CHAPTER 39 – Quantum Mechanics



Note:	At the atomic scale, it is most convenient to have energies in electron-volts and wavelengths in 

		nanometers.  A useful expression for the energy of a photon in terms of its wavelength is

			E = hf = hc/l = (6.63 ´ 10–34 J · s)(3 ´ 108 m/s)(109 nm/m)/(1.60 ´ 10–19 J/eV)l;

			E = (1.24 ´ 103 eV · nm)/l.



1.	We find the wavelength of the neutron from

		l 	= h/p = h/(2mK)1/2  

			= (6.63 ´ 10–34 J · s)/[2(1.67 ´ 10–27 kg)(0.025 eV)(1.6 ´ 10–19 J/eV)]1/2 = 1.81 ´ 10–10 m.

	The peaks of the interference pattern are given by

		d sin q = ml,  m = 1, 2, … .

	and the positions on the screen are 

		y = L tan q.

	For small angles, sin q � tan q, so we have

		y = mLl/d.

	Thus the separation is

		?y = Ll/d = (1.0 m)(1.81 ´ 10–10 m)/(1.0 ´ 10–3 m) =      1.8 ´ 10–7 m.



2.	We find the wavelength of the bullet from

		l 	= h/p = h/mv  

			= (6.63 ´ 10–34 J · s)/(2.0 ´ 10–3 kg)(120 m/s) = 2.8 ´ 10–33 m.

	The half-angle for the central circle of the diffraction pattern is given by

		sin q = 1.22l/D.

	For small angles, sin q � tan q, so we have

		r = L tan q � L sin q = 1.22Ll/D;

		0.50 ´ 10–2 m = 1.22L(2.8 ´ 10–33 m)/(3.0 ´ 10–3 m), which gives L =      4.5 ´ 1027 m.

	Diffraction effects are negligible for macroscopic objects.



3.	We find the uncertainty in the momentum:

		?p = m ?v = (1.67 ´ 10–27 kg)(0.024 ´ 105 m/s) = 4.00 ´ 10–24 kg · m/s.

	We find the uncertainty in the proton’s position from

		? x = ˙/?p = (1.055 ´ 10–34 J · s)/(4.00 ´ 10–24 kg · m/s) = 2.6 ´ 10–11 m.

	Thus the accuracy of the position is      ± 1.3 ´ 10–11 m.



4.	We find the minimum uncertainty in the energy of the state from

		?E = ˙/?t = (1.055 ´ 10–34 J · s)/(10–8 s) = 1.1 ´ 10–26 J =      7 ´ 10–8 eV.



5.	We find the uncertainty in the momentum:

		?p = ˙/?x = (1.055 ´ 10–34 J · s)/(1.6 ´ 10–8 m) = 6.59 ´ 10–27 kg · m/s.

	We find the uncertainty in the velocity from

		?p = m ?v;

		6.59 ´ 10–27 kg · m/s = (9.11 ´ 10–31 kg) ?v, which gives ?v =       7.2 ´ 103 m/s.



6.	(a)	We find the wavelength of the bullet from

			l 	= h/p = h/mv  

				= (6.63 ´ 10–34 J · s)/(12 ´ 10–3 kg)(150 m/s) =      3.7 ´ 10–34 m.

	(b)	We find the uncertainty in the momentum component perpendicular to the motion:

			?py = ˙/?y = (1.055 ´ 10–34 J · s)/(0.55 ´ 10–2 m) =       1.9 ´ 10–32 kg · m/s.

	(c)	We find the possible uncertainty in the y-position at the target from

			y/L = ?vy/vx = ?py/px ;

			y/(300 m) = (1.9 ´ 10–32 kg · m/s)/(12 ´ 10–3 kg)(150 m/s), which gives y =     3.2 ´ 10–30 m.



7.	The uncertainty in the velocity is

		?v = (0.065/100)(75 m/s) = 0.0488 m/s.

	For the electron, we have

		? x = ˙/m ?v = (1.055 ´ 10–34 J · s)/(9.11 ´ 10–31 kg)(0.0488 m/s) =      2.4 ´ 10–3 m.

	For the baseball, we have

		? x = ˙/m ?v = (1.055 ´ 10–34 J · s)/(0.150 kg)(0.0488 m/s) =      1.4 ´ 10–32 m.

	The uncertainty for the electron is greater by a factor of 1.7 ´ 1029.



8.	We use the radius as the uncertainty in position for the electron.  We find the uncertainty in the momentum from

		?p = ˙/?x = (1.055 ´ 10–34 J · s)/(10–15 m) = 1.055 ´ 10–19 kg · m/s.

