CHAPTER 40 – Quantum Mechanics of Atoms



Note:	At the atomic scale, it is most convenient to have energies in electron-volts and wavelengths in 

		nanometers.  A useful expression for the energy of a photon in terms of its wavelength is

			E = hf = hc/l = (6.63 ´ 10–34 J · s)(3 ´ 108 m/s)(109 nm/m)/(1.60 ´ 10–19 J/eV)l;

			E = (1.24 ´ 103 eV · nm)/l.



1.	The value of ¬ can range from 0 to n – 1.  Thus for n = 6, we have

		¬ = 0, 1, 2, 3, 4, 5.



2.	The value of m¬ can range from – ¬ to + ¬.  Thus for ¬ = 3, we have

		m¬ = – 3, – 2, – 1, 0, 1, 2, 3.

	The possible values of ms are      – !, + !.



3.	The value of ¬ can range from 0 to n – 1.  Thus for n = 4, we have

		¬ = 0, 1, 2, 3.

	For each ¬ the value of m¬ can range from – ¬ to + ¬, or 2¬ + 1 values.  For each of these there are two values of ms .  Thus the total number for each ¬ is 2(2¬ + 1).

	The number of states is

		N = 2(0 + 1) + 2(2 + 1) + 2(4 + 1) + 2(6 + 1) =      32 states.

	We start with ¬ = 0, and list the quantum numbers in the order (n, ¬, m¬ , ms);

		(4, 0, 0, – !),  (4, 0, 0, + !),  (4, 1, –1, – !),  (4, 1, –1, + !),  (4, 1, 0, – !),  (4, 1, 0, + !),  (4, 1, 1, – !),

		(4, 1, 1, + !),  (4, 2, – 2, – !),  (4, 2, – 2, + !),  (4, 2, –1, – !),  (4, 2, –1, + !),  (4, 2, 0, – !),  (4, 2, 0, + !),  

		(4, 2, 1, – !),  (4, 2, 1, + !),  (4, 2, 2, – !),  (4, 2, 2, + !),  (4, 3, – 3, – !),  (4, 3, – 3, + !),  (4, 3, – 2, – !),  

		(4, 3, – 2, + !),  (4, 3, – 1, – !),  (4, 3, – 1, + !),  (4, 3, 0, – !),  (4, 3, 0, + !),  (4, 3, 1, – !),  (4, 3, 1, + !),  

		(4, 3, 2, – !),  (4, 3, 2, + !),  (4, 3, 3, – !),  (4, 3, 3, + !).



4.	The value of m¬ can range from – ¬ to + ¬, so we have     ¬ = 3.

	The value of ¬ can range from 0 to n – 1.  Thus we have      n = ¬ + 1 (minimum 4).

	There are two values of ms :      ms  = – !, + !.



5.	The value of ¬ can range from 0 to n – 1.  Thus for ¬ = 4, we have      n = 5.

	For each ¬ the value of m¬ can range from – ¬ to + ¬:     m¬ = – 4, – 3, – 2, – 1, 0, 1, 2, 3, 4.

	There are two values of ms :      ms  = – !, + !.



6.	The magnitude of the angular momentum depends on ¬ only:

		L = ˙[¬(¬ + 1)]1/2 = (1.055 ´ 10–34 J · s)[(2)(2 + 1)]1/2 =       v6˙ = 2.58 ´ 10–34 kg · m2/s.



7.	(a)	The principal quantum number is n =      6.

	(b)	The energy of the state is

			E6 = – (13.6 eV)/n2 = – (13.6 eV)/62 =      – 0.378 eV.

	(c)	From spdfgh, we see that the “g” subshell has       ¬ = 4.       The magnitude of the angular momentum 

		depends on ¬ only:

			L = ˙[¬(¬ + 1)]1/2 = (1.055 ´ 10–34 J · s)[(4)(4 + 1)]1/2 =      v20˙ = 4.72 ´ 10–34 kg · m2/s.

	(d)	For each ¬ the value of m¬ can range from – ¬ to + ¬:     m¬ = – 4, – 3, – 2, – 1, 0, 1, 2, 3, 4.















8.	(a)	For each ¬ the value of m¬ can range from – ¬ to + ¬, or 2¬ + 1 values.  For each of these there are 

		two values of ms .  Thus the total number of electrons allowed in a subshell is

			N = 2(2¬ + 1).

	(b)	For the values of ¬ we have

			¬ = 0, N = 2[2(0) + 1] = 2;

			¬ = 1, N = 2[2(1) + 1] = 6;

			¬ = 2, N = 2[2(2) + 1] = 10;

			¬ = 3, N = 2[2(3) + 1] = 14;

			¬ = 4, N = 2[2(4) + 1] = 18;

			¬ = 5, N = 2[2(5) + 1] = 22;

			¬ = 6, N = 2[2(6) + 1] = 26.



9.	From Problem 8 the total number of electrons allowed in a subshell with quantum number ¬ is 2(2¬ + 1).

	For a state with quantum number n the value of ¬ can range from 0 to n – 1.  Thus we have

		�



10.	(a)	The 6d subshell has ¬ = 2.  Allowed transitions will be to any lower value of n with ?¬ = ± 1.  

