CHAPTER 42 – Nuclear Physics and Radioactivity



Note:	A factor that appears in the analysis of energies is

			e2/4pĹ0 = (1.60 ´ 10–19 C)2/4p(8.85 ´ 10–12 C2/N · m2) = 2.30 ´ 10–28 J · m = 1.44 MeV · fm.



1.	To find the rest mass of an a particle, we subtract the rest mass of the two electrons from the rest mass of a helium atom:

		ma 	= MHe – 2me 

			= (4.002603 u)(931.5 MeV/uc2) – 2(0.511 MeV/c2) =      3727 MeV/c2.



2.	We convert the units:

		m = (139 MeV/c2)/(931.5 MeV/uc2) =     0.149 u.



3.	The a particle is a helium nucleus:

		r = (1.2 ´ 10–15 m)A1/3 = (1.2 ´ 10–15 m)(4)1/3 =      1.9 ´ 10–15 m      = 1.9 fm.



4.	The radius of a nucleus is 

		r = (1.2 ´ 10–15 m)A1/3.

	If we form the ratio for the two isotopes, we get

		r14/r12 = (14/12)1/3 = 1.053.

	Thus the radius of 14C is      5.3%      greater than that for 12C.



5.	(a)	The mass of a nucleus with mass number A is A u and its radius is

			r = (1.2 ´ 10–15 m)A1/3.

		Thus the density is

			r 	= m/V 

				= A(1.66 ´ 10–27 kg/u)/)pr3 = A(1.66 ´ 10–27 kg/u)/)p(1.2 ´ 10–15 m)3A 

				=      2.3 ´ 1017 kg/m3,      independent of A.

	(b)	We find the radius from 

			M = rV;

			5.98 ´ 1024 kg = (2.3 ´ 1017 kg/m3))pR3, which gives R =      184 m.

	(c)	For equal densities, we have

			r = MEarth/)pREarth3 = mU/)prU3;

			(5.98 ´ 1024 kg)/(6.38 ´ 106 m)3 = (238 u)(1.66 ´ 10–27 kg/u)/rU3, which gives rU =     2.6 ´ 10–10 m.



6.	(a)	The radius of 64Cu is 

			r = (1.2 ´ 10–15 m)A1/3 = (1.2 ´ 10–15 m)(64)1/3 =      4.8 ´ 10–15 m     = 4.8 fm.

	(b)	We find the  value of A from

			r = (1.2 ´ 10–15 m)A1/3;

			3.9 ´ 10–15 m = (1.2 ´ 10–15 m)A1/3, which gives A =      34.



7.	We find the radii of the two nuclei from

		r = r0A1/3;

		ra = (1.2 fm)(4)1/3 = 1.9 fm;

		rU = (1.2 fm)(238)1/3 = 7.4 fm.

	If the two nuclei are just touching, the Coulomb potential energy must be the initial kinetic energy of the a particle:

		K = U	= ZaZUe2/4pĹ0(ra + rU) 

				= (2)(92)(1.44 MeV · fm)/(1.9 fm + 7.4 fm) =      28 MeV.







8.	We find the radii of the two nuclei from

		r = r0A1/3;

		ra = (1.2 fm)(4)1/3 = 1.9 fm;

		rAm = (1.2 fm)(243)1/3 = 7.5 fm.

	We assume that the nucleus is so much heavier than the a particle that we can ignore the recoil of the nucleus.  We find the kinetic energy of the a particle from the conservation of energy:

		Ki + Ui = Kf + Uf  ;

		0 + ZaZAme2/4pĹ0(ra + rAm) = Kf  + 0;

		(2)(95)(1.44 MeV · fm)/(1.9 fm + 7.5 fm) = Kf , which gives Kf =      29 MeV.



9.	The radius of a nucleus is 

		r = (1.2 ´ 10–15 m)A1/3.

	If we form the ratio for the two nuclei, we get

		rX/rU = (AX/AU)1/3;

		! = (AX/238)1/3, which gives AX = 30.

	From the Appendix, we see that the stable nucleus could be     �EMBED Word.Picture.8���.



10.	From Figure 42–1, we see that the average binding energy per nucleon at A = 40 is 8.6 MeV.  

	Thus the total binding energy for 40Ca is

		(40)(8.6 MeV) =     340 MeV.



11.	(a)	From Figure 42–1, we see that the average binding energy per nucleon at A = 238 is 7.5 MeV.  

		Thus the total binding energy for 238U is

			(238)(7.5 MeV) =     1.8 ´ 103 MeV.

	(b)	From Figure 42–1, we see that the average binding energy per nucleon at A = 84 is 8.7 MeV.  

		Thus the total binding energy for 84Kr is

			(84)(8.7 MeV) =     7.3 ´ 102 MeV.



12.	Deuterium consists of one proton and one neutron.  We find the binding energy from the masses:

		Binding energy 	= [M(1H) + m(1n) – M(2H)]c2

						= [(1.007825 u) + (1.008665 u) – (2.014102 u)]c2(931.5 MeV/uc2) =       2.22 MeV.



13.	14N consists of seven protons and seven neutrons.  We find the binding energy from the masses:

		Binding energy 	= [7M(1H) + 7m(1n) – M(14N)]c2

						= [7(1.007825 u) + 7(1.008665 u) – (14.003074 u)]c2(931.5 MeV/uc2) =  104.7 MeV.

	Thus the binding energy per nucleon is

		(104.7 MeV)/14 =      7.48 MeV.



14.	We find the binding energy of the last neutron from the masses:

		Binding energy 	= [M(39K) + m(1n) – M(40K)]c2

						= [(38.963707 u) + (1.008665 u) – (39.963999 u)]c2(931.5 MeV/uc2) =      7.80 MeV.