	If we assume that the lowest value for the momentum is the least uncertainty, we estimate the lowest possible energy as 

		E 	= K + mc2 = (p2c2 + m2c4)1/2 = [(?p)2c2 + m2c4]1/2 

			= [(1.055 ´ 10–19 kg · m/s)2(3.00 ´ 108 m/s)2 + (9.11 ´ 10–31 kg)2(3.00 ´ 108 m/s)4]1/2 

			= 3.17 ´ 10–11 J � 200 MeV.



9.	(a)	We find the minimum uncertainty in the energy of the state from

			?E = ˙/?t = (1.055 ´ 10–34 J · s)/(10–8 s) = 1.1 ´ 10–26 J =      6.6 ´ 10–8 eV.

		Note that, because the ground state is stable, we associate the uncertainty with the excited state.

	(b)	The transition energy is

			E =  – (13.6 eV)[(1/22) – (1/12)] = 10.2 eV,

		so we have

			?E/E = (6.6 ´ 10–8 eV)/(10.2 eV) =      6.5 ´ 10–9.

	(c)	The wavelength of the line is

			l = (1.24 ´ 103 eV · nm)/E = (1.24 ´ 103 eV · nm)/(10.2 eV) =      122 nm.

		If we treat the width of the line as a differential, we have

			?l 	= – (1.24 ´ 103 eV · nm) ?E/E 2. 

		If we ignore the sign, we get

			?l = l (?E/E) = (122 nm)(6.5 ´ 10–9) =      7.9 ´ 10–7 nm.



10.	The momentum of the electron is

		p = (2mK)1/2 = [2(9.11 ´ 10–31 kg)(2.50 keV)(1.60 ´ 10–16 J/keV)]1/2 = 2.70 ´ 10–23 kg · m/s.

	Because the changes are small, we can treat them as differentials.  Thus the change in momentum is

		?p = !(2m/K)1/2 ?K,   or   ?p/p = ! ?K/K.

	We find the uncertainty in the electron’s position from

		? x = ˙/?p = 2˙/p(?K/K) = 2(1.055 ´ 10–34 J · s)/(2.70 ´ 10–23 kg · m/s)(0.0100) =      7.82 ´ 10–10 m.



11.	The electron has an initial momentum px and a wavelength l = h/px .  For the maxima of the double-slit interference we have

		d sin q = ml, m = 0, 1, 2, … .

	If the angles are small, the separation of maxima is

		?qmax = l/d, so the angle between a maximum and a minimum is ?q = l/2d.

	The separation on the screen will be

		H = L ?q = lL/2d.

	The uncertainty in the y-position at the slits of d/2 produces an uncertainty in the y-momentum of

		?py = h/2p ?y = h/pd.

	This produces an uncertainty of the y-position at the screen of

		?H = (?py/px)L = (h/pd)L/(h/l) = lL/pd.

	This is on the order of the separation of maxima and minima, so the pattern is destroyed.



12.	The Schrödinger equation for a free particle is

		– (˙2/2m) ?2Y/?x2 + U0Y = i˙ ?Y/?t.

	(a)	For the proposed solution Y = A e i(kx – wt) we have

			?Y/?t = – iwA e i(kx – wt)  = – iwY;

			?2Y/?x2 = (ik)2A e i(kx – wt) = – k2Y.

		If we substitute these in the equation, we get

			– (˙2/2m)(– k2Y) + U0Y = – i2˙wY = ˙wY.

		Because both sides have the same functional dependence, the solution is valid.

		For the proposed solution Y = A cos (kx – wt) we have

			?Y/?t = + Aw sin (kx – wt);

			?2Y/?x2 = – Ak2 cos (kx – wt) .

		If we substitute these in the equation, we get

			– (˙2/2m)[– Ak2 cos (kx – wt)] + U0A cos (kx – wt) = i˙Aw sin (kx – wt);

			[(˙2k2/2m) + U0]A cos (kx – wt) = i˙Aw sin (kx – wt).

		Because cosine and sine functions are different functions of x and t, the solution is not valid.

		For the proposed solution Y = A sin (kx – wt) we have

			?Y/?t = – Aw cos (kx – wt);

			?2Y/?x2 = – Ak2 sin (kx – wt) .

		If we substitute these in the equation, we get

			– (˙2/2m)[– Ak2 sin (kx – wt)] + U0A sin (kx – wt) = – i˙Aw cos (kx – wt);

			[(˙2k2/2m) + U0]A sin (kx – wt) = – i˙Aw cos (kx – wt).

		Because cosine and sine functions are different functions of x and t, the solution is not valid.

	(b)	For the valid solution we have

			– (˙2/2m)(– k2Y) + U0Y = – i2˙wY = ˙wY,   or  ˙w = (˙2k2/2m) + U0 .



13.	The wave function for a free particle is

		y = A sin kx  + B cos kx.