		Thus the final value of ¬ can be 1 (p) or 3 (f ), so we have

			5f, 5p, 4f, 4p, 3p, 2p.

	(b)	If we ignore fine structure, the energy change depends only on the two values of n.  

		The allowed transitions from n = 6 are to n = 5, 4, 3, 2, so there are       4 wavelengths.





11.	To see if the ground-state wave function is normalized, we integrate the radial probability density over all radii:

		�

	We change variable to x = 2r/r0 and use the result for the integration in Ex. 40–4:

		�



12.	The ground-state wave function is �.

	(a)	y100(r = r0) = [1/(pr03)1/2] e – 1.

	(b)	|y100(r = r0)|2 = (1/pr03) e – 2.

	(c)	The radial probability density is

			Pr = 4pr2|y100(r)|2.

		At r = r0 we have

			Pr(r = r0) = (4/r0) e – 2.



13.	The n = 2, ¬ =0 wave function is �

	(a)	y200(r = 5r0) = [1/(32pr03)1/2](2 – 5) e – 5/2 =       – [3/(32pr03)1/2] e – 5/2.

	(b)	|y200(r = 5r0)|2 =      (9/32pr03) e – 5.

	(c)	The radial probability density is

			Pr = 4pr2|y200(r)|2.

		At r = 5r0 we have

			Pr(r = 5r0) = 4p(5r0)2(9/32pr03) e – 5 =       (225/8r0) e – 5.







14.	To see if the wave function is normalized, we integrate the radial probability density over all radii:

		�

	We change variable to x = r/r0 and expand:

		�



15.	We form the ratio of the radial probability densities:

		�EMBED Word.Picture.8���



16.	Because the change in r is small, we can use the radial probability density at r = r0 :

		�EMBED Word.Picture.8���



17.	The n = 2, ¬ =0 wave function is �

	The radial probability density is

		�

	To find the probability we integrate the radial probability density:

		�

	We change variable to x = r/r0 and expand:

		�EMBED Word.Picture.8���



18.	(a)	To find the probability we integrate the radial probability density:

			�

		We change variable to x = 2r/r0 and use the result for the integration in Ex. 40–4:

			�

	(b)	To find the probability we integrate the radial probability density:

			�

		We change variable to x = 2r/r0 and use the result for the integration in Ex. 40–4:

			�EMBED Word.Picture.8���











19.	To find the probability for the electron to be within a sphere of radius r, we integrate the radial probability density:

		�

	We change variable to x˘ = 2r˘/r0 and use the result for the integration in Ex. 40–4:

		�

	(a)	For the probability to be 50% we have

			(!x2 + x + 1)e –x = 0.50.

		A numerical calculation gives x = 2.68, so r =       1.34r0 .

	(b)	For the probability to be 90% we have

			(!x2 + x + 1)e –x = 0.10.

		A numerical calculation gives x = 5.32, so r =       2.7r0 .

	(c)	For the probability to be 99% we have

			(!x2 + x + 1)e –x = 0.01.

		A numerical calculation gives x = 8.40, so r =       4.2r0 .



20.	(a)	Because r « r0 , we assume the probability density is constant and equal to the value at r = 0:

			P = (1/pr03) e – 0()pr3) = )(r/r0)3 = )[(1.1 ´ 10–15 m)/(0.529 ´ 10–10 m)]3 =      1.2 ´ 10–14.

	(b)	From the Bohr theory, we have r0 ~ 1/m.  Thus Pr ~ 1/r03 ~ m3.  If we form the ratio we have

			Pmuon/Pelectron = (mmuon/melectron)3;

			Pmuon/(1.2 ´ 10–14) = (207)3, which gives Pmuon =      1.1 ´ 10–7.



21.	The three wave functions are

		�

	The radial probability density is

		�EMBED Word.Picture.8���



22.	From the result for Problem 21 the radial probability density is

		�

	We find the most probable distance by setting the first derivative equal to zero:

		�



23.	We find the mean value of r from

		�

	We change variable to x = 2r/r0 :

		�









24.	(a)	The n = 2, ¬ =0 wave function is �

		The radial probability density is

			�

		To find the probability for 0 < r < r0 , we integrate the radial probability density:

			�

		We change variable to x = r/r0 and expand:

			�

	(b)	From the result for Problem 21 the radial probability density is

			�

		To find the probability for 0 < r < r0 , we integrate the radial probability density:

			�

		We change variable to x = r/r0:

			�

























































25.	The Schrödinger equation is

		�

	where r2 = x2 + y2 + z2.  For later use we find a partial derivative:

		2r ?r/?x = 2x,   or   ?r/?x = x/r.

