CHAPTER 41 – Molecules and Solids





Note:	At the atomic scale, it is most convenient to have energies in electron-volts and wavelengths in 


		nanometers.  A useful expression for the energy of a photon in terms of its wavelength is


			E = hf = hc/l = (6.63 ´ 10–34 J · s)(3.00 ´ 108 m/s)(109 nm/m)/(1.60 ´ 10–19 J/eV)l;


			E = (1.24 ´ 103 eV · nm)/l.





		A factor that appears in the analysis of electron energies is


			e2/4pĹ0 = (1.60 ´ 10–19 C)2/4p(8.85 ´ 10–12 C2/N · m2) = 2.30 ´ 10–28 J · m.





1.	With the reference level at infinity, the binding energy of the two ions is


		Binding energy 	= – U = e2/4pĹ0r


						= (2.30 ´ 10–28 J · m)/(0.28 ´ 10–9 m) = 8.21 ´ 10–19 J =     5.1 eV.





2.	We convert the units:


		1 kcal/mol 	= (1 kcal/mol)(4186 J/kcal)/(6.02 ´ 1023 molecules/mol)(1.60 ´ 10–19 J/eV) 


					=      0.0435 eV/molecule.


	For KCl we have


		(4.43 eV/molecule)[(1 kcal/mol)/(0.0435 eV/molecule)] =      102 kcal/mol.





3.	With the repulsion of the electron clouds, the binding energy is


		Binding energy = – U – Uclouds ;


		4.43 eV = 5.1 eV – Uclouds , which gives Uclouds =     0.7 eV.





4.	When the electrons are midway between the protons, each electron will have a potential energy due to the two protons:


		Uep 	= – (2)(0.33)e2/4pĹ0(r/2) = – (4)(0.33)(2.30 ´ 10–28 J · m)/(0.074 ´ 10–9 m)(1.60 ´ 10–19 J/eV) 


			= – 25.6 eV.


	The protons have a potential energy:


		Upp = + e2/4pĹ0r = + (2.30 ´ 10–28 J · m)/(0.074 ´ 10–9 m)(1.60 ´ 10–19 J/eV) = + 19.4 eV.


	When the bond breaks, each hydrogen atom will be in the ground state with an energy E1 = – 13.6 eV.


	Thus the binding energy is


		Binding energy = 2E1 – (2Uep + Upp) = 2(–13.6 eV) – [2(– 25.6 eV) + 19.4 eV] =      4.6 eV.





5.	The neutral He atom has two electrons in the ground state, n = 1, ¬ = 0, m¬ = 0.  Thus the two electrons have opposite spins, ms = ± !.  If we try to form a covalent bond for the two atoms, we see that an electron from one of the atoms will have the same quantum numbers as one of the electrons on the other atom.  From the exclusion principle, this is not allowed, so the electrons cannot be shared.


	We consider the He2+ molecular ion to be formed from a neutral He atom and an He+ ion.  If the electron on the ion has a certain spin value, it is possible for one of the electrons on the atom to have the opposite spin.  Thus the electron can be in the same spatial region as the electron on the ion, so a bond can be formed. 





6.	The units of ˙2/I are


		(J · s)2/(kg · m2) = J2/(kg · m/s2)m = J2/(N · m) = J2/J = J.























7.	The reduced mass of the molecule is


		m = m1m2/(m1 + m2). 


	(a)	Using data from the periodic table, for NaCl  we have


			m = mNamCl/(mNa + mCl) = (22.9898 u)(35.4527 u)/(22.9898 u + 35.4527 u) =       13.941 u.


	(b)	For N2 we have


			m = mNmN/(mN + mN) = (14.0067 u)(14.0067 u)/(14.0067 u + 14.0067 u) =       7.0034 u.


	(c)	For HCl  we have


			m = mHmCl/(mH + mCl) = (1.00794 u)(35.4527 u)/(1.00794 u + 35.4527 u) =       0.9801 u.





8.	The reduced mass of the N2 molecule is


		mN 	= mNmN/(mN + mN) 


			= (14.0067 u)(14.0067 u)/(14.0067 u + 14.0067 u) 


			= 7.0034 u.


	We find the bond length from


		˙2/2I = ˙2/2mNr2 


		(2.48 ´ 10–4 eV)(1.60 ´ 10–19 J/eV) = (1.055 ´ 10–34 J · s)2/2(7.0034 u)(1.66 ´ 10–27 kg/u)r2, 


	which gives r =      1.10 ´ 10–10 m.





9.	(a)	The reduced mass of the CO molecule is


			m = mCmO/(mC + mO) = (12.0 u)(16.0 u)/(12.0 u + 16.0 u) =       6.86 u.


	(b)	We find the effective spring constant from


			f = (k/m)1/2/2p;


			6.42 ´ 1013 Hz = [k/(6.86 u)(1.66 ´ 10–27 kg/u)]1/2/2p, which gives k =      1.85 ´ 103 N/m.