	(a)	For the free electron we have

			k = p/˙ = mv/˙ = (9.11 ´ 10–31 kg)(4.0 ´ 105 m/s)/(1.055 ´ 10–34 J · s) = 3.5 ´ 109 m–1.

		Thus we have

			y = A sin (3.5 ´ 109 m–1)x  + B cos (3.5 ´ 109 m–1)x .

	(b)	For the free proton we have

			k = p/˙ = mv/˙ = (1.67 ´ 10–27 kg)(4.0 ´ 105 m/s)/(1.055 ´ 10–34 J · s) = 6.3 ´ 1012 m–1.

		Thus we have

			y = A sin (6.3 ´ 1012 m–1)x  + B cos (6.3 ´ 1012 m–1)x .



14.	The wave function is

		y = A sin (1.0 ´ 1010 m–1)x = A sin kx.

	(a)	We find the wavelength from

			l = 2p/k = 2p/(1.0 ´ 1010 m–1) = 6.3 ´ 10–10 m =      0.63 nm.

	(b)	The momentum is

			p = ˙k = (1.055 ´ 10–34 J · s)(1.0 ´ 1010 m–1) =      1.1 ´ 10–24 kg · m/s. 

	(c)	The speed is

			v = p/m = (1.1 ´ 10–24 kg · m/s)/(9.11 ´ 10–31 kg) =       1.2 ´ 106 m/s.

	(d)	The kinetic energy is

			K = p2/2m = (1.1 ´ 10–24 kg · m/s)2/2(9.11 ´ 10–31 kg) = 6.1 ´ 10–19 J =      3.8 eV. 













15.	We form the wave packet from

		y = y1 + y2 = A sin k1x  + A sin k2x, where

		k1 = 2p/l1 ,  and  k2 = 2p/l2 .

	If we use a trigonometric identity we get

		y = A(sin k1x  + sin k2x) = 2A sin [!(k1 + k2)x ] cos [!(k1 – k2)x ].

	If the wavelengths are almost equal, we have

		?k =  k1 – k2 ,  and  k � !(k1 + k2); thus

		y = 2A cos [!(?k)x ] sin kx .

	The width of the packet corresponds to the distance from one zero to the next zero of the cosine function:

		!(?k) ?x  = p, which gives   ?x = 2p/?k.

	The momentum is p = ˙k, so ?k = ?p/˙.  When we use this in the expression for the width, we have

		?x = 2p/(?p/˙),   or    ?x ?p = h.



16.	The energy levels for the particle in a rigid box are

		En = n2h2/8mL2 = pn2/2m.

	Thus the momentum is 

		pn = nh/2L.

	The wavefunctions for the rigid box are

		yn = A sin knx, with kn = np/L.

	The wavelength is

		ln = 2p/kn = 2L/n = h/pn , which is the deBroglie wavelength.



17.	The minimum speed corresponds to the minimum momentum or the maximum wavelength.  This is the lowest energy state, so lmax = 2L.

	Thus we have

		pmin = h/lmax;

		mvmin = h/2L;

		(9.11 ´ 10–31 kg)vmin = (6.63 ´ 10–34 J · s)/2(0.10 ´ 10–9 m), which gives vmin =       3.6 ´ 106 m/s.



18.	The energy levels for the electron in a rigid box are

		En = n2h2/8mL2.

	For a transition from n3 = 3 to n1 = 1, we have

		hf = hc/l = ?E = (n32 – n12)h2/8mL2;

		[(1.24 ´ 103 eV · nm)/(240 nm)](1.60 ´ 10–19 J/eV) = (32 – 12)(6.63 ´ 10–34 J · s)2/8(9.11 ´ 10–31 kg)L2, 

	which gives L = 7.6 ´ 10–10 m =      0.76 nm.



19.	(a)	The energy levels for the electron in an infinite square well are

			En = n2h2/8mL2 = n2E1.

		The longest wavelength photon has the least energy, so the transition must be from 

		n2 = 2 to n1 = 1.  Thus we have

			hf = hc/l = ?E = (n22 – n12)E1;

			(1.24 ´ 103 eV · nm)/l = (22 – 12)(8.0 eV), which gives l =       52 nm.

	(b)	We find the width of the well from the ground state energy:

			E1 = h2/8mL2;

			(8.0 eV)(1.60 ´ 10–19 J/eV) = (6.63 ´ 10–34 J · s)2/8(9.11 ´ 10–31 kg)L2, 

		which gives L = 2.2 ´ 10–10 m =     0.22 nm.











20.	The longest wavelength photon has the least energy, so the transition must be from 

	n2 = 2 to n1 = 1.  Thus we have

		hf = hc/l = ?E = (n22 – n12)h2/8mL2;

		[(1.24 ´ 103 eV · nm)/(690 nm)](1.60 ´ 10–19 J/eV) = (22 – 12)(6.63 ´ 10–34 J · s)2/8(9.11 ´ 10–31 kg)L2, 

	which gives L = 7.9 ´ 10–10 m =      0.79 nm.