15.	(a)	6Li consists of three protons and three neutrons.  We find the binding energy from the masses:

			Binding energy 	= [3M(1H) + 3m(1n) – M(6Li)]c2

							= [3(1.007825 u) + 3(1.008665 u) – (6.015122 u)]c2(931.5 MeV/uc2) =      32.0 MeV.

		Thus the binding energy per nucleon is

			(32.0 MeV)/6 =      5.33 MeV.

	(b)	208Pb consists of 82 protons and 126 neutrons.  We find the binding energy from the masses:

			Binding energy 	= [82M(1H) + 126m(1n) – M(208Pb)]c2

							= [82(1.007825 u) + 126(1.008665 u) – (207.976635 u)]c2(931.5 MeV/uc2) 

							=      1636 MeV.

		Thus the binding energy per nucleon is

			(1636 MeV)/208 =      7.87 MeV.



16.	(a)	12C less a proton becomes 11B.  We find the binding energy of the last proton from the masses:

			Binding energy 	= [M(11B) + M(1H) – M(12C)]c2

							= [(11.009305 u) + (1.007825 u) – (12.000000 u)]c2(931.5 MeV/uc2) =      16.0 MeV.

	(b)	12C less a neutron becomes 11C.  We find the binding energy of the last neutron from the masses:

			Binding energy 	= [M(11C) + m(1n) – M(12C)]c2

							= [(11.011434 u) + (1.008665 u) – (12.000000 u)]c2(931.5 MeV/uc2) =      18.7 MeV.



17.	We find the binding energy of the last neutron from the masses:

		Binding energy(23Na) 	= [M(22Na) + m(1n) – M(23Na)]c2

								= [(21.994437 u) + (1.008665 u) – (22.989770 u)]c2(931.5 MeV/uc2) 

								=      12.4 MeV.

		Binding energy(24Na) 	= [M(23Na) + m(1n) – M(24Na)]c2

								= [(22.989770 u) + (1.008665 u) – (23.990963 u)]c2(931.5 MeV/uc2) 

								=      7.0 MeV.

	Thus the neutron is more closely bound in 23Na.



18.	We find the required energy for separation from the masses.

	(a)	Removal of a proton creates an isotope of nitrogen:

			Energy(p) 	= [M(15N) + M(1H) – M(16O)]c2

						= [(15.000108 u) + (1.007825 u) – (15.994915 u)]c2(931.5 MeV/uc2) =      12.1 MeV.

	(b)	Removal of a neutron creates another isotope of oxygen:

			Energy(n) 	= [M(15O) + m(1n) – M(16O)]c2

						= [(15.003065 u) + (1.008665 u) – (15.994915 u)]c2(931.5 MeV/uc2) =      15.7 MeV.

	The nucleons are held by the attractive strong nuclear force.  It takes less energy to remove the proton because there is also the      repulsive electric force      from the other protons.



19.	(a)	We find the binding energy from the masses:

			Binding energy 	= [2M(4He) – M(8Be)]c2 

							= [2(4.002603 u) – (8.005305 u)]c2(931.5 MeV/uc2) = – 0.092 MeV.

		Because the binding energy is negative, the nucleus is unstable.

	(b)	We find the binding energy from the masses:

			Binding energy 	= [3M(4He) – M(12C)]c2 

							= [3(4.002603 u) – (12.000000 u)]c2(931.5 MeV/uc2) = + 7.3 MeV.

		Because the binding energy is positive, the nucleus is       stable.















20.	The decay is �.  When we add an electron to both sides to use atomic masses, we see that the mass of the emitted b particle is included in the atomic mass of 3He.  

	Thus the energy released is

		Q = [M(3H) – M(3He)]c2 = [(3.016049 u) – (3.016029 u)]c2(931.5 MeV/uc2) = 0.0186 MeV =      18.6 keV.



21.	The decay is �.  We take the electron mass to use the atomic mass of 1H.  The kinetic energy of the electron will be maximum if no neutrino is emitted.  If we ignore the recoil of the proton, the maximum kinetic energy is

		K = [m(1n) – M(1H)]c2 = [(1.008665 u) – (1.007825 u)]c2(931.5 MeV/uc2) =      0.782 MeV.



22.	For the decay �, we find the difference of the initial and the final masses:

		?m 	= M(11C) – M(10B) – M(1H)

			= (11.011434 u) – (10.012937 u) – (1.007825 u) = – 0.009328 u.

	Thus some additional energy would have to be added.



23.	If � were a b – emitter, the resulting nucleus would be �, which has too few neutrons relative to the number of protons to be stable.   Thus we have a      b + emitter.     

	For the reaction �, if we add 11 electrons to both sides in order to use atomic masses, we see that we have two extra electron masses on the right.  The kinetic energy of the b + will be maximum if no neutrino is emitted.  If we ignore the recoil of the neon, the maximum kinetic energy is

		K 	= [M(22Na) – M(22Ne) – 2m(e)]c2 

			= [(21.994437 u) – (21.991386 u) – 2(0.00054858 u)]c2(931.5 MeV/uc2) =      1.82 MeV.



24.	For each decay, we find the difference of the initial and the final masses:

	(a)	?m 	= M(236U) – M(235U) – m(1n)

			= (236.045561 u) – (235.043923 u) – (1.008665 u) = – 0.00703 u.

		Because an increase in mass is required, the decay is     not possible.

	(b)	?m 	= M(16O) – M(15O) – m(1n)

			= (15.994915 u) – (15.003065 u) – (1.008665 u) = – 0.0168 u.