		This is 3.4´ the constant for H2.





10.	The total energy change for the absorption or emission is


		?E = ?Evib + ?Erot = hf + ?Erot .


	If ?E = hf, we have ?Erot = 0.


	When L changes by ?L, we get


		?Erot = (˙2/2I)[(L + ?L)(L + ?L + 1) – L(L + 1)] = (˙2/2I )(2L + 1 + ?L) ?L.


	Thus ?Erot = 0 requires ?L = 0, which is a       violation of the selection rule ?L = ± 1.





�


11.	(a)	The moment of inertia of O2 about its CM is


			I = 2mO(r/2)2 = mOr2/2.


		We find the characteristic rotational energy from


			˙2/2I 	= ˙2/mOr2 


					= (1.055 ´ 10–34 J · s)2/(16.0 u)(1.66 ´ 10–27 kg/u)(0.121 ´ 10–9 m)2 


					= 2.86 ´ 10–23 J =       1.79 ´ 10–4 eV.


	(b)	The rotational energy is


			Erot = L(L + 1)(˙2/2I).


		Thus the energy of the emitted photon from the L = 2 to L = 1 transition is


			hf = ?Erot = [(2)(2 + 1) – (1)(1 + 1)](˙2/2I) = 4(˙2/2I) = 4(1.79 ´ 10–4 eV) =      7.16 ´ 10–4 eV.


		The wavelength is


			l = c/f = hc/hf = (1.24 ´ 103 eV · nm)/(7.16 ´ 10–4 eV) = 1.73 ´ 106 nm =      1.73 mm.
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12.	The moment of inertia of H2 about its CM is


		I = 2mH(r/2)2 = mHr2/2.


	We find the characteristic rotational energy from


		˙2/2I 	= ˙2/mHr2 


				= (1.055 ´ 10–34 J · s)2/(1.67 ´ 10–27 kg)(0.074 ´ 10–9 m)2 


				= 1.22 ´ 10–21 J = 7.61 ´ 10–3 eV.


	The rotational energy is


		Erot = L(L + 1)(˙2/2I).


	Thus the energy of the emitted photon from the L  to L – 1 transition is


		hf = ?Erot = [(L)(L + 1) – (L – 1)(L)](˙2/2I) = 2L(˙2/2I).


	(a)	For the L = 1 to L = 0 transition, we get


			hf = 2L(˙2/2I) = 2(1)(7.61 ´ 10–3 eV) =      1.52 ´ 10–2 eV.


		The wavelength is


			l = c/f = hc/hf = (1.24 ´ 103 eV · nm)/(1.52 ´ 10–2 eV) = 8.16 ´ 104 nm =      0.082 mm.


	(b)	For the L = 2 to L = 1 transition, we get


			hf = 2L(˙2/2I) = 2(2)(7.61 ´ 10–3 eV) =      3.04 ´ 10–2 eV.


		The wavelength is


			l = c/f = hc/hf = (1.24 ´ 103 eV · nm)/(3.04 ´ 10–2 eV) = 4.08 ´ 104 nm =      0.041 mm.


	(c)	For the L = 3 to L = 2 transition, we get


			hf = 2L(˙2/2I) = 2(3)(7.61 ´ 10–3 eV) =      4.56 ´ 10–2 eV.


		The wavelength is


			l = c/f = hc/hf = (1.24 ´ 103 eV · nm)/(4.56 ´ 10–2 eV) = 2.72 ´ 104 nm =      0.027 mm.





13.	We find the energies for the transitions from


		?E = hf = hc/l = (1.24 ´ 103 eV · nm)/l:


		?E1 = (1.24 ´ 103 eV · nm)/(23.1 ´ 106 nm) = 5.37 ´ 10–5 eV;


		?E2 = (1.24 ´ 103 eV · nm)/(11.6 ´ 106 nm) = 10.7 ´ 10–5 eV;


		?E3 = (1.24 ´ 103 eV · nm)/(7.71 ´ 106 nm) = 16.1 ´ 10–5 eV.


	The rotational energy is


		Erot = L(L + 1)(˙2/2I).


	Thus the energy of the emitted photon from the L  to L – 1 transition is


		hf = ?Erot = [(L)(L + 1) – (L – 1)(L)](˙2/2I) = 2L(˙2/2I).


	Because ?E3 = 3 ?E1 , and ?E2 = 2 ?E1 , the three transitions must be from the L = 1, 2, and 3 states.


	We find the moment of inertia about the center of mass from


		?E3 = (16.1 ´ 10–5 eV)(1.60 ´ 10–19 J/eV) = 2(3)(1.055 ´ 10–34 J · s)2/2I, 


	which gives I = 1.29 ´ 10–45 kg · m2.


	The reduced mass of the NaCl molecule is


		m = mNamCl/(mNa + mCl) = (22.9898 u)(35.4527 u)/(22.9898 u + 35.4527 u) = 13.946 u.


