CHAPTER 43 – Nuclear Energy; Effects and Uses of Radiation



Note:	A factor that appears in the analysis of energies is

			e2/4pÅ0 = (1.60 ´ 10–19 C)2 /4p(8.85 ´ 10–12 C2/N · m2)= 2.30 ´ 10–28 J · m = 1.44 MeV · fm.



1.	We find the product nucleus by balancing the mass and charge numbers:

		Z(X) = Z(27Al) + Z(n) = 13 + 0 = 13;

		A(X) = A(27Al) + A(n) = 27 + 1 = 28, so the product nucleus is      �EMBED Word.Picture.8���.

	If � were a b+ emitter, the resulting nucleus would be �, which has too many neutrons relative to the number of protons to be stable.   Thus we have a      b– emitter.

	The decay is �, so the product is      �EMBED Word.Picture.8���.



2.	For the reaction �, we find the difference of the initial and the final masses:

		?M = M(2H) + M(2H) – m(n) – M(3He)

			= 2(2.014102 u) – (1.008665 u) – (3.016029 u) = + 0.003510 u.

	Thus      no threshold energy      is required.



3.	For the reaction � with slow neutrons, whose kinetic energy is negligible, we find the difference of the initial and the final masses:

		?M = M(238U) + m(n) – M(239U)

			= (238.050782 u) + (1.008665 u) – (239.054287 u) = + 0.005160 u.

	Thus no threshold energy is required, so the reaction is     possible.



4.	For the reaction �, we determine the Q-value:

		Q 	= [M(7Li) + M(1H) – M(4He) – M(4He)]c2 

			= [(7.016004 u) + (1.007825 u) – 2(4.002603 u)]c2(931.5 MeV/uc2) = + 17.35 MeV.

	Thus      17.35 MeV is released.



5.	For the reaction �, we determine the Q-value:

		Q 	= [M(9Be) + M(4He) – m(n) – M(12C)]c2 

			= [(9.012182 u) + (4.002603 u) – (1.008665 u) – (12.000000 u)]c2(931.5 MeV/uc2) = + 5.701 MeV.

	Thus      5.701 MeV is released.



6.	(a)	For the reaction �, we determine the Q-value:

			Q 	= [M(24Mg) + m(n) – M(2H) – M(23Na)]c2 

				= [(23.985042 u) + (1.008665 u) – (2.014102 u) – (22.989770 u)]c2(931.5 MeV/uc2) = – 9.469 MeV.

		Because (K + Q) > 0, the reaction      can occur.

	(b)	The energy released is

			K + Q = 10.00 MeV – 9.469 MeV =      0.53 MeV.



7.	(a)	For the reaction �, we determine the Q-value:

			Q 	= [M(7Li) + M(1H) – M(4He) – M(4He)]c2 

				= [(7.016004 u) + (1.007825 u) – 2(4.002603 u)]c2(931.5 MeV/uc2) = + 17.35 MeV.

		Because Q > 0, the reaction      can occur.

	(b)	The kinetic energy of the products is

			K = Ki + Q = 2.500 MeV + 17.35 MeV =      19.85 MeV.











8.	(a)	For the reaction �, we determine the Q-value:

			Q 	= [M(14N) + M(4He) – M(1H) – M(17O)]c2 

				= [(14.003074 u) + (4.002603 u) – (1.007825 u) – (16.999131 u)]c2(931.5 MeV/uc2) = – 1.191 MeV.

		Because (K + Q) > 0, the reaction      can occur.

	(b)	The kinetic energy of the products is

			K = Ki + Q = 7.68 MeV – 1.191 MeV =      6.49 MeV.



9.	For the reaction �, we determine the Q-value:

		Q 	= [M(16O) + M(4He) – M(20Ne)]c2 

			= [(15.994915 u) + (4.002603 u) – (19.992440 u)]c2(931.5 MeV/uc2) =      + 4.730 MeV.



10.	For the reaction �, we determine the Q-value:

		Q 	= [M(13C) + M(2H) – m(n) – M(14N)]c2 

			= [(13.003355 u) + (2.014102 u) – (1.008665 u) – (14.003074 u)]c2(931.5 MeV/uc2) = + 5.326 MeV.

	The kinetic energy of the products is

		K = Ki + Q = 36.3 MeV + 5.326 MeV =      41.6 MeV.



11.	(a)	We find the product nucleus by balancing the mass and charge numbers:

			Z(X) = Z(6Li) + Z(2H) – Z(1H) = 3 + 1 – 1 = 3;

			A(X) = A(6Li) + A(2H) – A(1H) = 6 + 2 – 1 = 7, so the product nucleus is      �EMBED Word.Picture.8���.

