CHAPTER 38 – Early Quantum Theory and Models of the Atom





Note:	At the atomic scale, it is most convenient to have energies in electron-volts and wavelengths in 


		nanometers.  A useful expression for the energy of a photon in terms of its wavelength is


			E = hf = hc/l = (6.63 ´ 10–34 J · s)(3.00 ´ 108 m/s)(10–9 nm/m)/(1.60 ´ 10–19 J/eV)l;


			E = (1.24 ´ 103 eV · nm)/l.





1.	We find the temperature for a peak wavelength of 440 nm:


		T = (2.90 ´ 10–3 m · K)/lP = (2.90 ´ 10–3 m · K)/(440 ´ 10–9 m) =      6.59 ´ 103 K.





2.	(a)	The temperature for a peak wavelength of 25.0 nm is


			T = (2.90 ´ 10–3 m · K)/lP = (2.90 ´ 10–3 m · K)/(25.0 ´ 10–9 m) =      1.16 ´ 105 K.


	(b)	We find the peak wavelength from


			lP = (2.90 ´ 10–3 m · K)/T = (2.90 ´ 10–3 m · K)/(2800 K) = 1.04 ´ 10–6 m =      1.04 mm.


		Note that this is not in the visible range.





3.	Because the energy is quantized, E = nhf, the difference in energy between adjacent levels is


		?E = hf = (6.63 ´ 10–34 J · s)(8.1 ´ 1013 Hz) =      5.4 ´ 10–20 J = 0.34 eV.





4.	(a)	We find the peak wavelength from


			lP = (2.90 ´ 10–3 m · K)/T = (2.90 ´ 10–3 m · K)/(273 K) = 1.06 ´ 10–5 m =      10.6 mm.


		This wavelength is in the      infrared.


	(b)	We find the peak wavelength from


			lP = (2.90 ´ 10–3 m · K)/T = (2.90 ´ 10–3 m · K)/(3300 K) = 8.79 ´ 10–7 m =      879 nm.


		This wavelength is in the      near infrared.


	(c)	We find the peak wavelength from


			lP = (2.90 ´ 10–3 m · K)/T = (2.90 ´ 10–3 m · K)/(4 K) = 7.25 ´ 10–4 m =      0.73 mm.


		This wavelength is in the      far infrared.





5.	(a)	The potential energy on the first step is


			U1 = mgh = (58.0 kg)(9.80 m/s2)(0.200 m) =      114 J.


	(b)	The potential energy on the second step is


			U2 = mg2h = 2U1 = 2(114 J) =      228 J.


	(c)	The potential energy on the third step is


			U3 = mg3h = 3U1 = 3(114 J) =      342 J.


	(d)	The potential energy on the nth step is


			Un = mgnh = nU1 = n(114 J) =      114n J.


	(e)	The change in energy is


			?E = U2 – U6 = (2 – 6)(114 J) =      – 456 J.





6.	We use a body temperature of 98°F = 37°C = 310 K.  We find the peak wavelength from


		lP = (2.90 ´ 10–3 m · K)/T = (2.90 ´ 10–3 m · K)/(310 K) = 9.4 ´ 10–6 m =      9.4 mm.
































7.	(a)	To find the wavelength when I(l, T) is maximal at constant temperature, we set dI/dl = 0:


			�


			�


		This equation will have a solution lPT = constant, which is the Wien displacement law.


�


	(b)	To find the value of the constant, we let x = hc/lPkT, 


		so the transcendental equation is 


			5 – x = 5e–x.


		One way to solve this equation is to plot each side against x.


		We see from the plot that the solution is very close to x = 5.


		If we let ? = 5 – x, we get


			? = 5e(? – 5) ˜ 5e – 5 = 0.034, so x = 4.966.


		Thus we have


			lPT = hc/xk ;


			2.90 ´ 10–3 m · K = h(3.00 ´ 108 m/s)/(4.966)(1.38 ´ 10–23 J/K), 


		which gives      h = 6.63 ´ 10–34 J · s.


	(c)	For the rate at which energy is radiated per unit surface area for all wavelengths we have


			�


		If we change variable to x = hc/lkT, then dl = – (hc/kTx2) dx, so we have


			�





8.	The energy of the photons with wavelengths at the ends of the visible spectrum are


		E1 = hf1 = hc/l1 = (1.24 ´ 103 eV · nm)/(400 nm) = 3.10 eV;


		E2 = hf2 = hc/l2 = (1.24 ´ 103 eV · nm)/(750 nm) = 1.65 eV.


	Thus the range of energies is     1.65 eV < E < 3.10 eV.





9.	The energy of the photon is


		E = hf = (6.63 ´ 10–34 J · s)(88.5 ´ 106 Hz) = 5.87 ´ 10–26 J =      3.67 ´ 10–7 eV.





10.	We find the wavelength from


		l = c/f = hc/E = (1.24 ´ 103 eV · nm)/(300 ´ 103 eV) =      4.1 ´ 10–3 nm.


	Significant diffraction occurs when the opening is on the order of the wavelength.  Thus there would be       


		insignificant diffraction      through the doorway.





11.	The photon energy must be at least 0.1 eV.  We find the minimum frequency from


		Emin = hfmin ;


		(0.1 eV)(1.60 ´ 10–19 J/eV) = (6.63 ´ 10–34 J · s)fmin , which gives fmin =      2.4 ´ 1013 Hz.


	The maximum wavelength is


		lmax = c/fmin = (3.00 ´ 108 m/s)/(2.4 ´ 1013 Hz) =      1.2 ´ 10–5 m.