	We find the bond length from


		I = mr2;


		1.29 ´ 10–45 kg · m2 = (13.946 u)(1.66 ´ 10–27 kg/u)r2, which gives r =      2.36 ´ 10–10 m.
































14.	The vibrational energy levels are


		Evib = (n + !)hf.


	The rotational energy levels are


		Erot = L(L + 1)(˙2/2I).


	For an absorption from level n, L to n + 1, L + 1, the absorbed energy is


		?E 	= ?Evib + ?Erot 


			= [(n + 1 + !) – (n + !)]hf + [(L + 1)(L + 2) – (L)(L + 1)](˙2/2I) 


			= hf + 2(L + 1)(˙2/2I) = hf + (L + 1)(˙2/I),   L = 0, 1, 2, … . 


	For an absorption from level n, L to n + 1, L – 1, the absorbed energy is


		?E 	= ?Evib + ?Erot 


			= [(n + 1 + !) – (n + !)]hf + [(L – 1)(L) – (L)(L + 1)](˙2/2I) 


			= hf – 2L(˙2/2I) = hf – L(˙2/I),   L = 1, 2, 3, … . 





15.	The ionic cohesive energy is


		U0 	= – (ae2/4pĹ0r)[1 – (1/m)] 


			= – [(1.75)(2.30 ´ 10–28 J · m)/(0.28 ´ 10–9 m)(1.60 ´ 10–19 J/eV)][1 – (1/8)] =      – 7.9 eV.
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16.	From the figure we see that the distance between nearest 


	neighbor Na ions is the diagonal of the cube:


		D = dv2 = (0.24 nm)v2 =      0.34 nm.


























17.	Because each ion occupies a cell of side s, a molecule occupies two cells.  Thus the density is


		r = mNaCl/2s3;


		2.165 ´ 103 kg/m3 = (58.44 u)(1.66 ´ 10–27 kg/u)/2s3, 


	which gives s = 2.83 ´ 10–10 m =     0.283 nm.





18.	Because each ion occupies a cell of side s, a molecule occupies two cells.  Thus the density is


		r = mKCl/2s3;


		1.99 ´ 103 kg/m3 = (39.1 u + 35.5 u)(1.66 ´ 10–27 kg/u)/2s3, which gives s = 3.15 ´ 10–10 m =     0.315 nm.





















































19.	(a)	The potential energy is 


			�


		The separation at equilibrium occurs at the minimum in the energy.  We can relate this distance r0 


		to the value of B by setting dU/dr = 0:


			�


		The ionic cohesive energy is the value of U at the equilibrium distance:


			�


	(b)	For NaI we have


			�EMBED Word.Picture.8���


	(c)	If we assume the same value for the Madelung constant, for MgO we have


			�EMBED Word.Picture.8���


	(d)	If we use a new value for m, the fractional change is


			�EMBED Word.Picture.8���
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20.	If we select a charge in the middle 


	of the chain, there will be two 


	charges of opposite sign a distance r 


	away, two charges of the same sign 


	a distance 2r away, etc.  The potential energy of the charge is


		�


	If we consider the expansion of ln (1 + x), which is


		�,


	we see that 


		�


	Thus we have 


		�, so  a = 2 ln 2.





21.	The density of energy states in a small energy interval is


		dn = g(E) dE.


	Because the energy range is small we assume a constant density at the middle of the range:


		�EMBED Word.Picture.8���




















22.	We find the density of molecules in an ideal gas from


		PV = nRT = NkT,   or


		N/V = P/kT = (1.013 ´ 105 Pa)/(1.38 ´ 10–23 J/K)(300 K) = 2.4 ´ 1025  m–3.


	If we assume each copper atom contributes one free electron, the density of free electrons is


		n = rNA/M = (8.89 ´ 103 kg/m3)(6.02 ´ 1023/mol)/(63.5 ´ 10–3 kg/mol) = 8.4 ´ 1028  m–3. 


	Thus the ratio is


		(N/V)/n = (2.4 ´ 1025  m–3)/(8.4 ´ 1028  m–3) =       3 ´ 10–4.





23.	(a)	The value of kT is


			kT = (1.38 ´ 10–23 J/K)(300 K)/(1.60 ´ 10–19 J/eV) = 0.0259 eV.


		We find the energy from


			�EMBED Word.Picture.8���


	(b)	The value of kT is


			kT = (1.38 ´ 10–23 J/K)(1200 K)/(1.60 ´ 10–19 J/eV) = 0.1035 eV.


		We find the energy from


			�EMBED Word.Picture.8���





24.	(a)	The value of kT is


			kT = (1.38 ´ 10–23 J/K)(300 K)/(1.60 ´ 10–19 J/eV) = 0.0259 eV.