	We find the partial derivatives of the ground-state wave function �:

		�

	By exchanging x with y and z, we have

		�

	When we put these in the Schrödinger equation and use r2 = x2 + y2 + z2, we get

		�

	If we cancel common factors, we have

		�

	If we look at the second and third terms and use r0 = h2Ĺ0/pme2, we get

		�

	Thus we have

		�



26.	From Fig. 40–8 we see that the first peak is from r = 0 to r = 2r0 .  The n = 2, ¬ =0 wave function is 	�

	The radial probability density is

		�

	To find the probability for 0 < r < 2r0 , we integrate the radial probability density:

		�

	We change variable to x = r/r0 and expand:

		�EMBED Word.Picture.8���













�

27.	(a)	The n = 3, ¬ =0 wave function is 			(b)

			�

		The radial probability distribution is

			�EMBED Word.Picture.8���

	(c)	To find the most probable distance from the nucleus, we 

		find the maxima by setting the first derivative equal 

		to zero.  If we change variable to x = r/r0 , we have

			�

		If we suppress the constant in front, the derivative is

			�

		Thus we have

			x = 0, which is the minimum at r = 0;

			� = 0.  

		Because this is a factor in y, its two solutions are the other minima at x = 1.90, 7.10.

			� = 0, which can be solved numerically for the three solutions, 

		which are x = 0.74, 4.19, 13.07.  These correspond to the three peaks in the distribution.  

		The highest peak is the most probable distance:       r = 13r0 .



28.	We start with the n = 1 shell, and list the quantum numbers in the order (n, ¬, m¬ , ms):

		(1, 0, 0, – !),  (1, 0, 0, + !),  (2, 0, 0, – !),  (2, 0, 0, + !),  (2, 1, – 1, – !),  (2, 1, – 1, + !),  (2, 1, 0, – !).

	Note that, without additional information, there are other possibilities for the last three electrons.



29.	(a)	We start with the n = 1 shell, and list the quantum numbers in the order (n, ¬, m¬ , ms):

			(1, 0, 0, – !),  (1, 0, 0, + !),  (2, 0, 0, – !),  (2, 0, 0, + !),  (2, 1, – 1, – !),  (2, 1, – 1, + !).

		Note that, without additional information, there are other possibilities for the last two electrons.

	(b)	We start with the n = 1 shell, and list the quantum numbers in the order (n, ¬, m¬ , ms):

			(1, 0, 0, – !),  (1, 0, 0, + !),  (2, 0, 0, – !),  (2, 0, 0, + !),  (2, 1, – 1, – !),  (2, 1, – 1, + !),  (2, 1, 0, – !),

			(2, 1, 0, + !),  (2, 1, 1, – !),  (2, 1, 1, + !),  (3, 0, 0, – !),  (3, 0, 0, + !).



30.	The number of electrons in the subshell is determined by the value of ¬.  For each ¬ the value of m¬ can range from – ¬ to + ¬, or 2¬ + 1 values.  For each of these there are two values of ms .  Thus the total number for ¬ = 3 is

		N = 2(2¬ + 1) = 2[2(3) + 1] =      14 electrons.



31.	(a)	Selenium has Z = 34:

			1s22s22p63s23p63d104s24p4.

	(b)	Gold has Z = 79:

			1s22s22p63s23p63d104s24p64d104f145s25p65d106s1.

	(c)	Uranium has Z = 92:

			1s22s22p63s23p63d104s24p64d104f145s25p65d106s26p65f36d17s2.









32.	(a)	The 4p ® 3p transition is      forbidden, because ?¬ ? ± 1.

	(b)	The 2p ® 1s transition is      allowed, ?¬ = – 1.

	(c)	The 3d ® 2d transition is      forbidden, because ?¬ ? ± 1.

	(d)	The 4d ® 3s transition is      forbidden, because ?¬ ? ± 1.

	(e)	The 4s ® 2p transition is      allowed, ?¬ = + 1.



33.	From the Bohr formula for the radius, we see that 

		r µ 1/Z, so rU = r1/Z = (0.529 ´ 10–10 m)/(92) =     5.8 ´ 10–13 m.

	The innermost electron would “see” a nucleus with charge Ze.  Thus we use the energy of the hydrogen atom:

		E1 = – (13.6 eV)Z2/n2 = – (13.6 eV)(92)2/12 = – 1.15 ´ 105 eV,

	so the binding energy is      0.115 MeV.



34.	The third electron in lithium is in the 2s subshell, which is outside the more tightly bound filled 1s shell.  This makes it appear as if there is a “nucleus” with a net charge of + 1e.  Thus we use the energy of the hydrogen atom:

		E2 = – (13.6 eV)/n2 = – (13.6 eV)/22 = – 3.4 eV,

	so the binding energy is      3.4 eV.

	Our assumption of complete shielding of the nucleus by the 1s electrons is probably not correct.



35.	In a filled subshell, we have 2(2¬ + 1) electrons.  All of the m¬ values 

		– ¬, – ¬ + 1, … , 0, … , ¬ – 1, ¬

	are filled, so their sum is zero.  For each m¬ value, both values of ms  are filled, so their sum is also zero.  Thus the total angular momentum is zero.



36.	The energy levels of the infinite square well of width L are

		En = h2n2/8mL2.