12.	At the threshold frequency, the kinetic energy of the photoelectrons is zero, so we have


		Kmax = hf – W0 = 0;


		hfmin = W0 ;


		(6.63 ´ 10–34 J · s)fmin = 4.3 ´ 10–19 J, which gives fmin =      6.5 ´ 1014 Hz.





13.	At the threshold wavelength, the kinetic energy of the photoelectrons is zero, so we have


		Kmax = hf – W0 = 0;


		hc/lmax = W0 ,   or


		lmax = hc/W0 = (1.24 ´ 103 eV · nm)/(3.10 eV) =      400 nm.





14.	The photon of visible light with the maximum energy has the least wavelength:


		hfmax = (1.24 ´ 103 eV · nm)/lmin = (1.24 ´ 103 eV · nm)/(400 nm) = 3.10 eV.


	Electrons will not be emitted if this energy is less than the work function.  The metals with work functions greater than 3.10 eV are      copper and iron.





15.	(a)	At the threshold wavelength, the kinetic energy of the photoelectrons is zero, so we have


			Kmax = hf – W0 = 0;


			W0 = hc/lmax = (1.24 ´ 103 eV · nm)/(570 nm) =      2.18 eV.


	(b)	The stopping voltage is the voltage that gives a potential energy change equal to the maximum 


		kinetic energy:


			Kmax = eV0 = hf – W0 ;


			(1 e)V0 = [(1.24 ´ 103 eV · nm)/(400 nm)] – 2.18 eV = 3.10 eV – 2.18 eV = 0.92 eV,


		so the stopping voltage is      0.92 V.





16.	The photon of visible light with the maximum energy has the minimum wavelength:


		hfmax = (1.24 ´ 103 eV · nm)/lmin = (1.24 ´ 103 eV · nm)/(400 nm) = 3.10 eV.


	The maximum kinetic energy of the photoelectrons is 


		Kmax = hf – W0 = 3.10 eV – 2.48 eV =      0.62 eV.





17.	The energy of the photon is


		hf = (1.24 ´ 103 eV · nm)/l = (1.24 ´ 103 eV · nm)/(255 nm) = 4.86 eV.


	We find the work function from


		Kmax = hf – W0 ;


		1.40 eV = 4.86 eV – W0 , which gives W0 =      3.46 eV.





18.	The threshold wavelength determines the work function:


		W0 = hc/lmax = (1.24 ´ 103 eV · nm)/(350 nm) = 3.54 eV.


	(a)	The energy of the photon is


			hf = (1.24 ´ 103 eV · nm)/l = (1.24 ´ 103 eV · nm)/(280 nm) = 4.43 eV.


		The maximum kinetic energy of the photoelectrons is 


			Kmax = hf – W0 = 4.43 eV – 3.54 eV =      0.89 eV.


	(b)	Because the wavelength is greater than the threshold wavelength, the photon energy is less than 


		the work function, so there will be       no ejected electrons.





19.	The energy required for the chemical reaction is provided by the photon:


		E = hf = hc/l = (1.24 ´ 103 eV · nm)/l = (1.24 ´ 103 eV · nm)/(660 nm) =        1.88 eV.


	Each reaction takes place in a molecule, so we have


		E 	= (1.88 eV/molecule)(6.02 ´ 1023 molecules/mol)(1.60 ´ 10–19 J/eV)/(4186 J/kcal) 


			=      43.3 kcal/mol.





20.	The reverse voltage is the voltage that gives a potential energy change equal to the maximum 


	kinetic energy:


		Kmax = eV0 = hf – W0 ;


		(1 e)(1.64 V) = [(1.24 ´ 103 eV · nm)/(230 nm)] – W0 , which gives W0 =     3.75 eV.





21.	(a)	h/mec = (6.63 ´ 10–34 J · s)/(9.11 ´ 10–31 kg)(3.00 ´ 108 m/s) =      2.43 ´ 10–12 m.


	(b)	h/mpc = (6.63 ´ 10–34 J · s)/(1.67 ´ 10–27 kg)(3.00 ´ 108 m/s) =      1.32 ´ 10–15 m.


	(c)	For the energy of the photon we have


			E = hf = hc/l = hc/(h/mc) = mc2.





22.	We find the Compton wavelength shift for a photon scattered from an electron:


			l¢ – l = (h/mec)(1 – cos f).


	From the previous problem, h/mec = 2.43 ´ 10–12 m for an electron.


	(a)	l¢a – l = (2.43 ´ 10–12 m)(1 – cos 45°) =      7.12 ´ 10–13 m.


	(b)	l¢b – l = (2.43 ´ 10–12 m)(1 – cos 90°) =      2.43 ´ 10–12 m.


	(c)	l¢c – l = (2.43 ´ 10–12 m)(1 – cos 180°) =      4.86 ´ 10–12 m.





23.	(a)	The energy of a photon is


			E = hf = hc/l.


		For the fractional loss, we have


			(E – E¢)/E = [(1/l) – (1/l¢)]/(1/l) = (l¢ – l)/l¢.


		For 45° we get


			(E – E¢a)/E = (l¢a – l)/l¢a = (7.12 ´ 10–13 m)/(0.120 ´ 10–9 m + 7.12 ´ 10–13 m) =      5.90 ´ 10–3.


		For 90° we get


			(E – E¢b)/E = (l¢b – l)/l¢b = (2.43 ´ 10–12 m)/(0.120 ´ 10–9 m + 2.43 ´ 10–12 m) =      1.98 ´ 10–2.


		For 180° we get


			(E – E¢c)/E = (l¢c – l)/l¢c = (4.86 ´ 10–12 m)/(0.120 ´ 10–9 m + 4.86 ´ 10–12 m) =      3.89 ´ 10–2.