		We find the energy from


			�EMBED Word.Picture.8���


	(b)	The value of kT is


			kT = (1.38 ´ 10–23 J/K)(1200 K)/(1.60 ´ 10–19 J/eV) = 0.1035 eV.


		We find the energy from


			�EMBED Word.Picture.8���





25.	The value of kT is


		kT = (1.38 ´ 10–23 J/K)(300 K)/(1.60 ´ 10–19 J/eV) = 0.0259 eV.


	We find the occupancy probability from


		�EMBED Word.Picture.8���





26.	The density of energy states in a small energy interval is


		dn = g(E) dE.


	Because the energy range is small we assume a constant density at the middle of the range:


		 �EMBED Word.Picture.8���














27.	Because each sodium atom contributes one conduction electron, the density of conduction electrons is


		n = rNA/M = (0.97 ´ 103 kg/m3)(6.02 ´ 1023/mol)/(23.0 ´ 10–3 kg/mol) = 2.539 ´ 1028  m–3. 


	We find the Fermi energy from


		�EMBED Word.Picture.8���


	We find the Fermi speed as the speed which gives a kinetic energy equal to the Fermi energy:


		EF = !mvF2;


		5.05 ´ 10–18 J = !(9.11 ´ 10–31 kg)vF2, which gives vF =      1.05 ´ 106 m/s.





28.	(a)	Because each zinc atom contributes two free electrons, the density of free electrons is twice the 


		density of atoms:


			n = 2rNA/M = 2(7.1 ´ 103 kg/m3)(6.02 ´ 1023/mol)/(65.38 ´ 10–3 kg/mol) =       1.31 ´ 1029  m–3.


	(b)	We find the Fermi energy from


			�EMBED Word.Picture.8���


	(c)	We find the Fermi speed as the speed which gives a kinetic energy equal to the Fermi energy:


			EF = !mvF2;


			1.50 ´ 10–18 J = !(9.11 ´ 10–31 kg)vF2, which gives vF =      1.81 ´ 106 m/s.





29.	(a)	We find the density of free electrons from


			�EMBED Word.Picture.8���


	(b)	If we let v be the valence, we can relate the density of free electrons to the atomic density:


			n = vrNA/M;


			1.79 ´ 1029  m–3 = v(2.70 ´ 103 kg/m3)(6.02 ´ 1023/mol)/(27.0 ´ 10–3 kg/mol), 


		which gives v =       3.





30.	We find the density of neutrons from


		n = MS/mnV = 2(2.0 ´ 1030 kg)/(1.67 ´ 10–27 kg))p(10 ´ 103 m)3 = 5.72 ´ 1044  m–3. 


	We find the Fermi energy from


		�EMBED Word.Picture.8���





31.	The maximum energy of an electron at T = 0 K is EF.  All states above EF are unoccupied, while all states with E = EF are occupied.  We find the average energy of an electron from


		�








32.	The Fermi–Dirac distribution gives the probability that a state is occupied.  If E = EF , we have


	�





33.	We find the occupation probability from


		�


	The value of kT is


		kT = (1.38 ´ 10–23 J/K)(300 K)/(1.6 ´ 10–19 J/eV) = 0.0259 eV.


	(a)	For E – EF = 0.10 eV, we have


			f = 1/[e (0.10 eV)/(0.0259 eV) + 1] = 1/(e 3.86 + 1) =       0.021. 


		This is      reasonable.      For a good conductor, higher states should have low occupancy.


	(b)	For E – EF = – 0.10 eV, we have


			f = 1/[e (– 0.10 eV)/(0.0259 eV) + 1] = 1/(e – 3.86 + 1) =       0.979. 


	(c)	Because a state must be either occupied or unoccupied, we have


			Punoccupied = 1 – f = 1 – 0.979 =      0.021.


		Note that this is the same as the occupation probability for a state 0.10 eV above the Fermi energy.





34.	The energy levels for a one-dimensional potential well are


		E = (h2/8mL2)n2,  n = 1, 2, 3, … .


	The quantum number n also gives the number of levels with energies between 0 and E.  


		n = (8mL2/h2)1/2E1/2.


	The number of levels with energies between E and dE is


		dn = !(8mL2/h2)1/2E–1/2 dE.


	Because there can be two electrons with opposite spins in each state, the number of electron states per unit energy interval is


		gL(E) = 2 dn/dE = (8mL2/h2E)1/2.





35.	If we consider the cube to be a three-dimensional infinite well, we can apply the boundary conditions separately to each dimension.  Each dimension gives a quantum number which we label n1 , n2 , n3 .  


	Thus there is a contribution to the energy from each dimension equal to the energy from the one-dimensional well:


		E1 = (h2/8mL2)n12; E2 = (h2/8mL2)n22; E3 = (h2/8mL2)n32,  n1 , n2 , n3 = 1, 2, 3, … .


�


	The energy of a state specified by the three quantum numbers is


		E = (h2/8mL2)(n12 + n22 + n32).