		Because an increase in mass is required, the decay is     not possible.

	(c)	?m 	= M(23Na) – M(22Na) – m(1n)

			= (22.989770 u) – (21.994437 u) – (1.008665 u) = – 0.0133 u.

		Because an increase in mass is required, the decay is     not possible.



25.	We find the daughter nucleus by balancing the mass and charge numbers:

		Z(X) = Z(U) – Z(He) = 92 – 2 = 90;

		A(X) = A(U) – A(He) = 232 – 4 = 228, so the daughter nucleus is      �EMBED Word.Picture.8���.

	If we ignore the recoil of the thorium, the kinetic energy of the a particle is

		K = [M(232U) – M(228Th) – M(4He)]c2;

		5.32 MeV = [(232.037146 u) – M(228Th) – (4.002603 u)]c2(931.5 MeV/uc2), 

	which gives M(228Th) =      228.02883 u.



26.	The kinetic energy of the electron will be maximum if no neutrino is emitted.  If we ignore the recoil of the sodium, the maximum kinetic energy of the electron is

		K 	= [M(23Ne) – M(23Na)]c2 

			= [(22.9945 u) – (22.9898 u)]c2(931.5 MeV/uc2) =      4.4 MeV.

	When the neutrino has all of the kinetic energy, the minimum kinetic energy of the electron is      0.

	The sum of the kinetic energy of the electron and the energy of the neutrino must be from the mass difference, so the energy range of the neutrino will be      0 = En = 4.4 MeV.







27.	(a)	We find the final nucleus by balancing the mass and charge numbers:

			Z(X) = Z(P) – Z(e) = 15 – (– 1) = 16;

			A(X) = A(P) – A(e) = 32 – 0 = 32, so the final nucleus is      �EMBED Word.Picture.8���.

	(b)	If we ignore the recoil of the sulfur, the maximum kinetic energy of the electron is

			K = [M(32P) – M(32S)]c2;

			1.71 MeV = [(31.973907 u) – M(32S)]c2(931.5 MeV/uc2), 

		which gives M(32S) =      31.97207 u.



28.	For alpha decay we have �.  The Q value is

		Q 	= [M(218Po) – M(214Pb) – M(4He)]c2

			= [(218.008965 u) – (213.999798 u) – (4.002603 u)]c2(931.5 MeV/uc2) =      6.11 MeV.

	For beta decay we have �.  The Q value is

		Q 	= [M(218Po) – M(218At)]c2

			= [(218.008965 u) – (218.00868 u)]c2(931.5 MeV/uc2) =      0.26 MeV.



29.	For the electron capture �, we see that if we add three electron masses to both sides to use the atomic mass for Li, we use the captured electron for the atomic mass of Be.  

	We find the Q value from

		Q 	= [M(7Be) – M(7Li)]c2

		 	= [(7.016929 u) – (7.016004 u)]c2(931.5 MeV/uc2) =       0.862 MeV.



30.	The mass number changes only with an a decay for which the change is – 4.  

	If the mass number is 4n, then the new number is 4n – 4 = 4(n – 1) = 4n˘.  Thus for each family, we have

		4n ® 4n – 4 ® 4n˘;

		4n + 1 ® 4n – 4 + 1 ® 4n˘ + 1;

		4n + 2 ® 4n – 4 + 2 ® 4n˘ + 2;

		4n + 3 ® 4n – 4 + 3 ® 4n˘ + 3.

	Thus the daughter nuclides are always in the same family.



31.	The total kinetic energy of the daughter and the a particle is

		Ka + KPb = Q 	= [M(210Po) – M(206Pb) – M(4He)]c2 

						= [(209.982857 u) – (205.974449 u) – (4.002603 u)]c2(931.5 MeV/uc2) = 5.41 MeV.

	If the polonium nucleus is at rest when it decays, for momentum conservation we have

		pa = pPb .

	The kinetic energy of the lead nucleus is

		KPb = pPb2/2mPb = pa2/2mPb = (ma/mPb)Ka .

	Thus we have

		Ka + (ma/mPb)Ka = [1 + (4 u)/(206 u)]Ka = 5.41 MeV, which gives Ka =     5.31 MeV.



32.	The decay is � .  If the uranium nucleus is at rest when it decays, for momentum conservation we have

		pa = pTh .

	Thus the kinetic energy of the thorium nucleus is

		KTh = pTh2/2mTh = pa2/2mTh = (ma/mTh)Ka = (4 u/234 u)(4.20 MeV) =     0.0718 MeV.

	The Q value is the total kinetic energy produced:

		Q = Ka + KTh = 4.20 MeV + 0.0718 =      4.27 MeV.













33.	(a)	For the positron-emission process

			�,

		we need to add Z + 1 electrons to the nuclear mass of X to be able to use the atomic mass.  On the 	right-hand side we use Z electrons to be able to use the atomic mass of X˘.  Thus we have 1 electron 	mass and the b-particle mass, which means that we must include 2 electron masses on the right-	hand side.  The Q value will be

			Q = [MP – (MD + 2me)]c2 = (MP – MD – 2me)c2.

	(b)	The kinetic energy of the b + particle will be maximum if no neutrino is emitted.  If we ignore the 

		recoil of the boron, the maximum kinetic energy is

			K = Q	= [M(11C) – M(11B) – 2me]c2 

					= [(11.011434 u) – (11.009305 u) – 2(0.00054858)]c2(931.5 MeV/uc2) =      0.961 MeV.

		The sum of the kinetic energy of the b + particle and the energy of the neutrino must be from the mass 

		difference, so the kinetic energy of the neutrino will range from     0.961 MeV to 0.