	An electron in the well has two quantum numbers: n and ms = ± !.  To be consistent with the Pauli exclusion principle, a maximum of two electrons can be in each level.  The lowest energy state will 

	have two electrons in the n = 1 state, two electrons in the n = 2 state,  and one electron in the n = 3 state.  The total energy is

		E = 2E1 + 2E2 + E3 = 2(h212/8mL2) + 2(h222/8mL2) + (h232/8mL2) =      19h2/8mL2.



37.	The shortest wavelength X-ray has the most energy, which is the maximum kinetic energy of the electron in the tube:

		l = (1.24 ´ 103 eV · nm)/E = (1.24 ´ 103 eV · nm)/(30 ´ 103 eV) =      0.041 nm.

	The longest wavelength of the continuous spectrum would be at the limit of the X-ray region of the electromagnetic spectrum, generally on the order of      1 nm.



38.	The shortest wavelength X-ray has the most energy, which is the maximum kinetic energy of the electron in the tube:

		E = (1.24 ´ 103 eV · nm)/l = (1.24 ´ 103 eV · nm)/(0.029 nm) = 4.3 ´ 104 eV = 43 keV.

	Thus the operating voltage of the tube is      43 kV.



39.	The energy of the photon with the shortest wavelength must equal the maximum kinetic energy of an electron:

		hf0 = hc/l0 = eV,  or   

		l0 	= hc/eV = (6.63 ´ 10–34 J · s)(3.00 ´ 108 m/s)(109 nm/m)/(1.60 ´ 10–19 J/eV)(1 e)V 

			= (1.24 ´ 103 V · nm)/V.







40.	With the shielding provided by the remaining n = 1 electron, we use the energies of the hydrogen atom with Z replaced by Z – 1.  The energy of the photon is

		hf = ?E = – (13.6 eV)(27 – 1)2[(1/22) – (1/12)] = 6.90 ´ 103 eV.

	The wavelength of the photon is

		l = (1.24 ´ 103 eV · nm)/?E = (1.24 ´ 103 eV · nm)/(6.90 ´ 103 eV) =      0.18 nm.



41.	With the shielding provided by the remaining n = 1 electron, we use the energies of the hydrogen atom with Z replaced by Z – 1.  The energy of the photon is

		hf = ?E = – (13.6 eV)(26 – 1)2[(1/22) – (1/12)] = 6.38 ´ 103 eV.

	The wavelength of the photon is

		l = (1.24 ´ 103 eV · nm)/?E = (1.24 ´ 103 eV · nm)/(6.38 ´ 103 eV) =      0.19 nm.



42.	If we assume that the shielding is provided by the remaining n = 1 electron, we use the energies of the hydrogen atom with Z replaced by Z – 1.  The energy of the photon is

		hf = ?E = – (13.6 eV)(42 – 1)2[(1/32) – (1/12)] = 2.03 ´ 104 eV.

	The wavelength of the photon is

		l = (1.24 ´ 103 eV · nm)/?E = (1.24 ´ 103 eV · nm)/(2.03 ´ 104 eV) =      0.061 nm.

	We do not expect perfect agreement because there is some       

		partial shielding provided by the n = 2 shell,      which was ignored when we replaced Z by Z – 1.



43.	The Ka line is from the n = 2 to n = 1 transition.  We use the energies of the hydrogen atom with 

	Z replaced by Z – 1.  Thus we have

		hf = ?E µ (Z – 1)2,  so  l µ 1/(Z – 1)2.

	When we form the ratio for the two materials, we get

		lX/liron = (Ziron – 1)2/(ZX – 1)2;

		(229 pm)/(194 pm) = (26 – 1)2/(ZX – 1)2, which gives ZX = 24,

	so the material is      chromium.



44.	For the emission of a photon, energy and momentum are conserved in any reference frame.  If we consider the frame in which the electron is initially at rest, its momentum is 0 and its energy is mc2.  The emitted photon will have momentum h/l = hf/c and energy hf.  The final momentum of the electron will be opposite to that of the photon with magnitude p.  Thus we have

		momentum conservation:	0 = p – hf/c;

		energy conservation:		mc2 = (p2c2 + m2c4)1/2 + hf.

	When we combine the two equations to eliminate p, we get

		(mc2)2 – 2hfmc2 + (hf)2 = (hf)2 + m2c4, which gives hf = 0.

	Thus no photon is emitted.

	If a third body is present, some momentum can be transferred to it; a photon can be emitted.



45.	For the Bohr magneton we have

		mB = e˙/2m = (1.60 ´ 10–19 C)(1.055 ´ 10–34 J · s)/2(9.11 ´ 10–31 kg) = 9.27 ´ 10–24 J/T.

























�

46.	(a)	The additional energy term in a magnetic field is

			U = – mzB = – mBm¬B.

		Thus the separation of energy levels is

			?U	= ?m¬ mBB = (1)(9.27 ´ 10–24 J/T)(2.0 T) 

				= 1.9 ´ 10–23 J =      1.2 ´ 10–4 eV.

	(b)	The 3d level, with ¬ = 2, will split into 5 levels.

		The 2p level, with ¬ = 1, will split into 3 levels.

		With the restriction that ?m¬ = 0, ± 1, there will 

		be only       3 wavelengths      from the 9 transitions,

		as shown on the diagram.