	If we create a three-dimensional space with the axes 


	labeled by n1 , n2 , n3 , each state corresponds to a point in 


	the lattice.  When we construct a sphere of radius R, 


	where R2 = n12 + n22 + n32, each point within the octant 


	corresponding to positive values for n1 , n2 , n3 represents 


	a state with energy between 0 and E = h2R2/8mL2.  


	Because the density of points is one and there can be two 


	electrons in each state, the number of electrons with energy 


	between 0 and E is


		N = 2(1/8)()pR3) = pR3/3 = (p/3)(8mL2E/h2)3/2.


	We find the density of states with energy E from


		g(E) = dn/dE = (1/V) dN/dE = *(1/L3)(p/3)(8mL2/h2)3/2E1/2 = (8pv2 m3/2/h3)E1/2.





36.	The photon with the minimum frequency for conduction must have an energy equal to the energy gap:


		Eg = hf = hc/l = (1.24 ´ 103 eV · nm)/(640 nm) =      1.94 eV.











37.	The partially filled shell in Na is the 3s shell, which has 1 electron in it.  The partially filled shell in Cl is the 2p shell which has 5 electrons in it.  In NaCl the electron from the 3s shell in Na is transferred to the 2p shell in Cl, which results in filled shells for both ions.  Thus when many ions are considered, the resulting bands are either completely filled (the valence band) or completely empty (the conduction band).  Thus a large energy is required to create a conduction electron by raising an electron from the valence band to the conduction band.





38.	(a)	In the 2s shell of an atom, ¬ = 0, so there are two states: ms = ± !.  When N atoms form bands, 


		each atom provides 2 states, so the total number of states in the band is      2N.


	(b)	In the 2p shell of an atom, ¬ = 1, so there are three states from the m¬ values: m¬ = 0, ± 1; each of 


		which has two states from the ms values: ms = ± !, for a total of 6 states.  When N atoms form 


		bands, each atom provides 6 states, so the total number of states in the band is      6N.


	(c)	In the 3p shell of an atom, ¬ = 1, so there are three states from the m¬ values: m¬ = 0, ± 1; each of 


		which has two states from the ms values: ms = ± !, for a total of 6 states.  When N atoms form 


		bands, each atom provides 6 states, so the total number of states in the band is      6N.


	(d)	In general, for a value of ¬, there are 2¬ + 1 states from the m¬ values: m¬ = 0, ± 1, … , ± ¬.  For 


		each of these there are two states from the ms values: ms = ± !, for a total of 2(2¬ + 1) states.  When 


		N atoms form bands, each atom provides 2(2¬ + 1) states, so the total number of states in the band is 


			2N(2¬ + 1).





39.	The photon with the longest wavelength or minimum frequency for conduction must have an energy equal to the energy gap:


		l = c/f = hc/hf = hc/Eg = (1.24 ´ 103 eV · nm)/(1.1 eV) = 1.1 ´ 103 nm =     1.1 mm.





40.	The minimum energy provided to an electron must be equal to the energy gap:


		Eg = 0.72 eV.


	Thus the maximum number of electrons is


		N = hf/Eg = (710 ´ 103 eV)/(0.72 eV) =      9.9 ´ 105.





41.	If we consider a mole of pure silicon (28 g or 6.02 ´ 1023 atoms), the number of conduction electrons is


		NSi = [(28 ´ 10–3 kg)/(2330 kg/m3)](1016 electrons/m3) = 1.20 ´ 1011 conduction electrons.


	The additional conduction electrons provided by the doping is


		Ndoping = (6.02 ´ 1023 atoms)/106 = 6.02 ´ 1017 added conduction electrons.


	Thus the density of conduction electrons has increased by


		Ndoping/NSi = (6.02 ´ 1017)/(1.20 ´ 1011) =     5 ´ 106.





42.	The photon will have an energy equal to the energy gap:


		l = c/f = hc/hf = hc/Eg = (1.24 ´ 103 eV · nm)/(1.4 eV) = 8.9 ´ 102 nm =     0.89 mm.





43.	The photon will have an energy equal to the energy gap:


		Eg = hf = hc/l = (1.24 ´ 103 eV · nm)/(650 nm) =      1.91 eV.





44.	From the current-voltage characteristic, we see that a current of 12 mA means a voltage of 0.7 V across the diode.  Thus the battery voltage is


		Vbattery = Vdiode + VR = 0.7 V + (12 ´ 10–3 A)(760 W) =      9.8 V.
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45.	The battery voltage is


		Vbattery = Vdiode + VR ;


		2.0 V = V(I) + I(0.100 kW),  or  V(I) = 2.0 V – I(0.100 kW).


	This is a straight line which passes through the points


		(20 mA, 0 V) and (12 mA, 0.8 V),


	as drawn in the figure.  Because V(I) is represented by both 


	curves, the intersection will give the current, which we see is 


	     13 mA.