34.	(a)	The decay is �.  The Q value is

			Q 	= [M(236U) – M(232Th) – M(4He)]c2

				= [(236.045561 u) – (232.038050 u) – (4.002603 u)]c2(931.5 MeV/uc2) = 4.572 MeV.  

		If the uranium nucleus is at rest when it decays, for momentum conservation we have

			pa = pTh .

		Thus the kinetic energy of the thorium nucleus is

			KTh = pTh2/2mTh = pa2/2mTh = (ma/mTh)Ka .

		Thus we have

			Q = Ka + (ma/mTh)Ka = [1 + (4 u)/(232 u)]Ka = 4.572 MeV, which gives Ka =     4.49 MeV.

	(b)	We find the radii of the two nuclei from

			R = r0A1/3;

			Ra = (1.2 fm)(4)1/3 =      1.9 fm;

			RTh = (1.2 fm)(232)1/3 =      7.4 fm.

	(c)	We assume the potential energy of the alpha particle (charge = 2e) is produced by the electric 

		field of the remaining nuclear charge of 90e.  Thus the potential energy when the two nuclei are 

		just touching is

			UC	= qQ/4pĹ0(Ra + RTh)

				= (2)(90)(1.44 MeV · fm)/(1.9 fm + 7.4 fm) =      28 MeV.

	(d)	The radius when the alpha particle leaves the Coulomb barrier is where the Coulomb energy 

		is equal to the final kinetic energy:

			UB = qQ/4pĹ0RB = Ka ;

			(2)(90)(1.44 MeV · fm)/RB = 4.49 MeV, which gives RB = 57.7 fm.

		Thus the width of the barrier is

			RB – RTh = 57.7 fm – 7.4 fm �      50 fm. 





























35.	We find the decay constant from

		lN = lN0 e – lt;

		320 decays/min = (1280 decays/min) e – l(6 h), which gives l = 0.231/h.

	Thus the half-life is

		T1/2 = 0.693/l = 0.693/(0.231/h) =      3.0 h.

	Note that in 6.0 h the decay rate was reduced to # the original rate.  This means the elapsed time was 

	2 half-lives.



36.	(a)	We find the decay constant from

			l = 0.693/T1/2 = 0.693/(4.5 ´ 109 yr)(3.16 ´ 107 s/yr) =      4.9 ´ 10–18 s–1.

	(b)	We find the half-life from

			l = 0.693/T1/2 ;

			8.2 ´ 10–5 s–1 = 0.693/T1/2 , which gives T1/2 = 8.45 ´ 103 s =      2.3 h.



37.	The activity of the sample is

		?N/?t = lN = (0.693/T1/2)N = [0.693/(5730 yr)(3.16 ´ 107 s/yr)](3.1 ´ 1020) =      1.2 ´ 109 decays/s.

	

38.	The number of half-lives that elapses is

		n = (3.0 yr)(12 mo/yr)/(9 mo) = 4.

	We find the fraction remaining from

		N/N0 = (!)n = (!)4 =      0.0625.



39.	We find the number of nuclei from the activity of the sample:

		?N/?t = lN;

		875 decays/s = [(0.693)/(4.468 ´ 109 yr)(3.16 ´ 107 s/yr)]N, which gives N =      1.78 ´ 1020 nuclei.



40.	(a)	The fraction left is

			N/N0 = (!)n = (!)4 =      0.0625.

	(b)	The fraction left is

			N/N0 = (!)n = (!)4.5 =      0.0442.



41.	Because only a particle decay changes the mass number (by 4), we have

		Na = (235 – 207)/4 =     7 a particles.

	An a particle decreases the atomic number by 2, while a b– particle increases the atomic number by 1, so we have

		Nb = [92 – 82 – 7(2)]/(– 1) =     4 b– particles. 



42.	The decay constant is

		l = 0.693/T1/2 = 0.693/(8.0207 days)(24 h/day)(3600 s/h) = 1.000 ´ 10–6 s–1.

	The initial number of nuclei is

		N0 = [(632 ´ 10–6 g)/(131 g/mol)](6.02 ´ 1023 atoms/mol) = 2.904 ´ 1018 nuclei.

	(a)	When t = 0, we get

			lN = lN0 e – lt = (1.000 ´ 10–6 s–1)(2.904 ´ 1018) e 0 =      2.90 ´ 1012 decays/s.

	(b)	When t = 1.0 h, the exponent is

			lt = (1.000 ´ 10–6 s–1)(1.0 h)(3600 s/h) = 3.600 ´ 10–3,

		so we get

			lN = lN0 e – lt = (2.90 ´ 1012 decays/s) e – 0.003600 =      2.89 ´ 1012 decays/s.

	(c)	When t = 6 months, the exponent is

			lt = (1.000 ´ 10–6 s–1)(6 mo)(30 days/mo)(24 h/day)(3600 s/h) = 15.55,

		so we get

			lN = lN0 e – lt = (2.90 ´ 1012 decays/s) e – 15.55 =      5.11 ´ 105 decays/s.



43.	The decay constant is

		l = 0.693/T1/2 = 0.693/(30.8 s) = 0.0225 s–1.

	(a)	The initial number of nuclei is

			N0 = [(9.8 ´ 10–6 g)/(124 g/mol)](6.02 ´ 1023 atoms/mol) =      4.8 ´ 1016 nuclei.

	(b)	When t = 2.0 min, the exponent is

			lt = (0.0225 s–1)(2.0 min)(60 s/min) = 2.7,

		so we get

			N = N0 e – lt = (4.8 ´ 1016) e – 2.7 =      3.2 ´ 1015 nuclei.