21.	The energy level for the ground state of a particle in a rigid box is

		E1 = h2/8mL2 = p12/2m.

	Thus the momentum is 

		p1 = h/2L.

	Because the direction is not known, we have ?p � 2p1 = h/L.

	Because the particle can be anywhere in the box, we have ?x � L.

	Thus we get

		?p ?x � (h/L)L = h, which is consistent with the uncertainty principle.



22.	The wavefunctions for the rigid box are

		yn = A sin knx, with kn = np/L.

	Thus we have

		|yn |2 = A2 sin2 (npx/L).

	(a)	The maximal value of |yn |2 is A2, which occurs n times.  We find the positions of the maxima from

			sin (npxmax/L) = ± 1;

			npxmax/L = !p, *p, … ;  or

			xmax = (L/n)(m – !), m = 1, 2, … , n.

	(b)	The minimal value of |yn |2 is 0, which occurs n + 1 times.  We find the positions of the minima from

			sin (npxmin/L) = 0;

			npxmin/L = 0, p, 2p, … ;  or

			xmin = (L/n)m, m = 0, 1, 2, … , n.



23.	The energy levels for the electron in an infinite potential well are

		En 	= n2h2/8mL2 

			= n2(6.63 ´ 10–34 J · s)2/8(9.11 ´ 10–31 kg)(2.0 ´ 10–9 m)2(1.60 ´ 10–19 J/eV) = (9.42 ´ 10–2 eV)n2.

	The wave functions are

		yn = (2/L)1/2 sin (npx/L) = (2/2.0 nm)1/2 sin (npx/2.0 nm) = (1.00 nm–1/2) sin (1.57 nm–1 nx).

	Thus we have

		E1 = (9.42 ´ 10–2 eV)(1)2 =       0.094 eV;    y1 = (1.00 nm–1/2) sin (1.57 nm–1 x);

		E2 = (9.42 ´ 10–2 eV)(2)2 =       0.38 eV;    y2 = (1.00 nm–1/2) sin (3.14 nm–1 x);

		E3 = (9.42 ´ 10–2 eV)(3)2 =       0.85 eV;    y3 = (1.00 nm–1/2) sin (4.71 nm–1 x);

		E4 = (9.42 ´ 10–2 eV)(4)2 =       1.51 eV;    y4 = (1.00 nm–1/2) sin (6.28 nm–1 x).



























24.	(a)	The energy levels for the electron in a rigid box are

			En 	= n2h2/8mL2 = n2(6.63 ´ 10–34 J · s)2/8(9.11 ´ 10–31 kg)(0.50 ´ 10–9 m)2(1.60 ´ 10–19 J/eV) 

				= (1.51 eV)n2.

		The wave functions are

			yn = (2/L)1/2 sin (npx/L) = (2/0.50 nm)1/2 sin (npx/0.50 nm) = (2.0 nm–1/2) sin (2.0 nm–1 npx).

		Thus we have

			E1 = (1.51 eV)(1)2 =       1.51 eV;    y1 = (2.0 nm–1/2) sin (2.0 nm–1 px);

			E2 = (1.51 eV)(2)2 =       6.03 eV;    y2 = (2.0 nm–1/2) sin (4.0 nm–1 px);

			E3 = (1.51 eV)(3)2 =       13.6 eV;    y3 = (2.0 nm–1/2) sin (6.0 nm–1 px);

			E4 = (1.51 eV)(4)2 =       24.1 eV;    y4 = (2.0 nm–1/2) sin (8.0 nm–1 px).

	(b)	The wavelength of a photon is determined by the energy change:

			l = (1.24 ´ 103 eV · nm)/?E.

		For all possible transitions we have

			l2®1 = (1.24 ´ 103 eV · nm)/(6.03 eV – 1.51 eV) =       274 nm;

			l3®1 = (1.24 ´ 103 eV · nm)/(13.6 eV – 1.51 eV) =      103 nm;

			l3®2 = (1.24 ´ 103 eV · nm)/(13.6 eV – 6.03 eV) =      164 nm;

			l4®1 = (1.24 ´ 103 eV · nm)/(24.1 eV – 1.51 eV) =      55 nm;

			l4®2 = (1.24 ´ 103 eV · nm)/(24.1 eV – 6.03 eV) =      69 nm;

			l4®3 = (1.24 ´ 103 eV · nm)/(24.1 eV – 13.6 eV) =      118 nm.



25.	If we consider a one-dimensional system, the energy level of the ground state is

		E = h2/8mL2. 