	(c)	If we assume the hydrogen energy levels, we find the 

		wavelength for the n˘ = 3 to n = 2 transition, which is 

		also the wavelength for ?m¬ = 0, from

			1/l0 = R[(1/n2) – (1/n˘2)] = (1.0974 ´ 107 m–1)[(1/22) – (1/32)], 

		which gives l0 = 656.10 ´ 10–9 m = 656.10 nm.

		Because the splitting of the levels is much smaller than their separation, we can find the 

		wavelength change from

			E = hc/l;

			?E = – (hc/l2) ?l = – (hc/l)(?l/l);

			± 1.2 ´ 10–4 eV = – [(1.24 ´ 103 eV · nm)/(656.10 nm)] ?l/(656.10 nm), which gives ?l = ± 0.04 nm.

		Thus the wavelengths are      656.06 nm, 656.10 nm, 656.14 nm.



47.	(a)	We take the original direction of the atomic beam as the x-axis and the direction of the force from 

		the magnetic field gradient as the z-axis.  The force is

			Fz = mz dB/dz = – gmBms dB/dz.

		This constant force will produce a constant acceleration.  The time to traverse the field is

			t = x/v0 = (4.0 ´ 10–2 m)/(700 m/s) = 5.71 ´ 10–5 s.

		so the deflection of one of the beams is

			z 	= !at2 = !(Fz/m)t2 = ![(gmBms dB/dz)/m]t2

				= ![(2.0023)(9.27 ´ 10–24 J/T)(!)(1.5 ´ 103 T/m)/(107.9)(1.66 ´ 10–27 kg)](5.71 ´ 10–5 s)2 

				= 1.26 ´ 10–4 m.

		Thus the separation is 

			2z = 2.52 ´ 10–4 m =      0.25 mm.

	(b)	Because the separation is proportional to g, we have

			2z˘ = (1/2.0023)(2.52 ´ 10–4 m) = 1.26 ´ 10–4 m =     0.13 mm.



48.	(a)	Aluminum has Z = 13.  We start with the n = 1 shell, and list the quantum numbers in the order 

		(n, ¬, m¬ , ms):

			(1, 0, 0, – !),  (1, 0, 0, + !),  (2, 0, 0, – !),  (2, 0, 0, + !),  (2, 1, – 1, – !),  (2, 1, – 1, + !),  (2, 1, 0, – !),

			(2, 1, 0, + !),  (2, 1, 1, – !),  (2, 1, 1, + !),  (3, 0, 0, – !),  (3, 0, 0, + !),  (3, 1, 0, – !).

		Note that, without additional information, there are other possibilities for the last electron.

	(b)	The filled subshells are      n = 1, ¬ = 0; n = 2, ¬ = 0; n = 2, ¬ = 1; n = 3, ¬ = 0.

	(c)	The possible values of the total angular momentum of the last electron are

			j = ¬ + s = 1 ± ! =      !, *.

	(d)	The 3p electron is the only electron not in a filled subshell.  The angular momentum of a filled 

		subshell is zero, so the total angular momentum of the atom is the angular momentum of the 3p 

		electron.

	(e)	When the beam passes through the magnetic field gradient, the deflecting force will be 

		proportional to mj .  If j = !, the values of mj are ± !, and there will be two lines.  If j = *, the values of 

		mj are ± ! , ± *, and there will be four lines.  Thus the       number of lines shows the value of mj .





49.	(a)	For the 3p state, ¬ = 1 and s = !.  Thus the values of j are

			j = ¬ ± s = 1 ± ! =      !, *.

		The values of J are

			J = [j(j + 1)]1/2˙ = [(1/2)(3/2)]1/2˙ =       !v3 ˙;

			J = [j(j + 1)]1/2˙ = [(3/2)(5/2)]1/2˙ =       !v15 ˙.

	(b)	For the 4f state, ¬ = 3 and s = !.  Thus the values of j are

			j = ¬ ± s = 3 ± ! =      5/2, 7/2.

		The values of J are

			J = [j(j + 1)]1/2˙ = [(5/2)(7/2)]1/2˙ =       !v35 ˙;

			J = [j(j + 1)]1/2˙ = [(7/2)(9/2)]1/2˙ =       !v63 ˙.

	(c)	For the 4d state, ¬ = 2 and s = !.  Thus the values of j are

			j = ¬ ± s = 2 ± ! =      3/2, 5/2.

		The values of J are

			J = [j(j + 1)]1/2˙ = [(3/2)(5/2)]1/2˙ =       !v15 ˙;

			J = [j(j + 1)]1/2˙ = [(5/2)(7/2)]1/2˙ =       !v35 ˙.



50.	For the 5g state, ¬ = 4 and s = !.  Thus the values of j are

			j = ¬ ± s = 4 ± ! =      7/2, 9/2.

		For j = 7/2, we have

			mj = – 7/2, – 5/2, – 3/2, – 1/2,  1/2,  3/2,  5/2,  7/2;

			J = [j(j + 1)]1/2˙ = [(7/2)(9/2)]1/2˙ =       *v7 ˙;

			Jz = mj˙ = – 7˙/2, – 5˙/2, – 3˙/2, – ˙/2,  ˙/2,  3˙/2,  5˙/2,  7˙/2.