	(b)	The energy of the incident photon is


			E = hf = hc/l = (1.24 ´ 103 eV · nm)/l = (1.24 ´ 103 eV · nm)/(0.120 nm) = 10.3 ´ 103 eV.


		From conservation of energy, the energy given to the scattered electron is the energy lost by the 


		photon:


			K = (E – E¢) = [(E – E¢)/E]E.


		For 45° we get


			Ka = [(E – E¢a)/E]E = (5.90 ´ 10–3)(10.3 ´ 103 eV) =      60.8 eV.


		For 90° we get


			Kb = [(E – E¢b)/E]E = (1.98 ´ 10–2)(10.3 ´ 103 eV) =      204 eV.


		For 180° we get


			Kc = [(E – E¢c)/E]E = (3.89 ´ 10–2)(10.3 ´ 103 eV) =      401 eV.





24.	(a)	The wavelength shift for Compton scattering is


			l¢ – l = (h/mc)(1 – cos f).


		The fractional energy loss of the scattered electron is


			– ?E/E = [(hc/l) – (hc/l¢)]/(hc/l) = (l¢ – l)/l¢ = ?l/l¢.


		If l¢ ˜ l, this is – ?E/E = ?l/l.


	(b)	For the approximation to be accurate to 0.1%, we have


			[(?l/l) – (?l/l¢)]/(?l/l¢) = (l¢ – l)/l = 0.001.


		This can be written as


			(h/mc)(1 – cos f) = 0.001l.


		Thus for a given incident wavelength, this puts a restriction on the scattering angle:


			cos f = 1 – 0.001mcl/h.




















�


25.	For the conservation of momentum, we have


		x:	h/l + 0 = (h/l¢) cos f + p cos q,  or


			p cos q = (h/l) – (h/l¢) cos f;


		y:	0 + 0 = (h/l¢) sin f – p sin q,  or


			p sin q = (h/l¢) sin f.


	If we square and add, to eliminate q, we get


		p2 = (h/l)2 + (h/l¢)2 – (2h2/ll¢) cos f.


	For energy conservation, we have


		(hc/l) + mc2 = (hc/l¢) + [p2c2 + (mc2)2]1/2,  or 


		(hc/l) + mc2 – (hc/l¢) = [p2c2 + (mc2)2]1/2.


	When we substitute the result from momentum conservation and square, we get


		(hc/l)2 + (mc2)2 + (hc/l¢)2 + 2(h2c2/ll¢) – 2(mc2hc/l) – 2(mc2hc/l¢) = 


											(hc/l)2 + (hc/l¢)2 – (2h2c2/ll¢) cos f + (mc2)2,


	which reduces to 


		2mc2hc[(1/l) – (1/l¢)] = (2h2c2/ll¢)(1 – cos f),  or  l¢ – l = (h/mc)(1 – cos f).








�





26.	(a)	For the conservation of momentum for the 


		head-on collision, we have


			h/l + 0 =  – (h/l¢) + p,  or  h/l¢ = p – (h/l).


		For energy conservation, we have


			(hc/l) + mc2 	= (hc/l¢) + K + mc2.


		When we use the result for momentum conservation, we get


			K = 2(hc/l) – pc. 


		The momentum of the electron is related to its kinetic energy:


			pc = (K2 + 2mc2K)1/2.


		Thus we have


			2(hc/l) – K = pc = (K2 + 2mc2K)1/2.


		After squaring and reducing, we get


			[mc2 + 2(hc/l)]K = 2(hc/l)2;


			[(0.511 ´ 106 eV) + 2(1.24 ´ 103 eV · nm)/(0.100 nm)]K = 2[(1.24 ´ 103 eV · nm)/(0.100 nm)]2, 


		which gives       K = 574 eV.


	(b)	We find the wavelength of the recoiling photon from


			hc/l¢ = (hc/l) – K;


			(1.24 ´ 103 eV · nm)/l¢ = (1.24 ´ 103 eV · nm)/(0.100 nm) – 584 eV, 


		which gives l¢ =      0.105 nm.





27.	The kinetic energy of the pair is


		K = hf – 2mc2 = 2.84 MeV – 2(0.511 MeV) =      1.82 MeV.





28.	The photon with the longest wavelength has the minimum energy to create the masses:


		hfmin = hc/lmax = 2mc2;


		(6.63 ´ 10–34 J · s)/lmax = 2(1.67 ´ 10–27 kg)(3.00 ´ 108 m/s)2, which gives lmax =      6.62 ´ 10–16 m.





29.	The photon with minimum energy to create the masses is


		hfmin = 2mc2 = 2(207)(0.511 MeV) =      212 MeV.


	The wavelength is


		l = (1.24 ´ 103 eV · nm)/(212 ´ 106 eV) = 5.85 ´ 10–6 nm =      5.85 ´ 10–15 m.














30.	The energy of the photon is


		hf = 2(K + mc2) = 2(0.345 MeV + 0.511 MeV) =      1.71 MeV.


	The wavelength is


		l = (1.24 ´ 103 eV · nm)/(1.71 ´ 106 eV) = 7.24 ´ 10–4 nm =      7.24 ´ 10–13 m.





31.	We find the wavelength from


		l = h/p = h/mv = (6.63 ´ 10–34 J · s)/(0.21 kg)(0.10 m/s) =        3.2 ´ 10–32 m.





32.	We find the wavelength from


		l = h/p = h/mv = (6.63 ´ 10–34 J · s)/(1.67 ´ 10–27 kg)(5.5 ´ 104 m/s) =        7.2 ´ 10–12 m.


	Note that v « c.