	(a)	For an electron we have

				E1e	= h2/8mL2 = (6.63 ´ 10–34 J · s)2/8(9.11 ´ 10–31 kg)(10–14 m)2(1.60 ´ 10–19 J/eV) 

					= 3.8 ´ 109 eV =      4 GeV.

	(b)	For a proton we have

				E1p	= h2/8mL2 = (6.63 ´ 10–34 J · s)2/8(1.67 ´ 10–27 kg)(10–14 m)2(1.60 ´ 10–19 J/eV) 

					= 2.1 ´ 106 eV =      2 MeV.

	(c)	For a neutron we have

				E1n	= h2/8mL2 = (6.63 ´ 10–34 J · s)2/8(1.67 ´ 10–27 kg)(10–14 m)2(1.60 ´ 10–19 J/eV) 

					= 2.1 ´ 106 eV =      2 MeV.



�

26.	Because the origin of the x-axis is at the center of the well, the wavefunctions will alternate between sines and cosines:

		y1 = (2/L)1/2 cos (px/L);

		y2 = (2/L)1/2 sin (2px/L);

		y3 = (2/L)1/2 cos (3px/L);

		y4 = (2/L)1/2 sin (4px/L).



























27.	(a)	Because the wavefunction is normalized, the probability is

			�

		If we change variable to q = px/L, so dq = (p/L) dx, we have

			�

			    =        0.18.

	(b)	For the n = 4 state the probability is

			�

		If we change variable to q = 4px/L, so dq = (4p/L) dx, we have

			�

			   =       0.50.

	(c)	Classically the electron has equal probability of being anywhere in the well.  Thus the classical 

		prediction is

			[(#L – 0) + (L – &L)]/L =      0.50.

		We see that the probability approaches the classical value for large n.



28.	Because the wavefunction is normalized, the probability is

		�

	If we change variable to q = npx/L, so dq = (np/L) dx, we have

		�

	(a)	For the n = 1 state we have

			P = (2/p)[!(0.60p – 0.40p) – #(sin 1.20p – sin 0.80p)] =      0.39.

	(b)	For the n = 5 state we have

			P = (2/5p){![(0.60)(5)p – (0.40)(5)p] – #[sin (1.20)(5)p – sin (0.80)(5)p]} =      0.20.

	(c)	For the n = 20 state we have

			P = (2/20p){![(0.60)(20)p – (0.40)(20)p] – #[sin (1.20)(20)p – sin (0.80)(20)p]} =      0.20.

	(d)	Classically the electron has equal probability of being anywhere in the well, so the probability is

			P = ?x/L = (0.20 nm)/(1.00 nm) = 0.20.

		We see that the probabilities       approach the classical value for large n.























29.	

�























30.	We choose the zero of potential energy at the bottom of 	(c)

�

	the well.  In free space outside the well the potential 

	energy is U0 = 50 eV.  We find the total energy from

			K = E – U0;

			100 eV = E – 50 eV, which gives E = 150 eV.

	(a)	In free space we have

			Ka = pa2/2m = h2/2mla2;

			(100 eV)(1.60 ´ 10–19 J/eV) = (6.63 ´ 10–34 J · s)2/

									   2(9.11 ´ 10–31 kg)la2, 

		which gives la = 1.2 ´ 10–10 m =      0.12 nm.

	(b)	Over the well we have

			Kb = pb2/2m = h2/2mlb2;

			(150 eV)(1.60 ´ 10–19 J/eV) = (6.63 ´ 10–34 J · s)2/

									  2(9.11 ´ 10–31 kg)lb2, 

		which gives lb = 1.0 ´ 10–10 m =      0.10 nm.



31.	The wavefunction outside the well (negative x) is

		yI  = Ce Gx, where G2 = 2m(U0 – E)/˙2.

	We approximate the energy as that of the ground state of an infinite well:

		E � h2/8mL2 = (6.63 ´ 10–34 J · s)2/8(9.11 ´ 10–31 kg)(0.10 ´ 10–9 m)2(1.60 ´ 10–19 J/eV) = 38 eV.

	Because this is much less than U0 , this should be a good approximation.  We find G from

		G2 = 2(9.11 ´ 10–31 kg)(1.00 ´ 103 eV – 38 eV)(1.60 ´ 10–19 J/eV)/(1.055 ´ 10–34 J · s)2, 

	which gives G = 1.59 ´ 1011 m–1.

	Because of the continuity of the wavefunction, the value at the wall (x = 0) is ywall = C.  Thus we have

		yI/ywall = e Gx;

		0.01 = e Gx,   or   ln (0.01) = (1.59 ´ 1011 m–1)x, which gives x = – 2.9 ´ 10–11 m, so | x | =      0.03 nm.





























32.	(a)	We assume the lowest 3 states are bound in the well.