	(c)	The activity is

			lN = (0.0225 s–1)(3.2 ´ 1015) =      7.2 ´ 1013 decays/s.

	(d)	We find the time from

			lN = lN0 e – lt;

			1 decay/s = (0.0225 s–1)(4.8 ´ 1016) e – (0.0225 /s)t, which gives t = 1.54 ´ 103 s =      26 min.



44.	The number of nuclei is

		N = [(7.7 ´ 10–6 g)/(32 g/mol)](6.02 ´ 1023 atoms/mol) = 1.45 ´ 1017 nuclei.

	The activity is

		lN = [(0.693)/(1.23 ´ 106 s)](1.45 ´ 1017) =      8.2 ´ 1010 decays/s.



45.	We find the number of nuclei from

		Activity = lN;

		2.65 ´ 105 decays/s = [(0.693)/(7.56 ´ 106 s)]N, which gives N = 2.89 ´ 1012 nuclei.

	The mass is

		m = [(2.89 ´ 1012 nuclei)/(6.02 ´ 1023 atoms/mol)](35 g/mol) =      1.68 ´ 10–10 g.



46.	(a)	The decay constant is

			l = 0.693/T1/2 = 0.693/(1.59 ´ 105 yr)(3.16 ´ 107 s/yr) =      1.38 ´ 10–13 s–1.

	(b)	The activity is

			lN = (1.38 ´ 10–13 s–1)(7.50 ´ 1019) = 1.035 ´ 107 decays/s =      6.21 ´ 108 decays/min.



47.	We find the number of half-lives from

		(?N/?t)/(?N/?t)0 = (!)n;

		1/10 = (!)n,   or  n log 2 = log 10, which gives n = 3.32.

	Thus the half-life is

		T1/2 = t/n = (8.6 min)/3.32 =      2.6 min.



48.	Because the fraction of atoms that are 14C is so small, we use the atomic weight of 12C to find the number of carbon atoms in 185 g:

		N = [(185 g)/(12 g/mol)](6.02 ´ 1023 atoms/mol) = 9.28 ´ 1024 atoms.

	The number of 14C nuclei is

		N14 = (1.3/1012)(9.28 ´ 1024) = 1.207 ´ 1013 nuclei.

	The activity is

		lN = [0.693/(5730 yr)(3.16 ´ 107 s/yr)](1.207 ´ 1013) =      46 decays/s.



49.	We find the number of nuclei from

		Activity = lN;

		8.70 ´ 102 decays/s = [(0.693)/(1.28 ´ 109 yr)(3.16 ´ 107 s/yr)]N, which  gives N = 5.08 ´ 1019 nuclei.

	The mass is

		m = [(5.08 ´ 1019 nuclei)/(6.02 ´ 1023 atoms/mol)](40 g/mol) = 3.4 ´ 10–3 g =     3.4 mg.





50.	We assume that the elapsed time is much smaller than the half-life, so we can use a constant decay rate.  Because 87Sr is stable, and there was none present when the rocks were formed, every atom of 87Rb that decayed is now an atom of 87Sr.  Thus we have

		NSr = – ?NRb = lNRb ?t,   or  

		NSr/NRb = (0.693/T1/2) ?t;

		0.0160 = [0.693/(4.75 ´ 1010 yr)]?t, which gives ?t =      1.1 ´ 109 yr.

	This is � 2% of the half-life, so our original assumption is valid.



51.	The decay rate is

		?N/?t = lN.

	If we assume equal numbers of nuclei decaying by a emission, we have

		(?N/?t)218/(?N/?t)214 = l218/l214 	= T1/2,214/T1/2,218 

										= (1.6 ´ 10–4 s)/(3.1 min)(60 s/min) =      8.6 ´ 10–7.



52.	The decay constant is

		l = 0.693/T1/2 = 0.693/(53 days) = 0.0131 /day = 1.52 ´ 10–7 s–1.

	We find the number of half-lives from

		(?N/?t)/(?N/?t)0 = (!)n;

		(10 decays/s)/(250 decays/s) = (!)n,   or  n log 2 = log 25, which gives n = 4.64.

	Thus the elapsed time is

		?t = nT1/2 = (4.64)(53 days) =      2.5 ´ 102 days      � 8 months.

	We find the number of nuclei from

		Activity = lN;

		250 decays/s = (1.52 ´ 10–7 s–1)N, which gives N = 1.64 ´ 109 nuclei.

	The mass is

		m = [(1.64 ´ 109 nuclei)/(6.02 ´ 1023 atoms/mol)](7 g/mol) = 1.9 ´ 10–14 g =      1.9 ´ 10–17 kg.



53.	We find the number of half-lives from

		(?N/?t)/(?N/?t)0 = (!)n;

		1.050 ´ 10–2 = (!)n,   or  n log 2 = log (1/1.050 ´ 10–2), which gives n = 6.57.

	Thus the half-life is

		T1/2 = t/n = (4.00 h)/6.57 = 0.609 h = 36.5 min.

	From the Appendix we see that the isotope is      �EMBED Word.Picture.8���.



54.	The decay constant is

		l = 0.693/T1/2 = 0.693/(5730 yr) = 1.209 ´ 10–4 /yr.

	Because the fraction of atoms that are 14C is so small, we use the atomic weight of 12C to find the number of carbon atoms in 190 g:

		N = [(190 g)/(12 g/mol)](6.02 ´ 1023 atoms/mol) = 9.53 ´ 1024 atoms,

	so the number of 14C nuclei in a sample from a living tree is

		N14 = (1.3 ´ 10–12)(9.53 ´ 1024) = 1.24 ´ 1013 nuclei.