33.	We find the speed from


		l = h/p = h/mv;


		0.28 ´ 10–9 m = (6.63 ´ 10–34 J · s)/(9.11 ´ 10–31 kg)v, which gives v = 2.60 ´ 106 m/s.


	Because this is much less than c, we can use the classical expression for the kinetic energy.  The kinetic energy is equal to the potential energy change:


		eV = K = !mv2 = !(9.11 ´ 10–31 kg)(2.60 ´ 106 m/s)2 = 3.08 ´ 10–18 J = 19.2 eV.


	Thus the required potential difference is      19 V. 





34.	The kinetic energy is equal to the potential energy change:


		K = eV = (1 e)(30.0 ´ 103 V) = 30.0 ´ 103 eV = 0.0300 MeV.


	Because this is 6% of mc2, the electron is relativistic.  We find the momentum from


		E2 = [K + mc2]2 = p2c2 + m2c4,   or   


		p2c2 = K2 + 2Kmc2;


		p2c2 = (0.0300 MeV)2 + 2(0.0300 MeV)(0.511 MeV), which gives pc = 0.178 MeV,   or  


		p = (0.178 MeV)(1.60 ´ 10–13 J/MeV)/(3.00 ´ 108 m/s) = 9.47 ´ 10–23 kg · m/s. 


	The wavelength is 


		l = h/p = (6.63 ´ 10–34 J · s)/(9.47 ´ 10–23 kg · m/s) =      7.0 ´ 10–12 m.


	Because l « 5 cm,      diffraction effects are negligible.





35.	Because all the energies are much less than mc2, we can use K = p2/2m, so


		l = h/p = h/(2mK)1/2 = hc/(2mc2K)1/2. 


	(a)	l = hc/(2mc2K)1/2 = (1.24 ´ 103 eV · nm)/[2(0.511 ´ 106 eV)(10 eV)]1/2 =      0.39 nm.


	(b)	l = hc/(2mc2K)1/2 = (1.24 ´ 103 eV · nm)/[2(0.511 ´ 106 eV)(100 eV)]1/2 =      0.12 nm.


	(c)	l = hc/(2mc2K)1/2 = (1.24 ´ 103 eV · nm)/[2(0.511 ´ 106 eV)(1.0 ´ 103 eV)]1/2 =      0.039 nm.





36.	With K = p2/2m , we have


		l = h/p = h/(2mK)1/2. 


	If we form the ratio for the two particles with equal kinetic energies, we get


		lp/le =(me/mp)1/2.


	Because mp > me , lp < le .





37.	With K = p2/2m, we have


		l = h/p = h/(2mK)1/2. 


	If we form the ratio for the two particles with equal wavelengths, we get


		1 = (meKe/mpKp)1/2,   or   Ke/Kp = mp/me = (1.67 ´ 10–27 kg)/(9.11 ´ 10–31 kg) =      1.84 ´ 103.

















38.	We find the speed from


		!mv2 = *kT;


		!(32 u)(1.66 ´ 10–27 kg/u)v2 = *(1.38 ´ 10–23 J/K)(300 K), which gives v = 484 m/s.


	The wavelength is


		l = h/p = h/mv = (6.63 ´ 10–34 J · s)/(32 u)(1.66 ´ 10–27 kg/u)(484 m/s) =        2.6 ´ 10–11 m.














39.	For diffraction, the wavelength must be of the order of the opening.  We find the speed from


		l = h/p = h/mv;


		10 m = (6.63 ´ 10–34 J · s)/(2000 kg)v, which gives v =      3.3 ´ 10–38 m/s.


	Not a good speed if you want to get somewhere.


	At a speed of 30 m/s, l « 10 m, so there will be      no diffraction.





40.	The kinetic energy of the electron is


		K = p2/2m = h2/2ml2 = (6.63 ´ 10–34 J · s)2/2(9.11 ´ 10–31 kg)(0.10 ´ 10–9 m)2 = 2.41 ´ 10–17 J = 150 eV.


	Because this must equal the potential energy change, the required voltage is      150 V.





41.	The wavelength of the electron is


		l 	= h/p = h/(2mK)1/2 = hc/(2mc2K)1/2 


			= (1.24 ´ 103 eV · nm)/[2(0.511 ´ 106 eV)(2250 eV)]1/2 = 2.59 ´ 10–2 nm.


	If we neglect aberrations, the maximum possible resolution is on the order of the wavelength:   0.026 nm.





42.	The energy of a level is En = – (13.6 eV)/n2.


	(a)	The transition from n = 1 to n¢ = 3 is an      absorption,      because the      final state,      n¢ = 3, has a 


		higher energy.  The energy of the photon is


			hf = En¢ – En = – (13.6 eV)[(1/32) – (1/12)] = 12.1 eV.


	(b)	The transition from n = 6 to n¢ = 2 is an      emission,      because the      initial state,      n = 6, has a 


		higher energy.  The energy of the photon is


			hf = – (En¢ – En) = (13.6 eV)[(1/22) – (1/62)] = 3.0 eV.


	(c)	The transition from n = 4 to n¢ = 5 is an      absorption,      because the      final state,      n¢ = 5, has a 


		higher energy.  The energy of the photon is


			hf = En¢ – En = – (13.6 eV)[(1/52) – (1/42)] = 0.31 eV.


	The photon for the transition from      n = 1 to n¢ = 3     has the largest energy.





43.	To ionize the atom means removing the electron, or raising it to zero energy:


		Eion = 0 – En = (13.6 eV)/n2 = (13.6 eV)/22 =       3.4 eV.





44.	From ?E = hc/l, we see that the third longest wavelength comes from the transition with the third smallest energy:       n = 6 to n¢ = 3.





