v2/c2)1/2/v = [(c2/v2) – 1]1/2, so       a = tan–1 [(c2/v2) – 1]1/2.  

	(b)	The magnitude of the velocity is

			u = (ux2 + uy2)1/2 = [v2 + c2(1 – v2/c2)]1/2 = c.

	(c)	Classically we have

			ux = ux¢ + v = 0 + v = v;

			uy = uy¢  = c.

		The angle would be

			q = tan–1 (c/v).

		The magnitude would be

			u = (ux2 + uy2)1/2 = [v2 + c2]1/2.
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