	Because the carbon is being replenished in living trees, we assume that this number produced the activity when the club was made.  We determine its age from

		lN = lN14 e – lt;

		5.0 decays/s = [(1.209 ´ 10–4 /yr)/(3.16 ´ 107 s/yr)](1.24 ´ 1013 nuclei) �, 

	which gives t =      1.9 ´ 104 yr.



55.	The number of radioactive nuclei decreases exponentially:

		N = N0 e – lt.

	Every radioactive nucleus that decays becomes a stable daughter nucleus, so we have

		ND = N0 – N =      N0(1 – e – lt).



56.	(a)	We find the number of parent nuclei from the rate at which parent nuclei are decaying:

			dNP/dt = – lPNP, which gives �.

		Each decay of a parent nucleus produces a daughter nucleus.  Because the daughter nuclei are also 

		decaying, the rate at which daughter nuclei are increasing is

			�.

		If we multiply both sides by the integrating factor �, we have

			�

		When we integrate this from t = 0 (when ND = 0) to t = t, we get

			�

		In terms of the half-lives this is

			�EMBED Word.Picture.8���

	(b)	We write our result as

			�

		When TP = TD , both numerator and denominator are zero, so we must use l'Hôpital’s rule:

				�

�

			Thus we have

				�

		When TP = 3TD , we have

				�

		When TP = @TD , we have

				�















57.	(a)	The fraction of mass is

			mp/(mp + me) = (1.6726 ´ 10–27 kg)/(1.6726 ´ 10–27 kg + 9.11 ´ 10–31 kg) =      0.99946.

	(b)	The fraction of volume is

			(rnucleus/ratom)3 = [(1.2 ´ 10–15 m)/(0.53 ´ 10–10 m)]3 =      1.2 ´ 10–14.

	(c)	If we take the density of the hydrogen nucleus as the density of nuclear matter, we get

			r = mp/)pr3 = (1.67 ´ 10–27 kg)/)p(1.2 ´ 10–15 m)3 =      2.3 ´ 1017 kg/m3.

		The density of water is 1000 kg/m3, so nuclear matter is     1014´     greater.



58.	The radius of the iron nucleus is 

		r = (1.2 ´ 10–15 m)A1/3 = (1.2 ´ 10–15 m)(56)1/3 = 4.6 ´ 10–15 m.

	We use the radius as the uncertainty in position for the nucleon.  We find the uncertainty in the momentum from

		?p = ˙/?x = (1.055 ´ 10–34 J · s)/(4.6 ´ 10–15 m) = 2.29 ´ 10–20 kg · m/s.

	If we assume that the lowest value for the momentum is the least uncertainty, we estimate the minimum possible kinetic energy as 

		K = (?p)2/2m = (2.29 ´ 10–20 kg · m/s)2/2(1.66 ´ 10–27 kg) = 1.58 ´ 10–13 J �      1 MeV.



59.	If the 40K nucleus in the excited state is at rest, the gamma ray and the nucleus must have equal and opposite momenta:

		pK = pg = Eg/c ,   or   pKc = Eg = 1.46 MeV.

	The kinetic energy of the nucleus is

		K = pK2/2m = (pKc)2/2mc2 = (1.46 MeV)2/2(40 u)(931.5 MeV/uc2)c2 = 2.86 ´ 10–5 MeV =       28.6 eV.



60.	Because the carbon is being replenished in living trees, we assume that the amount of 14C is constant until the wood is cut, and then it decays.  We find the number of half-lives from

		N/N0 = (!)n;

		0.090 = (!)n,   or  n log 2 = log (1/0.090), which gives n = 3.47.

	Thus the time is

		t = nT1/2 = (3.47)(5730 yr) =      2.0 ´ 104 yr.



61.	(a)	We find the mass number from the radius:

			r = (1.2 ´ 10–15 m)A1/3;

			5.0 ´ 103 m = (1.2 ´ 10–15 m)A1/3, which gives A =     7.2 ´ 1055.

	(b)	The mass of the neutron star is

			m = A(1.66 ´ 10–27 kg/u) = (7.2 ´ 1055 u)(1.66 ´ 10–27 kg/u) =     1.2 ´ 1029 kg.

		Note that this is about 6% of the mass of the Sun.

	(c)	The acceleration of gravity on the surface of the neutron star is

			g = Gm/r2 = (6.67 ´ 10–11 N · m2/kg2)(1.2 ´ 1029 kg)/(5.0 ´ 103 m)2 =     3.2 ´ 1011 m/s2.



62.	Because the tritium in water is being replenished, we assume that the amount is constant until the wine is made, and then it decays.  We find the number of half-lives from

		N/N0 = (!)n;

		0.10 = (!)n,   or  n log 2 = log (10), which gives n = 3.32.

	Thus the time is

		t = nT1/2 = (3.32)(12.33 yr) =      41 yr.



63.	If we assume a body has 70 kg of water, the number of water molecules is

		Nwater = [(70 ´ 103 g)/(18 g/mol)](6.02 ´ 1023 atoms/mol) = 2.34 ´ 1027 molecules.

	The number of protons in a water molecule (H2O) is 2 + 8 = 10, so the number of protons is 

		N0 = 2.34 ´ 1028 protons.

	If we assume that the time is much less than the half-life, the rate of decay is constant, so we have

		?N/?t = lN = (0.693/T1/2)N;

		(1 proton)/?t = [(0.693)/(1032 yr)](2.34 ´ 1028 protons), which gives ?t =     6 ´ 103 yr.



64.	The capture is �. 

	Because the kinetic energies of the particles are small, the gamma energy is the energy released: 

		Q 	= [M(1H) + m(1n) – M(2H)]c2 

		= [(1.007825 u) + (1.008665 u) – (2.014102 u)]c2(931.5 MeV/uc2) =      2.22 MeV.