45.	Doubly ionized lithium is like hydrogen, except that there are three positive charges (Z = 3) in the nucleus.  The square of the product of the positive and negative charges appears in the energy term for the energy levels.  We can use the results for hydrogen, if we replace e2 by Ze2:


		En = – Z2(13.6 eV)/n2 = – 32(13.6 eV)/n2 = – (122 eV)/n2.


	We find the energy needed to remove the remaining electron from


		E = 0 – E1 = 0 – [– (122 eV)/(1)2] =       122 eV.














46.	(a)	For the jump from n = 4 to n = 2, we have


			l = (1.24 ´ 103 eV · nm)/(E4 – E2) = (1.24 ´ 103 eV · nm)/[– 0.85 eV – (– 3.4 eV)] =       486 nm.


	(b)	For the jump from n = 3 to n = 1, we have


			l = (1.24 ´ 103 eV · nm)/(E3 – E1) = (1.24 ´ 103 eV · nm)/[– 1.5 eV – (– 13.6 eV)] =       102 nm.


	(c)	The energy of the n = 5 level is


			E5 = – (13.6 eV)/52 = – 0.54 eV.


		For the jump from n = 5 to n = 2, we have


			l = (1.24 ´ 103 eV · nm)/(E5 – E2) = (1.24 ´ 103 eV · nm)/[– 0.54 eV – (– 3.4 eV)] =       434 nm.

















47.	For the Rydberg constant we have


		R 	= e4m/8Å02h3c 


			= (1.602177 ´ 10–19 C)4(9.109390 ´ 10–31 kg)/


								8(8.854187 ´ 10–12 C2/N · m2)2(6.626076 ´ 10–34 J · s)3(2.997925 ´ 108 m/s) 


			= 1.0974 ´ 107 m–1.





48.	The longest wavelength corresponds to the minimum energy, which is the ionization energy:


		l = (1.24 ´ 103 eV · nm)/Eion = (1.24 ´ 103 eV · nm)/(13.6 eV) =       91.2 nm.


	Note that shorter wavelengths would give the ejected electron some kinetic energy.





49.	The energy of the photon is


		hf = Eion + K = 13.6 eV + 10.0 eV = 23.6 eV.


	We find the wavelength from


		l = (1.24 ´ 103 eV · nm)/hf = (1.24 ´ 103 eV · nm)/(23.6 eV) =       52.5 nm.





50.	Singly ionized helium is like hydrogen, except that there are two positive charges (Z = 2) in the nucleus.  The square of  the product of the positive and negative charges appears in the energy term for the energy levels.  We can use the results for hydrogen, if we replace e2 by Ze2:


		En = – Z2(13.6 eV)/n2 = – 22(13.6 eV)/n2 = – (54.4 eV)/n2.


	We find the energy of the photon from the n = 6 to n = 2 transition: 


		E = E6 – E2 = – (54.4 eV)[(1/62) – (1/22)] = 12.1 eV.


	Because this is the energy difference for the n = 1 to n = 3 transition in hydrogen, the photon can be absorbed by a hydrogen atom which will jump from      n = 1 to n = 3.
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51.	Singly ionized helium is like hydrogen, except that 


	there are two positive charges (Z = 2) in the nucleus.  


	The square of  the product of the positive and negative 


	charges appears in the energy term for the energy levels.  


	We can use the results for hydrogen, if we replace e2 by Ze2:


		En = – Z2(13.6 eV)/n2 = – 22(13.6 eV)/n2 = – (54.4 eV)/n2.
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52.	Doubly ionized lithium is like hydrogen, except that 


	there are three positive charges (Z = 3) in the nucleus.  


	The square of  the product of the positive and negative 


	charges appears in the energy term for the energy levels.  


	We can use the results for hydrogen, if we replace e2 by Ze2:


		En = – Z2(13.6 eV)/n2 = – 32(13.6 eV)/n2 = – (122.4 eV)/n2.












































53.	The potential energy for the ground state is


		U 	= – e2/4pÅ0r1 


			= – (9.00 ´ 109 N · m2/C2)(1.60 ´ 10–19 C)2/(0.529 ´ 10–10 m) = – 4.36 ´ 10–18 J =      – 27.2 eV.


	The kinetic energy is


		K = E1 – U = – 13.6 eV – (– 27.2 eV) =      +13.6 eV.




















54.	We find the value of n from


		rn = n2r1 ;


		1.00 ´ 10–3 m = n2(0.529 ´ 10–10 m), which gives n =      4.35 ´ 103.


	The energy of this orbit is


		E = – (13.6 eV)/n2 = – (13.6 eV)/(4.35 ´ 103)2 =       – 7.2 ´ 10–7 eV.


	Note that energy differences will be very small.





55.	We find the velocity from the quantum condition:


		mvr1 = nh/2p;


		(9.11 ´ 10–31 kg)v(0.529 ´ 10–10 m) = (1)(6.63 ´ 10–34 J · s)/2p, 


	which gives v = 2.18 ´ 106 m/s = 7.3 ´ 10–3c.


	The relativistic factor is


		[1 – (v/c)2]1/2 ˜ 1 – !(v/c)2 = 1 – 2.7 ´ 10–5.


	Because this is essentially 1, the use of nonrelativistic formulas is       justified.





56.	If we compare the two forces:


		Fe = e2/4pÅ0r2,   and   Fg = Gmemp/r2,


	we see that we can use the hydrogen expressions if we replace e2/4pÅ0 with Gmemp .  


	For the radius we get


		r1 	= h2/4p2Gme2mp 


			= (6.63 ´ 10–34 J · s)2/4p2(6.67 ´ 10–11 N · m2/kg2)(9.11 ´ 10–31 kg)2(1.67 ´ 10–27 kg) 


			=      1.20 ´ 1029 m.