		For j = 9/2, we have

			mj = – 9/2, – 7/2, – 5/2, – 3/2, – 1/2,  1/2,  3/2,  5/2,  7/2,  9/2;

			J = [j(j + 1)]1/2˙ = [(9/2)(11/2)]1/2˙ =       *v11 ˙;

			Jz = mj˙ = – 9˙/2, – 7˙/2, – 5˙/2, – 3˙/2, – ˙/2,  ˙/2,  3˙/2,  5˙/2,  7˙/2,  9˙/2.



51.	(a)	The additional energy term for the spin-orbit interaction is

			U = – msBn = – gmBmsBn .

		Thus the separation of energy levels is

			?U = ?ms gmBBn ;

			(5 ´ 10–5 eV)(1.60 ´ 10–19 J/eV) = [! – (– !)](2.0023)(9.27 ´ 10–24 J/T)Bn , which gives Bn =      0.4 T. 

	(b)	If we consider the nucleus to be a charge e revolving in a circle of radius r, the effective current is

			I = e/(2pr/v) = ev/2pr = meevr/2pmer2 = eL/2pmer2, 

		where L is the orbital angular momentum of the electron, because the nucleus has the same v and r.

		The electron is at the center of this circular current, so the magnetic field is

			B = m0I/2r = m0eL/4pmer3.

		If we use the Bohr quantization, L = n˙, and r = n2r0 , we have

			B = m0en˙/4pmen6r03 = (m0/4p)e˙/men5r03

				= (10–7 T · m/A)(1.60 ´ 10–19 C)(1.055 ´ 10–34 J · s)/(9.11 ´ 10–31 kg)(2)5(0.529 ´ 10–10 m)3 

				=       0.4 T.

		This is consistent with the result from part (a).



52.	The energy of a pulse is

		E = P ?t = (0.65 W)(25 ´ 10–3 s) =      0.016 J.

	The energy of a photon is

		hf = hc/l = (1.24 ´ 103 eV · nm)/l = (1.24 ´ 103 eV · nm)/(640 nm) = 1.94 eV.

	Thus the number of photons in a pulse is 

		N = E/hf = (0.016 J)/(1.94 eV)(1.6 ´ 10–19 J/eV) =     5.2 ´ 1016 photons.







53.	We find the angular half width of the beam from

		?q = 1.22l/d = 1.22(694 ´ 10–9 m)/(3.0 ´ 10–3 m) = 2.8 ´ 10–4 rad, 

	so the angular width is q =       5.6 ´ 10–4 rad.

	The diameter of the beam when it reaches the satellite is

		D = rq = (300 ´ 103 m)(5.6 ´ 10–4 rad) =      1.7 ´ 102 m.



54.	In thermal equilibrium we find the fraction of atoms relative to those in E0 from
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55.	We find the temperature from

		�EMBED Word.Picture.8���



56.	If we assume the population follows the Boltzmann distribution, we have

		�

	If N2/N1 > 1, then ln (N2/N1) > 0.  Thus T < 0.

	There is no contradiction because the      system is not in thermal equilibrium.



57.	(a)	Boron has Z = 4, so the outermost electron has n  = 2.  We use the Bohr result with an effective Z:

			E2 = – (13.6 eV)(Zeff)2/n2;

			– 8.26 eV = – (13.6 eV)(Zeff)2/22, which gives Zeff =      1.56.

		Note that this indicates some shielding by the second electron in the n = 2 shell.

	(b)	We find the average radius from

			r = n2r1/Zeff = 22(0.529 ´ 10–10 m)/(1.56) =      1.4 ´ 10–10 m.



58.	From spdfg, we see that the “g” subshell has ¬ = 4, so the number of electrons is

		N = 2(2¬ + 1) = 2[2(4) + 1] = 18 electrons.



59.	(a)	For Z = 27 we start with hydrogen and fill the levels as indicated in the periodic table:

			1s22s22p63s23p63d74s2.

		Note that the 4s2 level is filled before the 3d level is completed.

	(b)	For Z = 36 we have

			1s22s22p63s23p63d104s24p6.

	(c)	For Z = 38 we have

			1s22s22p63s23p63d104s24p65s2.

		Note that the 5s2 level is filled before the 4d level is started.



60.	The value of ¬ can range from 0 to n – 1.  Thus for n = 5, we have ¬ = 4.

	The largest magnitude of L is

		L = ˙[¬(¬ + 1)]1/2 = (1.055 ´ 10–34 J · s)[(4)(4 + 1)]1/2 =      4.72 ´ 10–34 kg · m2/s.

	The smallest value of L  is      0.













61.	(a)	We find the quantum number for the orbital angular momentum from

			L = MearthvR = Mearth2pR2/T = ˙[¬(¬ + 1)]1/2;

			(5.98 ´ 1024 kg)2p(1.50 ´ 1011 m)2/(3.16 ´ 107 s) = (1.055 ´ 10–34 J · s)[¬(¬ + 1)]1/2, 

		which gives ¬ =     2.5 ´ 1074.