65.	We find the number of half-lives from

		(?N/?t)/(?N/?t)0 = (!)n;

		1.00 ´ 10–2 = (!)n,   or  n log 2 = log (100), which gives n = 6.64, so the time is      6.64 T1/2 .



66.	We find the number of 40K nuclei from

		Activity = lN40 ;

		60 decays/s = [(0.693)/(1.28 ´ 109 yr)(3.16 ´ 107 s/yr)]N40 , which gives N40 = 3.5 ´ 1018 nuclei.

	The mass of 40K is

		m40 = (3.5 ´ 1018)(40 u)(1.66 ´ 10–27 kg/u) = 2.32 ´ 10–7 kg =     0.23 mg.

	From the Appendix we have

		N40 = (0.0117%)N,   and   N39 = (93.2581%)N.

	Thus the number of 39K nuclei is

		N39 = [(93.2581%)/(0.0117%)](3.5 ´ 1018 nuclei) = 2.8 ´ 1022 nuclei.

	The mass of 39K is

		m39 = (2.8 ´ 1022)(39 u)(1.66 ´ 10–27 kg/u) = 1.81 ´ 10–3 kg =     1.8 g.



67.	If we use �  as the decay, we see that 14C and 14N each have an even number of nucleons with spin !, so their total spin must be an integer.  Because e– has spin !, � must have spin ! to conserve angular momentum.



68.	If the initial nucleus is at rest when it decays, for momentum conservation we have

		pa = pD .

	Thus the kinetic energy of the daughter is

		KD = pD2/2mD = pa2/2mD = (ma/mD)Ka = (Aa/AD)Ka = (4/AD)Ka .

	Thus the fraction carried away by the daughter is

		KD/(Ka + KD) = (4/AD)Ka/[Ka + (4/AD)Ka] = 1/[1 + (AD/4)].

	For the decay of 226Ra, the daughter has AD = 222, so we get

		fractionD = 1/[1 + (222/4)] = 0.018.

	Thus the a particle carries away 1 – 0.018 = 0.982 =      98.2%.



69.	We see from the periodic chart that Sr is in the same column as      calcium. 

	If strontium is ingested, the body will treat it chemically as if it were calcium, which means it will be 

		stored by the body in bones, where its radioactivity could affect the bone marrow.

	We find the number of half-lives to reach a 1% level from

		N/N0 = (!)n;

		0.01 = (!)n,   or  n log 2 = log (100), which gives n = 6.64.

	Thus the time is

		t = nT1/2 = (6.64)(29 yr) =      193 yr.

	The decay reactions are

		�EMBED Word.Picture.8���,  �EMBED Word.Picture.8���  is radioactive;

		�EMBED Word.Picture.8���,  �EMBED Word.Picture.8���  is stable.



�

70.	(a)	We find the daughter nucleus by balancing the 

		mass and charge numbers:

			Z(X) = Z(Os) – Z(e–) = 76 – (– 1) = 77;

			A(X) = A(Os) – A(e–) = 191 – 0 = 191, 

		so the daughter nucleus is      �EMBED Word.Picture.8���.

	(b)	Because there is only one b energy, the b 

		decay must be to the      higher excited state.





71.	We use an average nuclear radius of 5 ´ 10–15 m.

	We use the radius as the uncertainty in position for the electron to find the uncertainty in the momentum from

		?p = ˙/?x = (1.055 ´ 10–34 J · s)/2(5 ´ 10–15 m) = 2.1 ´ 10–20 kg · m/s.

	If we assume that the lowest value for the momentum is the least uncertainty, we estimate the minimum possible energy as 

		E 	= K + mc2 = (p2c2 + m2c4)1/2 = [(?p)2c2 + m2c4]1/2 

			= [(2.1 ´ 10–20 kg · m/s)2(3.00 ´ 108 m/s)2 + (9.11 ´ 10–31 kg)2(3.00 ´ 108 m/s)4]1/2 

			= 6.3 ´ 10–12 J � 40 MeV.

	Because this is » mc2, the electron is unlikely to be found in the nucleus.



72.	From Figure 42–1, we see that the average binding energy per nucleon at A = 29 is 8.6 MeV.  

	If we use the average atomic weight as the average number of nucleons for the two stable isotopes of copper, the total binding energy is

		(63.5)(8.6 MeV) =     550 MeV.

	The number of atoms in a penny is

		N = [(3.0 g)/(63.5 g/mol)](6.02 ´ 1023 atoms/mol) = 2.84 ´ 1022 atoms.

	Thus the total energy needed is

		(2.84 ´ 1022)(550 MeV) = 1.57 ´ 1025 MeV =     2.5 ´ 1012 J.



73.	(a)	?(4He) 	= M(4He) – A(4He) = 4.002603 u – 4 u =     0.002603 u

				= (0.002603 u)(931.5 MeV/uc2) =      2.425 MeV/c2.

	(b)	?(12C) = M(12C) – A(12C) = 12.000000 u – 12 u =     0.

	(c)	?(107Ag) 	= M(107Ag) – A(107Ag) = 106.905093 u – 107 u =     – 0.094907 u

					= (– 0.094907 u)(931.5 MeV/uc2) =      – 88.41 MeV/c2.

	(d)	?(235U) = M(235U) – A(235U) = 235.043923 u – 235 u =     0.043923 u

				= (0.043923 u)(931.5 MeV/uc2) =      40.92 MeV/c2.

	(e)	From the Appendix we see that

			? = 0 for 1 = Z = 8 and Z = 85;

			? < 0 for 9 = Z = 84.