	Note that this is many times intergalactic distances.


	The ground state energy is


		E1 	= – 2p2G2me3mp2/h2 


			= – 2p2(6.67 ´ 10–11 N · m2/kg2)2(9.11 ´ 10–31 kg)3(1.67 ´ 10–27 kg)2/(6.63 ´ 10–34 J · s)2 


			=      – 4.21 ´ 10–97 J.





57.	The potential energy for the nth state is


		U = – e2/4pÅ0rn .


	The Coulomb force provides the radial acceleration, so we have


		e2/4pÅ0rn2 = mvn2/rn ,   or   mvn2 = e2/4pÅ0rn .


	Thus the kinetic energy is


		K = !mvn2 = !e2/4pÅ0rn  = !| U |.





58.	For the difference in radius for adjacent orbits, we have


		?r = rn – rn – 1 = [n2 – (n – 1)2]r1 = (2n – 1)r1 .


	When n » 1, we get


		?r ˜ 2nr1 = 2rn/n.


	In the classical limit, the separation of radii (and energies) should be very small.  We see that letting n ® 8 does this.  If we substitute the expression for rn , we see that ?r µ h2, so letting h ® 0 also makes the separation of radii small.
































59.	(a)	We find the frequency of the radiation for a jump from level n to level n – 1 from


			hf =  En – En – 1;


			f 	= [(Z2e4m/8Å02h2)/h]{[1/(n – 1)2] – (1/n2)} 


				= (Z2e4m/8Å02h3){[n2 – (n – 1)2]/n2(n – 1)2} ˜ (Z2e4m/8Å02h3)(2n/n4) = Z2e4m/4Å02h3n3.


		From the quantum condition we have


			mvrn = nh/2p,   or   v = nh/2pmrn .


		Thus we get


			v/2prn = nh/4p2mrn2 = nh/4p2m(n2h2Å0/pmZe2)2 = Z2e4m/4Å02h3n3,


		which is the same as the above frequency.


	(b)	From the classical theory for an electron revolving in a circular orbit, the time for one 


		revolution is


			T = 2prn/v, 


		so the frequency is 


			f = 1/T = v/2prn .


	(c)	Classically an accelerated charge radiates.  For circular motion, the frequency of the radiation is 


		the orbital frequency.  This agrees with the Bohr prediction for large values of n, consistent with 


		the correspondence principle.





60.	We find the peak wavelength from


		lP = (2.90 ´ 10–3 m · K)/T = (2.90 ´ 10–3 m · K)/(2.7 K) = 1.1 ´ 10–3 m =      1.1 mm.





61.	To produce a photoelectron, the hydrogen atom must be ionized, so the minimum energy of the photon is 13.6 eV.  We find the minimum frequency of the photon from


		Emin = hfmin ;


		(13.6 eV)(1.60 ´ 10–19 J/eV) = (6.63 ´ 10–34 J · s)fmin , which gives fmin =      3.28 ´ 1015 Hz.





62.	Because the energy is much less than mc2, we can use K = p2/2m, so the wavelength of the electron is


		l 	= h/p = h/(2mK)1/2 = hc/(2mc2K)1/2


			= (1.24 ´ 103 eV · nm)/[2(0.511 ´ 106 eV)(85 eV)]1/2 = 0.133 nm.


	We find the spacing of the planes from 


		2d sin q = nl;


		2d sin 38° = (1)(0.133 nm), which gives d =     0.108 nm.





63.	For the energy of the photon, we have


		E 	= hf = hc/l 


			= (6.63 ´ 10–34 J · s)(3.00 ´ 108 m/s)/(1.60 ´ 10–19 J/eV)l = (1.24 ´ 10–6 eV · m)/l.





64.	The energy of the photon is


		E 	= hf = hc/l 


			= (6.63 ´ 10–34 J · s)(3.00 ´ 108 m/s)/(12.2 ´ 10–2 m) = 1.63 ´ 10–24 J.


	Thus the rate at which photons are produced in the oven is


		N = P/E = (760 W)/(1.63 ´ 10–24 J) =      4.66 ´ 1026 photons/s.





65.	The energy of the photon is


		hf = (1.24 ´ 103 eV · nm)/l = (1.24 ´ 103 eV · nm)/(550 nm) = 2.25 eV.


	We find the intensity of photons from


		Iphotons = I/hf = (1000 W/m2)/(2.25 eV)(1.60 ´ 10–19 J/eV) =      2.78 ´ 1021 photons/s · m2.





66.	The impulse on the wall is due to the change in momentum of the photons:


		F ?t = ?p = np = nh/l,   or   


		n/?t = Fl/h = (5.5 ´ 10–9 N)(633 ´ 10–9 m)/(6.63 ´ 10–34 J · s) =      5.3 ´ 1018 photons/s.





67.	The energy of the photon is


		hf = (1.24 ´ 103 eV · nm)/l = (1.24 ´ 103 eV · nm)/(550 nm) = 2.25 eV.


	Because the light radiates uniformly, the intensity at a distance L is 


		I = P/4pL2, so the rate at which energy enters the pupil is 


		E/t = Ipr2 = Pr2/4L2.


	Thus the rate at which photons enter the pupil is


		n/t 	= (E/t)/hf = Pr2/4L2hf 


			= (0.030)(100 W)(2.0 ´ 10–3 m)2/4(1.0 ´ 103 m)2(2.25 eV)(1.60 ´ 10–19 J/eV) 


			=       8.3 ´ 106 photons/s.