�



























	(b)	In region I, x < 0,       yI = 0;

		In the well, region II,  0 = x = L,       yII = A sin kx, where k2 = 2mE/˙2;

		In region III, x > L,       yIII = B e –Gx, where G2 = 2m(U0 – E)/˙2.



33.	From the transmission we can find the value of G:

		T = e – 2GL,   or    ln T = – 2GL;

		ln (0.010) = – 2G(0.50 ´ 10–9 m), which gives G = 4.6 ´ 109 m–1.

	We find the energy from

		G2 = 2m(U0 – E)/˙2;

		(4.6 ´ 109 m–1)2 = 2(9.11 ´ 10–31 kg)(10.0 eV – E)(1.60 ´ 10–19 J/eV)/(1.055 ´ 10–34 J · s)2, 

	which gives E =      9.2 eV.



34.	We find the value of G from

		G2	= 2m(U0 – E)/˙2

			= 2(1.67 ´ 10–27 kg)(2.0 MeV – 1.0 MeV)(1.60 ´ 10–13 J/MeV)/(1.055 ´ 10–34 J · s)2, 

	which gives G = 2.2 ´ 1014 m–1.

	For the transmission coefficient we have

		T = e – 2GL,   or    ln T = – 2GL;

		ln T = – 2(2.2 ´ 1014 m–1)(2.0 ´ 10–13 m), which gives T = 8.6 ´ 10–39.

	Thus the transmitted current is

		I = I0T = (1.0 ´ 10–3 A)(8.6 ´ 10–39) =       8.6 ´ 10–42 A.



35.	(a)	We find the small change in G from a small change in the barrier height U0 :

			G2 = 2m(U0 – E)/˙2;

			2G dG = (2m/˙2) dU0 ,   or   dG = (mU0/G˙2) dU0/U0 .

		This produces a small change in the transmission coefficient:

			T = e – 2GL;

			dT = – 2L e – 2GL dG,   or    dT/T = – 2L dG = – 2(L2mU0/GL˙2) dU0/U0 ;

			dT/T = – 2[(0.10 ´ 10–9 m)2(9.11 ´ 10–31 kg)(70 eV)(1.60 ´ 10–19 J/eV)/

												(2.3)(1.055 ´ 10–34 J · s)2](0.01) = – 0.08.

		Thus T       decreases by 8%.

	(b)	We find the small change in T from a small change in the barrier thickness L:

			T = e – 2GL;

			dT = – 2G e – 2GL dL,   or  

			dT/T = – 2G dL =  – 2GL (dL /L) = – 2(2.3)(0.01) = – 0.05.

		Thus T       decreases by 5%.





36.	The wavefunction inside the barrier is

		y = A e – Gx + B e + Gx.

	If the barrier is high or thick, y(x = L) � 0, so B � 0.  Thus we have

		y = y(0)e – Gx, so 

		|y(x = L)|2/|y(0)|2 = e – 2Gx.



37.	(a)	We assume the potential energy of the alpha particle (charge = 2e) is produced by the electric 

		field of the remaining nuclear charge of 90e.  Thus the potential energy at a radius of 8 fm is

			UC	= qQ/4pĹ0r0 

				= (2)(90)(1.60 ´ 10–19 C)2/4p(8.85 ´ 10–12 C2/N · m2)(8 ´ 10–15 m)(1.60 ´ 10–19 J/eV) 

				= 3.2 ´ 107 eV =      32 MeV.

	(b)	The kinetic energy of the free alpha particle is also its total energy.  At the exit from the 

		barrier, the kinetic energy is zero, so we find the radius where the alpha particle leaves from

			E =  Ur = qQ/4pĹ0r = (qQ/4pĹ0r0)(r0/r);

			4 MeV = (32 MeV)(8 fm/r), which gives r = 64 fm.

		Thus the width of the barrier at an energy of 4 MeV is 64 fm – 8 fm =      56 fm.

	(c)	If the potential energy is zero inside the barrier, we find the speed of the alpha particle from

			E = K = !mv2;

			(4 MeV)(1.60 ´ 10–13 J/MeV) = !(4)(1.67 ´ 10–27 kg)v2, which gives v =       1.4 ´ 107 m/s.

		Because there is a barrier on both sides of the nucleus, the frequency with which the alpha particle 

		hits a barrier is

			f = v/2r0 = (1.4 ´ 107  m/s)/2(8 ´ 10–15 m) =       8.8 ´ 1020 s–1. 

		To find the transmission coefficient, we assume a square barrier.  We find the value of G from

			G2	= 2m(U0 – E)/˙2

				= 2(4)(1.67 ´ 10–27 kg)(32 MeV – 4 MeV)(1.60 ´ 10–13 J/MeV)/(1.055 ´ 10–34 J · s)2, 

		which gives G = 2.4 ´ 1015 m–1 = 2.4 fm–1.