46.	


�












































47.	(a)	For a half-wave rectifier without a capacitor, the current is zero for half the time.  Thus the 


		average current is


			Iav = !Vrms/R = !(120 V)/(28 kW) =     2.1 mA.


	(b)	For a full-wave rectifier without a capacitor, the current is positive all the time.  Thus the 


		average current is


			Iav = Vrms/R = (120 V)/(28 kW) =     4.3 mA.





48.	There will be a current in the resistor while the ac voltage varies from 0.6 V to 9.0 V rms.  Because the 0.6 V is small, the voltage across the resistor will be almost sinusoidal, so the rms voltage across the resistor will be close to 9.0 V – 0.6 V = 8.4 V.  


	(a)	For a half-wave rectifier without a capacitor, the current is zero for half the time.  If we ignore the 


		short time it takes to reach 0.6 V, this will also be true for the resistor.  Thus the average current is


			Iav = !Vrms/R = !(8.4 V)/(0.150 kW) =     28 mA.


	(b)	For a full-wave rectifier without a capacitor, the current is positive all the time.  If we ignore the 


		short time it takes to reach 0.6 V, this will also be true for the resistor.  Thus the average current is


			Iav = Vrms/R = (8.4 V)/(0.150 kW) =     56 mA.























49.	(a)	The time constant for the circuit is 


			t1 = RC1 = (18 ´ 103 W)(25 ´ 10–6 F) = 0.45 s.


		Because there are two peaks per cycle, the period of the rectified voltage is


			T = 1/2f = 1/2(60 Hz) = 0.0083 s.  


		Because t1 » T, the voltage across the capacitor will be essentially constant during a cycle, so the 


		voltage will be the peak voltage.  Thus the average current is


			Iav = V0/R = v2(120 V)/(18 kW) =     9.4 mA (smooth).


	(b)	The time constant for the circuit is 


			t2 = RC2 = (18 ´ 103 W)(0.10 ´ 10–6 F) = 0.0018 s.


		Because t2 < T, the voltage across the capacitor will be rippled, so the average voltage will be 


		close to the rms voltage.  Thus the average current is


			Iav = Vrms/R = (120 V)/(18 kW) =     6.7 mA (rippled).





50.	The output voltage is the voltage across the resistor:


		V = iCRC = biBRC = (80)(2.0 ´ 10–6 A)(3.3 ´ 103 W) =      0.53 V.





51.	The output voltage is the voltage across the resistor:


		V = iCRC = biBRC ;


		0.40 V = (100)(1.0 ´ 10–6 A)RC , which gives RC = 4.0 ´ 103 W =      4.0 kW.





52.	(a)	The output voltage is the voltage across RC :


			VC = iCRC ,


		while the input voltage is the voltage across RB :


			VB = iBRB .


		Thus the voltage gain is


			VC/VB = iCRC/iBRB = bRC/RB = (70)(6.8 kW)/(3.2 kW) =      1.49 ´ 102.


	(b)	The power amplification is


			Poutput/Pinput = iCVC/iBVB = bVC/VB = (70)(1.49 ´ 102) =       1.04 ´ 104. 





53.	The output current is


		iC = VC/RC = (80)VB/RC = (80)(0.080 V)/(15 kW) =      0.43 mA.





54.	For an electron confined within ?x, we find the uncertainty in the momentum from


		?p = ˙/?x, 


	which we take to be the momentum of the particle.  The kinetic energy of the electron is


		K =  p2/2m = ˙2/2m(?x)2.


	When the two electrons are in separated atoms, we get


		K1 	= 2˙2/2m(?x1)2 


				= 2(1.055 ´ 10–34 J · s)2/2(9.11 ´ 10–31 kg)(0.053 ´ 10–9 m)2 = 4.35 ´ 10–18 J = 27.2 eV.


	When the electrons are in the molecule, we get


		K2 	= 2˙2/2m(?x2)2 


				= 2(1.055 ´ 10–34 J · s)2/2(9.11 ´ 10–31 kg)(0.074 ´ 10–9 m)2 = 2.23 ´ 10–18 J = 14.0 eV.


	Thus the binding energy is


		K1 – K2 = 27.2 eV – 14.0 eV =      13 eV.





55.	(a)	We find the temperature from


			K = *kT;


			(4.5 eV)(1.60 ´ 10–19 J/eV) = *(1.38 ´ 10–23 J/K)T, which gives T =      3.5 ´ 104 K.


	(b)	We find the temperature from


			K = *kT;


			(0.15 eV)(1.60 ´ 10–19 J/eV) = *(1.38 ´ 10–23 J/K)T, which gives T =      1.2 ´ 103 K.





56.	(a)	The potential energy for the point charges is


			U = – ke2/r = – (2.30 ´ 10–28 J · m)/(0.27 ´ 10–9 m) = – 8.52 ´ 10–19 J = – 5.33 eV =       – 5.3 eV.