68.	Because the energies of the photons are equal, their momenta have equal magnitudes.  Thus the total momentum of the system before and after the collision is zero.  This means the momentum of the electron has the same magnitude as the momentum of the positron.  Because they have the same mass, their energies must be equal.  From conservation of energy we have


		2hf = 2(K + mc2),   or   hf = K + mc2;


		0.90 MeV = K + 0.511 MeV, which gives K =       0.39 MeV.





69.	We find the scattering angle from


		l¢ – l = (h/mc)(1 – cos f);


		(7.35 ´ 10–11 m) – (7.11 ´ 10–11 m) = [(6.63 ´ 10–34 J · s)/(9.11 ´ 10–31 kg)(3.00 ´ 108 m/s)](1 – cos f), 


	which gives 


		cos f = 0.0107,       f = 89.4°.





70.	The required momentum is


		p = h/l,   or   


		pc = hc/l = (1.24 ´ 103 eV · nm)/(5.0 ´ 10–3 nm) = 2.48 ´ 105 eV = 0.248 MeV.


	(a)	For the proton, pc « mc2, so we can find the required kinetic energy from


			K = p2/2m = (pc)2/2mc2 = (0.248 MeV)2/2(938 MeV) = 3.3 ´ 10–5 MeV = 33 eV.


		The potential difference to produce this kinetic energy is


			V = K/e = (33 eV)/(1 e) =      33 V.


	(b)	For the electron, pc is of the order of mc2, so we can find the required kinetic energy from


			K 	= [(pc)2 + (mc2)2]1/2 – mc2 


				= [(0.248 MeV)2 + (0.511 MeV)2]1/2 – 0.511 MeV = 0.057 MeV = 57 keV.


		The potential difference to produce this kinetic energy is


			V = K/e = (57 keV)/(1 e) =      57 kV.





71.	If we ignore the recoil motion of the gold mucleus, at the closest approach the kinetic energy of both particles is zero.  The potential energy of the two charges must equal the initial kinetic energy of the 


	a particle:


		K = ZaZAue2/4pÅ0rmin ;


		(4.8 MeV)(1.60 ´ 10–13 J/MeV) = (2)(79)(1.60 ´ 10–19 C)2/4p(8.85 ´ 10–12 C2/N · m2)rmin , 


	which gives rmin =      4.7 ´ 10–14 m.





72.	The decrease in mass occurs because of the loss in energy when a photon is emitted:


		?m/m = (hf/c2)/m = ?E/mc2 = (– 13.6 eV)[(1/12) – (1/32)]/(939 ´ 106 eV) =      – 1.29 ´ 10–8.





73.	The collision must be elastic as long as the electron does not have enough energy to raise the hydrogen atom to the n = 2 level, so no energy is transferred to the atom.  Thus we have 


		K < E2 – E1 = (– 13.6 eV)[(1/22) – (1/12)] =      10.2 eV.











74.	The Coulomb force provides the radial acceleration, so we have


		e2/4pÅ0rn2 = mvn2/rn ,   or   vn = (e2/4pÅ0mrn)1/2.


	For the angular velocity, we get


		wn = vn/rn = (e2/4pÅ0mrn3)1/2 = (p2m2e8/4Å04n6h6)1/2 =      pme4/2Å02n3h3.


	where we have used the expression rn = n2h2Å0/pme2 for the radius of the orbit.


	For the frequency, we get


		fn = wn/2p =      me4/4Å02n3h3.


	(a)	For the ground state, we get


			w1	= p(9.11 ´ 10–31 kg)(1.60 ´ 10–19 C)4/2(8.85 ´ 10–12 C2/N · m2)2(1)3(6.63 ´ 10–34 J · s)3 


				=     4.11 ´ 1016 rad/s.


		The frequency is


			f1 = w1/2p = (4.11 ´ 1016 rad/s)/2p =      6.54 ´ 1015 Hz.


	(b)	For the first excited state, we get


			w2 	= p(9.11 ´ 10–31 kg)(1.60 ´ 10–19 C)4/2(8.85 ´ 10–12 C2/N · m2)2(2)3(6.63 ´ 10–34 J · s)3 


				=     5.14 ´ 1015 rad/s.


		The frequency is


			f2 = w2/2p = (5.14 ´ 1015 rad/s)/2p =      8.17 ´ 1014 Hz.





75.	The ratio of the forces is


		Fg/Fe 	= (Gmemp/r2)/(e2/4pÅ0r2) = 4pÅ0Gmemp/e2


				= 4p(8.85 ´ 10–12 C2/N · m2)(6.67 ´ 10–11 N · m2/kg2)(9.11 ´ 10–31 kg)(1.67 ´ 10–27 kg)/


													(1.60 ´ 10–19 C)2 =      4.4 ´ 10–40.


	Yes,    the gravitational force may be safely ignored.





76.	(a)	Because the energy is quantized, E = nhf, the difference in energy between adjacent levels is


			?E = hf = (6.63 ´ 10–34 J · s)(0.75 Hz) =      5.0 ´ 10–34 J.


	(b)	The total energy will be the maximum potential energy, so we have


			E = mgh = nhf;


			(20 kg)(9.80 m/s2)(0.45 m) = n(5.0 ´ 10–34 J), which gives n =      1.8 ´ 1035.


	(c)	The fractional change in energy is


			?E/E = hf/nhf = 1/n = 1/(1.8 ´ 1035) =      5.6 ´ 10–36, not measurable.