	(b)	The value of m¬ can range from – ¬ to + ¬, or 2¬ + 1 values, so the number of orientations is

			N = 2¬ + 1 = 2(2.5 ´ 1074) + 1 =     5.0 ´ 1074.



62.	The wavelength of the photon emitted for the transition from n˘ to n is

		1/l = (Z2e4m/8Ĺ02h3c)[(1/n2) – (1/ n˘2)] = RZ2[(1/n2) – (1/ n˘2)].

	The Ka line is from the n˘ = 2 to n = 1 transition, and the other n = 1 electron shields the nucleus, so the effective Z is Z – 1:  

		1/l = RZeff2[(1/n2) – (1/ n˘2)] = R(Z – 1)2[(1/12) – (1/22)] = &R(Z – 1)2.

	Thus we have

		1/vl = (&R)1/2(Z – 1), which is the equation of a straight line, as in the Moseley plot, with b = 1.

	The value of a is

		a = (&R)1/2 = [&(1.0974 ´ 107 m–1)]1/2 =      2869 m–1/2.



63.	The n = 2, ¬ = 0 wave function is 	

		�

	The radial probability density is

		�

	To find the most probable distance from the nucleus, we find the maxima by setting the first derivative equal to zero.  If we change variable to x = r/r0 , we have

		�

	If we suppress the constant in front, the derivative is

		�

	Thus we have

		x = 0, which is the minimum at r = 0;

		2 – x = 0.  

	Because this is a factor in y, this is the other minimum at x = 2.

		x2 – 6x + 4 = 0, with solutions x = 0.76, 5.24.  These correspond to the two peaks in the distribution.  

	The highest peak is the most probable distance:       r = 5.24r0 .

































�

64.	The magnitude of the angular momentum is given by 

		L = [¬(¬ + 1)]1/2˙,

	and the z-component is given by 

		Lz = m¬˙.

	Thus the angle between L and the z-axis is given by

		cos q = Lz/L = m¬˙/[¬(¬ + 1)]1/2˙ = m¬/[¬(¬ + 1)]1/2.

	For each ¬ the value of m¬ can range from – ¬ to + ¬, so there 

	are  2¬ + 1 values for q.

	(a)	For ¬ = 1 the magnitude of L is

			L = [(1)(1 + 1)]1/2˙ = (2)1/2˙.

		The angles for the 3 values of m¬ are

			cos q1,3 = (± 1)/(2)1/2 = ± 1/(2)1/2,   or   q1 = 45°, q3 = 135°.

			cos q2 = (0)/(2)1/2 = 0,   or   q2 = 90°.

		Thus the possible values for ¬ = 1 are      45°, 90°, 135°.

	(b)	For ¬ = 2 the magnitude of L is

			L = [(2)(2 + 1)]1/2˙ = (6)1/2˙.

		The angles for the 5 values of m¬ are

			cos q1,5 = (± 2)/(6)1/2 = ± (2/3)1/2,   or   q1 = 35.3°, q5 = 144.7°;

			cos q2,4 = (± 1)/(6)1/2 = ± (1/6)1/2,   or   q2 = 65.9°, q4 = 114.1°;

			cos q3 = (0)/(6)1/2 = 0,   or   q3 = 90°.

		Thus the possible values for ¬ = 2 are      35.3°, 65.9°, 90°, 114.1°, 144.7°.

	(c)	For ¬ = 3 the magnitude of L is

			L = [(3)(3 + 1)]1/2˙ = (12)1/2˙.

		The angles for the 7 values of m¬ are

			cos q1,7 = (± 3)/(12)1/2 = ± (3/4)1/2,   or   q1 = 30.0°, q7 = 150.0°;

			cos q2,6 = (± 2)/(12)1/2 = ± (1/3)1/2,   or   q2 = 54.7°, q6 = 125.3°;

			cos q3,5 = (± 1)/(12)1/2 = ± (1/12)1/2,   or   q3 = 73.2°, q5 = 106.8°;

			cos q4 = (0)/(12)1/2 = 0,   or   q4 = 90°.

		Thus the possible values for ¬ = 3 are      30.0°, 54.7°, 73.2°, 90°, 106.8°, 125.3°, 150.0°.

	(d)	The minimum value of q has the largest value of m¬ .  For ¬ = 100, we have

			cos qmin = (100)/[(100)(100 + 1)]1/2 = 0.995,   or   qmin =      5.71°.

		For ¬ = 106, we have

			cos qmin = (106)/[(106)(106 + 1)]1/2 = 1/(1 + 10–6)1/2 � 1 – !(10–6) = 0.9999995,   or   qmin =      0.0573°.

		This is consistent with the correspondence principle; L could align with the z-axis when n ® 8	



65.	(a)	From ?Lz ?f = ˙, we see that if ?Lz = 0, ?f ® 8.  Thus the angle      f is unknown.

	(b)	If f is unknown, then the direction of the component of L perpendicular to the z-axis is unknown, 

		so       Lx and Ly are unknown.