	(b)	Because the potential energy of the ions is negative, 5.3 eV is released when the ions are 


		brought together.  A release of energy means that energy must be provided to return the ions to the 


		state of free atoms.  Thus the total binding energy of the KF ions is


			Binding energy = 5.33 eV + 4.07 eV – 4.34 eV =     5.1 eV.





57.	(a)	The reduced mass of the HCl molecule is


			m = mHmCl/(mH + mCl) = (1.00794 u)(35.4527 u)/(1.00794 u + 35.4527 u) =       0.9801 u.


	(b)	We find the effective spring constant from


			f = (k/m)1/2/2p;


			8.66 ´ 1013 Hz = [k/(0.9801 u)(1.66 ´ 10–27 kg/u)]1/2/2p, which gives k =      482 N/m.


		This is       88% of the constant for H2.
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58.	The reduced mass of the molecule is


		m = m1m2/(m1 + m2).


	The center of mass does not move.  If the equilibrium 


	separation of the atoms is L and we choose the directions 


	indicated on the diagram, the center of mass relative to 


	the equilibrium position of m1 is


		xCM = m2L/(m1 + m2) = [– m1x1 + m2(L + x2)]/(m1 + m2), which gives m1x1 = m2x2 .


	The stretch of the spring is x = x1 + x2 .  Thus for the two atoms we have


		m1 d2x1/dt2 = – kx,  m2 d2x2/dt2 = – kx.


	This is consistent with the result from the center of mass calculation.  If we rearrange and combine the equations, we get


		d2x1/dt2 + d2x2/dt2 = – kx(1/m1 + 1/m2) = – kx[(m1 + m2)/m1m2];


		d2x/dt2 = – (k/m)x.


	This is the equation for SHM with w2 = k/m.  Thus the frequency of vibration is


		f = w/2p = (k/m)1/2/2p.





59.	From the Boltzmann factor the population of a state with energy E is proportional to e –E/kT.  


	The rotational energy of a state is 


		E = (˙2/2I )L(L + 1).


	The selection rule requires ?L = ± 1.  


	States with higher values of L are less likely to be occupied and thus less likely to absorb a photon.  


	For example, there is a greater probability for absorption from L = 1 to L = 2 than from L = 2 to L = 3.  


	The molecule is not rigid and thus      I will depend on L,      which will affect the spacing.





60.	The moment of inertia of the baton of length d about its center of mass is


		I = (Md2/12) + [2m(d/2)2] = [(0.200 kg)(0.30 m)2/12] + [2(0.300 kg)(0.15)2] = 0.015 kg · m2.


	The rotational energy of the baton is


		E = !Iw2 = !(0.015 kg · m2)[(1.6 rev/s)(2p rad/rev)]2 = 0.76 J.


	We find the rotational quantum number from


		L2 = (Iw)2 = ¬(¬ + 1)˙2;


		[(0.015 kg · m2)(1.6 rev/s)(2p rad/rev)]2 = ¬(¬ + 1)(1.055 ´ 10–34 J · s)2, which gives ¬ = 1.4 ´ 1033.


	Thus the difference in rotational energy levels is


		?Erot = ¬˙2/I = (1.4 ´ 1033)(1.055 ´ 10–34 J · s)2/(0.015 kg · m2) =      1.1 ´ 10–33 J.


		No,     because ?Erot « E, we do not consider quantum effects for the baton.
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61.	From the diagram of the cubic lattice, we see that an atom 


	inside the cube is bonded to the six nearest neighbors.  


	Because each bond is shared by two atoms, the number of 


	bonds per atom is 3.  We find the heat of fusion for argon from 


	the energy required to break the bonds:


		Lfusion 	= (number of bonds/atom)(number of atoms/kg)Ebond


				= (3/atom)[(6.02 ´ 1023 atoms/mol)/(39.95 ´ 10–3 kg/mol)] ´


								         	          (3.9 ´ 10–3 eV)(1.60 ´ 10–19 J/eV) 


				=      2.8 ´ 104 J/kg.























62.	The Hall voltage is produced by the drifting electrons:


		ĺH = vdBL;


		18 ´ 10–3 V = vd(1.6 T)(1.5 ´ 10–2 m), which gives vd = 0.75 m/s.


	We find the density of drifting electrons from the current:


		I = neAvd ;


		0.20 ´ 10–3 A = n(1.60 ´ 10–19 C)(1.5 ´ 10–2 m)(1.0 ´ 10–3 m)(0.75 m/s), 


	which gives n = 1.11 ´ 1020 electrons/m3.


	The density of silicon atoms is


		N = [(2.33 ´ 106 g/m3)/(28 g/mol)](6.02 ´ 1023 atoms/mol) = 5.0 ´ 1028 atoms/m3.


	Thus the ratio of electrons to atoms is


		n/N = (1.11 ´ 1020 electrons/m3)/(5.0 ´ 1028 atoms/m3) =     2.2 ´ 10–9.