	(b)	It is a “stripping” reaction because a      neutron is stripped from the deuteron.

	(c)	For the reaction �, we determine the Q-value:

			Q 	= [M(6Li) + M(2H) – M(1H) – M(7Li)]c2 

				= [(6.015122 u) + (2.014102 u) – (1.007825 u) – (7.016004 u)]c2(931.5 MeV/uc2) =      + 5.025 MeV.

		Because Q > 0, the reaction is      exothermic.



12.	(a)	It is a “pickup” reaction because the      3He picks up a neutron.

	(b)	We find the product nucleus by balancing the mass and charge numbers:

			Z(X) = Z(12C) + Z(3He) – Z(4He) = 6 + 2 – 2 = 6;

			A(X) = A(12C) + A(3He) – A(4He) = 12 + 3 – 4 = 11, so the product nucleus is      �EMBED Word.Picture.8���.

	(c)	For the reaction �, we determine the Q-value:

			Q 	= [M(12C) + M(3He) – M(4He) – M(11C)]c2 

				= [(12.000000 u) + (3.016029 u) – (4.002603 u) – (11.011434 u)]c2(931.5 MeV/uc2) =   + 1.856 MeV.

		Because Q > 0, the reaction is      exothermic.



13.	(a)	We find the initial nucleus by balancing the mass and charge numbers:

			Z(X) = Z(32S) – Z(1H) = 16 – 1 = 15;

			A(X) = A(32S) – A(1H) = 32 – 1 = 31, so the initial nucleus is �.

		The reaction is      �EMBED Word.Picture.8���.

	(b)	For the reaction, we determine the Q-value:

			Q 	= [M(31P) + M(1H) – M(32S)]c2 

				= [(30.973762 u) + (1.007825 u) – (31.972071 u)]c2(931.5 MeV/uc2) =      + 8.864 MeV.





















14.	For the reaction �, we determine the Q-value:

		Q 	= [M(13C) + M(1H) – m(n) – M(13N)]c2 

			= [(13.003355 u) + (1.007825 u) – (1.008665 u) – (13.005739 u)]c2(931.5 MeV/uc2) = – 3.003 MeV.

	The kinetic energy of the products is

		Kn + KN = Kp + Q.

	Because the kinetic energies « mc2, we can use a non relativistic treatment: K = mv2/2 = p2/2m.  

	The least kinetic energy is required when the product particles move together with the same speed.  

	With the target at rest, for momentum conservation we have

		pp = pn + pN = (mn + mN)v,   or   

		Kp = pp2/2mp = [(mn + mN)2/2mp]v2 = [(mn + mN)/mp](Kn + KN),  or  

		Kn + KN = [mp/(mn + mN)]Kp .

	When we use this in the kinetic energy equation, we get

		[mp/(mn + mN)]Kp = Kp + Q;

		{[(1 u)/(1 u + 13 u)] – 1}Kp = – 3.003 MeV, which gives Kp = 3.23 MeV.



�

15.	From the figure we see that a collision will occur if 

		d = (R1 + R2).

	Thus the area of the effective circle presented 

	by R2 to the center of R1 is

		s = p(R1 + R2)2.













16.	We assume the density of the gas atoms is low enough that we can use the result for a thin target.  Thus the fraction of neutrons that interact is

		R/R0 = ns t = (1.7 ´ 1021 m–3)(40 ´ 10–28 m2)(0.120 m) =      8.2 ´ 10–7.



�

17.	The initial rate of incident particles is R0 , and the reduced 

	rate a distance x inside the target is Rx .  The rate at which 

	particles collide in the next small distance dx is

		dR = Rxns dx.

	Because each collision removes a particle from the beam, 

	the change in the incident rate of particles in the beam a 

	distance x inside the target is – dR, or 

		dRx = – Rxns dx.

	When we integrate this from the initial incidence, we get

		�

		Rx = R0 e –ns x.

	If x = t, we get

		Rt = R0 e –ns t,

	which represents       the rate at which incident particles pass through the target without scattering.











18.	We use the result from Problem 17 in the form

		ln (Rt /R0) = – ns t.

	We can find the value of ns from

		ln (R1/R0) = ln (0.30) = – ns t1 = – ns  (0.010 m), which gives ns = 1.2 ´ 102 m–1.

	We find the thickness to reduce the rate by 1/106 from

		ln (R2/R0) = ln (10–6) = – ns t2 = – (1.2 ´ 102 m–1)t2 , which gives t2 = 0.12 m =      12 cm.