	(c)	From L2 = Lx2 + Ly2 + Lz2, we have

			¬(¬ + 1)˙2 = Lx2 + Ly2 + m¬2˙2,   or    (Lx2 + Ly2)1/2 = [¬(¬ + 1) – m¬2]1/2˙.



66.	We find the uncertainty in the momentum component perpendicular to the motion, when the width of the beam is constrained to a dimension a:

			?py = ˙/?y = ˙/a.

	The half angle of the beam is given by the direction of the velocity (or momentum):

		sin q = py/p.

	We assume that the angle is small: sin q � q, and we take the minimum uncertainty to be the perpendicular momentum, so we have

		q �  py/p = (˙/a)/(h/l) = l/2pa.

	The angular spread is

		2q � l/pa  � l/a.



67.	(a)	The additional energy term in a magnetic field is

			U = – msB = – gmBmsB.

		Thus the separation of energy levels is

			?U 	= ?ms gmBB

				= [! – (– !)](2.0023)(9.27 ´ 10–24 J/T)(1.0 T) = 1.9 ´ 10–23 J =      1.2 ´ 10–4 eV. 

	(b)	We find the wavelength from

			l = (1.24 ´ 103 eV · nm)/?U = (1.24 ´ 103 eV · nm)/(1.2 ´ 10–4 eV) = 1.07 ´ 107 nm =      1.1 cm.

	(c)	From the periodic table we see that the participating electron is in the 5s1 state.  Thus the splitting 

		for both atoms is of a single s-state electron, so there will be       no difference.



68.	We find the angular half width of the beam from

		?q = 1.22l/d = 1.22(694 ´ 10–9 m)/(4.0 ´ 10–3 m) = 2.1 ´ 10–4 rad, 

	so the angular spread is q =       4.2 ´ 10–4 rad.

	(a)	The diameter of the beam when it reaches the satellite is

			D = rq = (1000 ´ 103 m)(4.2 ´ 10–4 rad) =      4.2 ´ 102 m.

	(b)	The diameter of the beam when it reaches the Moon is

			D = rq = (3.84 ´ 108 m)(4.2 ´ 10–4 rad) = 1.6 ´ 105 m =      160 km.



69.	(a)	Because the Boltzmann factor compares two single energy levels, to find the fraction in the 

		8  n = 2 levels relative to the 2 n = 1 levels, we multiply be 8/2:
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		The n = 3 level has ¬ = 0, 1, 2, so the number of states is 2 + 6 + 10 = 18.  Thus we have
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	(b)	At the new temperature we have
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	(c)	We find the number of hydrogen atoms in 1.0 g from

			N = (1.0 g)(6.02 ´ 1023 atoms/mol)/(1.0 g/mol) = 6.02 ´ 1023 atoms.

		Because the fraction in the excited states is very small, we use this for N1 :

			N2 = (1.1 ´ 10–8)(6.02 ´ 1023) =      6.6 ´ 1015;

			N3 = (6.3 ´ 10–10)(6.02 ´ 1023) =      3.8 ´ 1014.

	(d)	If the lifetime of the excited state is 10–8 s, the rate at which photons are emitted is

			n2 = N2/t = (6.6 ´ 1015)/(10–8 s) �      7 ´ 1023 photons/s;

			n3 = N3/t = (3.8 ´ 1014)/(10–8 s) �      4 ´ 1022 photons/s.



70.	(a)	The energy levels for a rigid box are given by

			En = n2h2/8mL2.

		There are two electrons in each level, corresponding to the two different spin states.  With N 

		electrons, the quantum number of the highest filled state is

			nhighest = N/2.

		At T = 0 K, the highest energy of an electron in the ground state is the energy of the highest 

		filled state:

			EF = N2h2/32mL2.

	(b)	The smallest energy absorption will raise an electron to the next unfilled state:

			?E	= Enhighest + 1 – Enhighest 

				= {[(N/2) + 1]2 – (N/2)2}h2/8mL2 = (N + 1)h2/8mL2 � Nh2/8mL2 =      4EF/N.



71.	Each shell with quantum number n can contain 2n2 electrons.  Thus the maximum number of electrons in the shells from n = 1 to n = 6 is

		�

	Because each electron corresponds to one proton in an atom, there would be a maximum of     182     elements.



72.	The binding energy of the state is

		– En = (13.6 eV)/n2 = (13.6 eV)/(50)2 =      5.4 ´ 10–3 eV.

	The radius of the orbit is

		r = n2r0 = (50)2(0.529 ´ 10–10 m) =      1.32 ´ 10–7 m.

	The effective cross-section is

		s = pr2 = p(1.32 ´ 10–7 m)2 =      5.5 ´ 10–14 m2.



73.	The additional energy term in a magnetic field is

		U = – msB = – gmBmsB.

	For resonance the separation of energy levels is the energy in the photon:

		hf = hc/l = ?ms gmBB;

		[(1.24 ´ 103 eV · nm)/(2.0 cm)(107 nm/cm)](1.60 ´ 10–19 J/eV) = 

								[! – (– !)]g(9.27 ´ 10–24 J/T)(0.476 T), which gives g =      2.25. 





Chapter 40   p. �	