		If we take the height as the value of the Coulomb barrier, the thickness will be less than that 

		found in part (b).  The Coulomb potential varies as 1/r, so the assumed thickness of a square barrier 

		will be less than half that found in part (b).  If we use @ of the width, L = 18.7 fm, we have

			�

		Each time the alpha particle hits the barrier, T represents the probability it gets through.  If the 

		lifetime is t, the number of hits is ft, which has a probability of one:

			1 = ft T,   or   t = 1/f T;

			t = 1/(8.8 ´ 1020 s–1)(1.0 ´ 10–39) = 1.1 ´ 1018 s �      1010 yr.

		Note that the result is very sensitive to the value of L.  



38.	We find the uncertainty in the momentum:

		?p = ˙/?x = (1.055 ´ 10–34 J · s)/(2.0 ´ 10–8 m) = 5.28 ´ 10–27 kg · m/s.

	We find the uncertainty in the velocity from

		?p = m ?v;

		5.28 ´ 10–27 kg · m/s = (9.11 ´ 10–31 kg) ?v, which gives ?v =       5.8 ´ 103 m/s.



39.	We use the radius as the uncertainty in position for the neutron.  We find the uncertainty in the momentum from

		?p = ˙/?x = (1.055 ´ 10–34 J · s)/(1.0 ´ 10–15 m) = 1.055 ´ 10–19 kg · m/s.

	If we assume that the lowest value for the momentum is the least uncertainty, we estimate the lowest possible kinetic energy as 

		E = (?p)2/2m = (1.055 ´ 10–19 kg · m/s)2/2(1.67 ´ 10–27 kg) = 3.33 ´ 10–12 J =      21 MeV.



40.	We find the average lifetime of the particle from

		?t = ˙/?E = (1.055 ´ 10–34 J · s)/(2.5 GeV)(1.60 ´ 10–10 J/GeV) =      2.6 ´ 10–25 s.



41.	We find the uncertainty in the rest energy of the muon from

		?E = ˙/?t = (1.055 ´ 10–34 J · s)/(2.20 ´ 10–6 s) = 4.8 ´ 10–29 J = 3.00 ´ 10–10 eV.

	Thus the uncertainty in the mass is

		?m = ?E/c2 =      3.00 ´ 10–10 eV/c2.



42.	We find the uncertainty in the rest energy of the free neutron from

		?E = ˙/?t = (1.055 ´ 10–34 J · s)/(900 s) = 1.17 ´ 10–37 J.

	Thus the uncertainty in the mass is

		?m = ?E/c2 = (1.17 ´ 10–37 J)/(3.00 ´ 108 m/s)2 =     1.30 ´ 10–54 kg.



43.	We can relate the momentum to the radius of the orbit from the quantum condition:

		L = mvr = pr = n˙,   so   p = n˙/r = ˙/r1 for the ground state.

	If we assume that this is the uncertainty of the momentum, the uncertainty of the position is

		? x = ˙/?p = ˙/(˙/r1) =      r1 , which is the Bohr radius.



44.	(a)	The energy levels for the neutron in an infinite well are

			En 	= n2h2/8mL2 = n2(6.63 ´ 10–34 J · s)2/8(1.67 ´ 10–27 kg)(2.0 ´ 10–15 m)2(1.60 ´ 10–13 J/MeV) 

				= (51.4 MeV)n2.

		Thus we have

			E1 = (51.4 MeV)(1)2 =       51 MeV; 

			E2 = (51.4 MeV)(2)2 =       210 MeV; 

			E3 = (51.4 MeV)(3)2 =       460 MeV; 

			E4 = (51.4 MeV)(4)2 =       820 MeV.

	(b)	The wave functions are

			yn = (2/L)1/2 sin (npx/L) = (2/2.0 fm)1/2 sin (npx/2.0 fm) = (1.0 fm–1/2) sin (0.50 fm–1 npx).

		Thus we have

			y1 = (1.0 fm–1/2) sin (0.50 fm–1 px);

			y2 = (1.0 fm–1/2) sin (1.00 fm–1 px);

			y3 = (1.0 fm–1/2) sin (1.50 fm–1 px);

			y4 = (1.0 fm–1/2) sin (2.00 fm–1 px).

	(c)	The energy of the photon is the energy change:

			hf = ?E = E2 – E1 = 205 MeV – 51 MeV =       150 MeV.

		The wavelength of the photon is 

			l2®1 	= (1.24 ´ 103 eV · nm)(10–6 MeV/eV)(106 fm/nm)/?E = (1.24 ´ 103 MeV · fm)/?E .

					= (1.24 ´ 103 MeV · fm)/(150 MeV) =       8.3 fm, (gamma ray).