77.	The potential difference produces a kinetic energy of 12.3 eV, so it is possible to provide this much energy to the hydrogen atom through collisions.  From the ground state, the maximum energy of the atom is –13.6 eV – (– 12.3 eV)= – 1.3 eV.  From the energy level diagram, we see that this means the atom could be excited to the n = 3 state, so the possible transitions when the atom returns to the ground state are n = 3 to n = 2, n = 3 to n = 1, and n = 2 to n = 1.  For the wavelengths we have


		l3 ® 2 = (1.24 ´ 103 eV · nm)/(E3 – E2) = (1.24 ´ 103 eV · nm)/[– 1.5 eV – (– 3.4 eV)] =       653 nm;


		l3 ® 1 = (1.24 ´ 103 eV · nm)/(E3 – E1) = (1.24 ´ 103 eV · nm)/[– 1.5 eV – (– 13.6 eV)] =       102 nm;


		l2 ® 1 = (1.24 ´ 103 eV · nm)/(E2 – E1) = (1.24 ´ 103 eV · nm)/[– 3.4 eV – (– 13.6 eV)] =       122 nm.





78.	The energy levels are


		En 	= – Z2e4m/8Å02n2h2 = – (82)2e4(207)me/8Å02n2h2 


			= (82)2(207)(– 13.6 eV)/n2 = – (1.89 ´ 107 eV)/n2 = – (18.9 MeV)/n2.


	For the n = 2 to n = 1 transition, the photon energy is


		hf = E2 – E1 = (– 18.9 MeV)[(1/22) – (1/12)] =      14.2 MeV.


	Note that this would be a gamma-ray photon.














79.	The energy of the ultraviolet photon is


		hf1 = (1.24 ´ 103 eV · nm)/l = (1.24 ´ 103 eV · nm)/(290 nm) = 4.28 eV.


	The stopping potential is the potential difference that gives a potential energy change equal to the maximum kinetic energy:


		Kmax1 = eV01 = hf1 – W0 ;


		(1 e)(2.10 V) = 4.28 eV– W0 , which gives W0 = 2.18 eV.


	The energy of the blue photon is


		hf1 = (1.24 ´ 103 eV · nm)/l = (1.24 ´ 103 eV · nm)/(440 nm) = 2.82 eV.


	We find the new stopping potential from


		Kmax2 = eV02 = hf2 – W0 ;


		(1 e)V02 =2.82 eV– 2.18 eV, which gives V02 =      0.64 V.





80.	(a)	The electron has a charge e, so the potential difference produces a kinetic energy of eV.  


		The shortest wavelength photon is produced when all the kinetic energy is lost and a photon 


		emitted:


			hfmax = hc/l0 = eV, which gives l0 = hc/eV.


	(b)	l0 = hc/eV = (1.24 ´ 103 eV · nm)/(30 ´ 103 eV) =      0.041 nm.





81.	We find the momentum from


		E2 = (K + mc2)2 = p2c2 + m2c4,   or   


		p2c2 = K2 + 2mc2K.


	The wavelength is


		l = h/p = hc/pc = hc/(K2 + 2mc2K)1/2.





82.	The kinetic energy of a thermal neutron is


		K = *kT = *(1.38 ´ 10–23 J/K)(300 K) = 6.21 ´ 10–21 J =      0.039 eV.


	We find the speed from


		K = !mv2;


		6.21 ´ 10–21 J = !(1.67 ´ 10–27 kg)v2, which gives v = 2.73 ´ 103 m/s.


	The wavelength is


		l = h/p = h/mv = (6.63 ´ 10–34 J · s)/(1.67 ´ 10–27 kg)(2.73 ´ 103 m/s) = 1.5 ´ 10–10 m =      0.15 nm.





83.	We find the momentum from


		E2 = (K + mc2)2 = p2c2 + m2c4,   or   


		p2c2 = K2 + 2mc2K.


	The wavelength is


		l 	= h/p = hc/pc = hc/(K2 + 2mc2K)1/2 


			= (1.24 ´ 103 eV · nm)/[(60 ´ 103 eV)2 + 2(0.511 ´ 106 eV)(60 ´ 103 eV)]1/2 = 4.9 ´ 10–3 nm.


	The theoretical resolution limit is of the order of the wavelength, or       5 ´ 10–12 m.





84.	The energy of a photon in terms of the momentum is 


		E = hf = hc/l = pc.


	If the sail is perpendicular to the sunlight, the rate at which photons are striking the sail is


		N/?t = IA/E = IA/pc.


	Because the photons reflect from the sail, the change in momentum of a photon is


		?p = 2p.


	The impulse on the sail is due to the change in momentum of the photons:


		F ?t = N ?p ,   or   


		F = (N/?t) ?p = (IA/pc)(2p) = 2IA/c = 2(1000 W/m2)(1 ´ 103 m)2/(3.00 ´ 108 m/s) =      7 N.





85.	We find the number of photons from


		N = E/hf = E/(hc/l) = (10–18 J)/[(1.24 ´ 103 eV · nm)/(550 nm)](1.60 ´ 10–19 J/eV) ˜      3.





86.	The energy of the photon is


		hf = (1.24 ´ 103 eV · nm)/l = (1.24 ´ 103 eV · nm)/(300 nm) = 4.13 eV.


	The maximum kinetic energy of the photoelectrons is


		Kmax = hf – W0 = 4.13 eV – 2.2 eV = 1.93 eV.


	Because this is much less than the rest energy of the electron, Kmax = pmax2/2m.  Thus the shortest wavelength of the electron is


		lmin 	= h/pmax = h/(2mKmax)1/2 


				= (6.63 ´ 10–34 J · s)/[2(9.11 ´ 10–31 kg)(1.93 eV)(1.60 ´ 10–19 J/eV)]1/2 


				= 8.8 ´ 10–10 m =      0.88 nm. 
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