63.	The photon with the longest wavelength has the minimum energy, so the energy gap must be


		Eg = hc/l = (1.24 ´ 103 eV · nm)/(1000 nm) =      1.24 eV.





64.	The energy of the photon must be greater than or equal to the energy gap.  Thus the longest wavelength that will excite an electron is


		l = c/f = hc/hf = hc/Eg = (1.24 ´ 103 eV · nm)/(0.72 eV) = 1.7 ´ 103 nm = 1.7 mm.


	Thus the wavelength range is       l = 1.7 mm.





65.	To use silicon to filter the wavelengths, we want wavelengths below the IR to be able to cause the electron to be raised to the conduction band, so the photon is absorbed in the silicon.  We find the shortest wavelength from


		l = c/f = hc/hf > hc/Eg = (1.24 ´ 103 eV · nm)/(1.14 eV) = 1.09 ´ 103 nm =      1.09 mm.


	Because this is in the IR, the shorter wavelengths of visible light will excite the electron, so silicon 


		could be used      as a window.





66.	(a)	From the definition of the Fermi temperature, we have


			TF = EF/k =(7.0 eV)(1.6 ´ 10–19 J/eV)/(1.38 ´ 10–23 J/K) =       8.1 ´ 104 K.


	(b)	We can write the Fermi distribution as


			�


		If T » TF , the second exponential factor is 1.  If E/kT » 1, we can also ignore the 1 to get


			f � 1/e E/kT = e – E/kT.


		This is not useful for conductors because TF is much higher than the melting point, so T « TF .





67.	In a dielectric, Coulomb’s law becomes 


		F = e2/4pKĹ0r2.


	Thus where Ĺ0 appears in an equation, we insert K.  If the “extra” electron is outside the arsenic ion, 


	the effective Z will be 1, and we can use the hydrogen results.


	(a)	The energy of the electron is


			E = – Z2e4m/8K2Ĺ02h2n2 = – (13.6 eV)Z2/K2n2 = – (13.6 eV)(1)2/(12)2(1)2 = – 0.094 eV.


		Thus the binding energy is      0.094 eV.


	(b)	The radius of the electron orbit is


			r = KĹ0h2n2/pZe2m = Kn2r0/Z = Kn2(0.0529 nm)/Z = (12)(1)2(0.0529 nm)/(1)2 =      0.63 nm.


	Note that this result justifies the assumption that the electron is outside the arsenic ion.





68.	With a full-wave rectifier, there are two peaks for each cycle of the input voltage, so the time between peaks is 


		T = 1/2f = 1/2(60 Hz) = 0.00833 s.


	The time constant of the rectifier is


		t = RC = (8.8 ´ 103 W)(30 ´ 10–6 F) = 0.264 s.


	Because T « t, we assume that the exponential discharge of the capacitor voltage is linear:


		VC = V0(1 – t/t).


	We approximate the lowest voltage of the capacitor by finding the value reached in the time from one peak to the next:


		V = V0[1 – (0.00833 s)/(0.264 s)] = 0.968 V0 .


	Thus the ripple about the mean value is


		± !(V0 – V)/V0 = ± !(1 – 0.968) = ± 0.016 =      ± 1.6%.
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69.	(a)	The current through the load resistor is


			Iload = Voutput/Rload = (130 V)/(16.0 kW) = 8.125 mA.


		At the minimum supply voltage the current through 


		the diode will be zero, so the current through R 


		is 8.125 mA, and the voltage across R is


			VR,min = IR,minR = (8.125 mA)(1.80 kW) = 14.6 V.


		The minimum supply voltage is


			Vmin = VR,min + Voutput = 14.6 V + 130 V = 145 V.


		At the maximum supply voltage the current through the diode will be 110 mA, so the current 


		through R is 110 mA + 8.125 mA = 118.1 mA, and the voltage across R is


			VR,max = IR,maxR = (118.1 mA)(1.80 kW) = 213 V.


		The maximum supply voltage is


			Vmax = VR,max + Voutput = 213 V + 130 V = 343 V.


		Thus the range of supply voltages is      145 V = V = 343 V.


	(b)	At a constant supply voltage the voltage across R is 200 V – 130 V = 70 V, so the current in R is


			IR = (70 V)/(1.80 kW) = 38.9 mA.


		If there is no current through the diode, this current must be in the load resistor, so we have


			Rload = (130 V)/(38.9 mA) = 3.34 kW.


		If Rload is less than this, there will be a greater current through R, and thus the voltage across the 


		load will drop and regulation will be lost.  If Rload is greater than 3.34 kW, the current through Rload 


		will decrease and there will be current through the diode.  The current through the diode is 


		38.9 mA when Rload is infinite, which is less than the maximum of 110 mA.  


		Thus the range for load resistance is     3.34 kW = Rload < 8.
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