45.	If we assume the ground state, the kinetic energy is

		K 	= E1 = n2h2/8mL2 = (1)2(6.63 ´ 10–34 J · s)2/8(4)(1.67 ´ 10–27 kg)(10–14 m)2(1.60 ´ 10–19 J/eV) 

			= 5.1 ´ 105 eV =      0.5 MeV.

	We find the speed from

		K = p2/2m = mv2/2;

		(5.1 ´ 105 eV)(1.60 ´ 10–19 J/eV)= (4)(1.67 ´ 10–27 kg)v2/2, which gives v =       5 ´ 106 m/s.



















�

46.												(a)

	(b)	The Schrödinger equation is

			– (˙2/2m) d2y/dx2 + !Cx2y = Ey.

		For the proposed solution �, we have

			�

		If we substitute these in the equation, we get

			�

		When we cancel common factors, we get

			�

		Thus we have a solution if

			B2 = mC/4˙2,   and   E = B˙2/m = !˙w, if w = 2˙B/m.



47.	(a)	When the pencil, assumed to be a uniform rod, makes an angle f with the vertical, the torque 

		from its weight about the bottom point (assumed fixed) creates the angular acceleration:

			t = Ia;

			Mg!¬ sin f = @M¬2 d2f/dt2.

		Classically, if f = 0, there is no torque and thus no rotation.  From the uncertainty principle we have

			(?L)(?f) = ˙,   or   ?f = ˙/I ?w.  

		Thus f will not always be zero.  The resulting torque will cause the pencil to fall.

	(b)	We need the equation of motion to determine the time of fall.  Most of the time will be taken 

		while the angle is small.  Thus while f « 1, we have

			d2f/dt2 = (3g/2¬)f, for which the solution is

			f = Ae + kt + Be – kt.

		Because f increases with time, we use

			f = Ae kt, where k = (3g/2¬)1/2 = [3(9.80 m/s2)/2(0.20 m)]1/2 = 8.6 s–1.

		If we assume f has the minimum value of ?f at t = 0, then ?f = A.

		From the uncertainty principle, the initial angular velocity will be 

			w0 = kA = ?w = ˙/I ?f = ˙/(@M¬2)A, which gives

			A2 = 3˙/M¬2k = 3(1.055 ´ 10–34 J · s)/(10 ´ 10–3 kg)(0.20 m)2(8.6 s–1), which gives 

			A = 3.0 ´ 10–16 rad.

		We find the time to fall through 0.1 rad from

			f = Ae kt,   or   ln (f/A) = kt;

			ln [(0.1 rad)/(3.0 ´ 10–16 rad)] = (8.6 s–1)t, which gives t =      4 s.

		Because most of the time will be taken while the angle is small, this should be within a factor of 2.



48.	For the average value of the position of a particle in a rigid box, we have

		�

	If we change variable to q = npx/L, so dq = (np/L) dx, we have

		�EMBED Word.Picture.8���

	This is expected from the symmetry of the probability distributions.







49.	The potential difference between the surface and the tip creates vacant energy levels on one side of the barrier so tunneling can occur.  The change does not appreciably affect the shape of  the barrier, so we assume a square barrier of height U0 .  If the work function is the energy required to raise the electron to the top of the barrier, then W0 = U0 – E.  We find the value of G from

		G2 	= 2m(U0 – E)/˙2;

			= 2(9.11 ´ 10–31 kg)(2.28 eV)(1.60 ´ 10–19 J/eV)/(1.055 ´ 10–34 J · s)2, which gives

		G = 7.7 ´ 109 m–1.

	We use the distance from the sodium surface to the tip as the width of the barrier, so the transmission coefficient is

		T = e – 2GL.

	If we find the ratio of the coefficient after the rise of the tip to that before the rise, we have

		�

	The fractional change is

		(T2 – T1)/T1 = 0.86 – 1 = – 0.14.

	Thus the small change in separation (about a tenth of atomic size) produces a      14% decrease      

	in the tunneling current.



50.	From energy conservation, the speed after falling a height H or to rise to a height H is v = (2gH)1/2.

	If H0 is the initial height and the height after the first bounce is H1 = bH0 , the height after n bounces is Hn = bnH0.  Thus the speed after the nth bounce is

		vn = (2gbnH0)1/2.

	If we take the height after the nth bounce as the uncertainty in the position of the ball, we find the uncertainty in the speed from

		?p ?x = ˙; 

		m ?v Hn = ˙,  or  ?v  = ˙/mHn .

	The uncertainty principle will play a role when the uncertainty in the speed is on the order of the speed:

		?v � vn = (2gbnH0)1/2 = ˙/mbnH0 ,   or   

		b3n = ˙2/2gH03m2;

		(0.80)3n = (1.055 ´ 10–34 J · s)2/2(9.80 m/s2)(2.0 m)3(1.0 ´ 10–6 kg)2, which gives n =       200.
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