74.	(a)	The usual fraction of 14C is 1.3 ´ 10–12.  Because the fraction of atoms that are 14C is so small, 

		we use the atomic weight of 12C to find the number of carbon atoms in 100 g:

			N = [(100 g)/(12 g/mol)](6.02 ´ 1023 atoms/mol) = 5.02 ´ 1024 atoms.

		The number of 14C nuclei in the sample is

			N14 = (1.3 ´ 10–12)(5.02 ´ 1024) = 6.53 ´ 1012 nuclei.

		We find the number of half-lives from

			N/N0 = (!)n;

			1/6.53 ´ 1012 = (!)n,   or  n log 2 = log (6.53 ´ 1012), which gives n = 42.6.

		Thus the time is

			t = nT1/2 = (42.6)(5730 yr) =      2.4 ´ 105 yr.

	(b)	It would take one half-life for the activity of 200 g to decay to the activity of 100 g.  This is so much 

		smaller than the time in (a) that there is      no change.     

		Thus carbon dating cannot be used for times much greater than the half-life.



75.	Because there are so many low-energy electrons available, the reaction � would turn most of the protons into neutrons, which       would eliminate chemistry, and thus life.

	The Q-value of the reaction is

		Q = [M(1H) – m(1n)]c2 = [(1.007825 u) – (1.008665 u)]c2(931.5 MeV/uc2) = – 0.782 MeV.

	The percentage increase in the proton’s mass to make the Q-value = 0 is

		(?m/m)(100) = [(0.782 MeV/c2)/(938.3 MeV/c2)](100) =      0.083%.



76.	(a)	From the definition of the mean life we have

			�

		where we have changed variable to u = lt.  We integrate the numerator by parts:

			�

		Thus we get

			�

	(b)	We find the fraction remaining after one mean life from

			N/N0 = e –lt = e –1 =      0.368.



77.	For the a, b, b, a, a sequence we have

		�, �, �, �, �.

	Thus the daughter nuclei are       �EMBED Word.Picture.8���, �EMBED Word.Picture.8���, �EMBED Word.Picture.8���, �EMBED Word.Picture.8���, �EMBED Word.Picture.8���.

	For the a, b, a, b, a sequence we have

		�, �, �, �, �.

	Thus the daughter nuclei are       �EMBED Word.Picture.8���, �EMBED Word.Picture.8���, �EMBED Word.Picture.8���, �EMBED Word.Picture.8���, �EMBED Word.Picture.8���.



78.	For the circular motion in the magnetic field, the magnetic force provides the radial acceleration:

		qvB = mv2/R.

	The kinetic energy is

		K = !mv2 = q2B2R2/2m.

	When we form the ratio for the two particles with the same radii, we get

		Ka/Kb = (qa/qb)2(mb/ma) = [(2 e)/(1 e)]2[(9.11 ´ 10–31 kg)/4(1.67 ´ 10–27 kg)] =      5.5 ´ 10–4.

	Note that the particles will have opposite curvatures.













































79.	(a)	If the speed of the a particle within the nucleus is vin , the time to traverse the nucleus is 			2R0/vin .  

		The frequency of a collision with the Coulomb barrier is vin/2R0 .  From Ch. 39 the probability of 	passing through the barrier each time is T = e –2GL, where L is the thickness of a square barrier, and 

		G = [2m(U0 – E)/˙2]1/2.  The decay constant is the probability of the a particle escaping from the 	nucleus:

			l = (vin/2R0)T = (vin/2R0)e –2GL.

	The Coulomb barrier decreases as 1/r.  For a square barrier that approximates this we will use the 

	maximum height found in Problem 34 for the height of the barrier.  We find the value of G from

		G2	= 2m(U0 – E)/˙2

			= 2(4)(1.67 ´ 10–27 kg)(28 MeV – 4.5 MeV)(1.60 ´ 10–13 J/MeV)/(1.055 ´ 10–34 J · s)2, 

	which gives G = 2.1 ´ 1015 m–1 = 2.1 fm–1.

	If we choose the potential inside the well to be zero, the kinetic energy of the a particle inside is the same as the kinetic energy of the a particle after the decay.  We find the speed inside the well from

		K = !mv2;

		(4.49 MeV)(1.60 ´ 10–13 J/MeV) = !(4)(1.67 ´ 10–27 kg)vin2, which gives vin = 1.47 ´ 107  m/s.

	The frequency of striking the barrier is

		vin/2R0 = (1.47 ´ 107  m/s)/2(7.4 ´ 10–15 m) = 9.9 ´ 1020 s–1.

	To account for the decrease with r of the Coulomb barrier, we use a square barrier with a thickness less than the width found in Problem 34.

	(b)	If we use a thickness of ! the width of 50 fm, we have

			�

		Thus the half-life is

			T1/2 = (ln 2)/l = 0.693/(2.5 ´ 10–25 s–1) = 2.8 ´ 1024 s      � 1017 yr.

	(c)	If we use a thickness of @ the width of 50 fm, we have

			�

		Thus the half-life is

			T1/2 = (ln 2)/l = 0.693/(3.4 ´ 10–10 s–1) = 2.0 ´ 109 s      � 60 yr.

		Note that the result is very sensitive to the value used for the barrier thickness.

	(d)	To find the width that gives us the known half-life, we have

			�

			e 2GL = [(9.9 ´ 1020 s–1)/(ln 2)](2 ´ 107 yr)(3.16 ´ 107 s/yr),  or  2GL = 83;

			L = (83)/2(2.1 fm–1) = 20 fm, which is        0.4      of the width found in Problem 34.
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