19.	We assume a 1% reaction rate allows us to treat the target as thin.  The density of Cd atoms is

		n = [(8650 kg/m3)(103 g/kg)/(113.9 g/mol)](6.02 ´ 1023 atoms/mol) = 4.57 ´ 1028 m–3.

	(a)	From Fig. 43–3 we find that the cross section for 0.1-eV neutrons is 3000 bn.  Thus we have

			R/R0 = ns x;

			0.01 = (4.57 ´ 1028 m–3)(3000 ´ 10–28 m2)x, which gives x = 7 ´ 10–7 m =      0.7 mm.

	(b)	From Fig. 43–3 we find that the cross section for 10-eV neutrons is 2 bn.  Thus we have

			R/R0 = ns t;

			0.01 = (4.57 ´ 1028 m–3)(2 ´ 10–28 m2)x, which gives x = 1 ´ 10–3 m =      1 mm.



20.	If we neglect the initial kinetic energy of the neutron, the released energy is the Q-value:

		Q 	= [M(235U) + m(n) – 12m(n) – M(88Sr) – M(136Xe)]c2 

			= [(235.043923 u) – 11(1.008665 u) – (87.905614 u) – (135.907220 u)]c2(931.5 MeV/uc2) =    126.5 MeV.



21.	For the reaction �, we determine the Q-value:

		Q 	= [M(235U) + m(n) – 3m(n) – M(141Ba) – M(92Kr)]c2 

			= [(235.043923 u) – 2(1.008665 u) – (140.91440 u) – (91.92630 u)]c2(931.5 MeV/uc2) = 173.2 MeV.

	If the kinetic energy of the incident neutron is very small, the released energy is       173.2 MeV.



22.	If we assume 100% efficiency, we have

		P = E/t;

		200 MW = (200 MeV)(1.60 ´ 10–19 J/eV)(n/t), which gives n/t =     6.3 ´ 1018 fissions/s.



23.	With an efficiency of 100% we find the number of fissions from

		P = E/t;

		300 W = (200 MeV)(1.60 ´ 10–13 J/MeV)n/(3.16 ´ 107 s), which gives n = 2.96 ´ 1020 fissions.

	Each fission uses one uranium atom, so the required mass is

		m = [(2.96 ´ 1020 atoms)/(6.02 ´ 1023 atoms/mol)](235 g/mol) =      0.116 g.



24.	We find the number of fissions from

		P = E/t;

		(500 MW)/(0.40) = (200 MeV)(1.60 ´ 10–19 J/eV)n/(3.16 ´ 107 s), 

	which gives n = 1.23 ´ 1027 fissions.

	Each fission uses one uranium atom, so the required mass is

		m = [(1.23 ´ 1027 atoms)/(6.02 ´ 1023 atoms/mol)](235 g/mol) = 4.82 ´ 105 g =     4.8 ´ 102 kg.



25.	We find the number of collisions from

		En = E0(!)n;

		0.040 eV = (1.0 ´ 106 eV)(!)n, which gives n =      25.



26.	The number of fissions in one second is

		n = t/?t = (1.0 s)/(1.0 ´ 10–3 s) = 1.0 ´ 103.

	For each fission the number of neutrons is 1.0004 times the number from the previous fission.  

	Thus the reaction rate will increase by

		(1.0004)n = (1.0004)1000 =      1.49.



27.	When 236U decays by a emission, the resulting nucleus is 232Th.  Thus the radii of the two particles are

		ra = (1.2 fm)(4)1/3 = 1.90 fm;

		rTh = (1.2 fm)(232)1/3 = 7.37 fm.

	At the instant of separation, the two particles are in contact, so the Coulomb energy is

		Ua = ZaZThe2/4pÅ0(ra + rTh).

	If we assume fission into equal parts, the resulting nucleus has A = 118.  Thus each radius is

		rf = (1.2 fm)(118)1/3 = 5.89 fm.

	At the instant of separation, the two particles are in contact, so the Coulomb energy is

		Uf = Zf2e2/4pÅ0(2rf).

	The ratio is

		Ua/Uf  = ZaZTh(2rf)/Zf2(ra + rTh) = (2)(90)(2)(5.89 fm)/(46)2(1.90 fm + 7.37 fm) =      0.11.



28.	If we assume fission into equal parts, the resulting nucleus has A = 118.  Thus each radius is

		rf = (1.2 fm)(118)1/3 = 5.89 fm.

	At the instant of separation, the two particles are in contact, so the Coulomb energy is

		Uf = Zf2e2/4pÅ0(2rf) = (46)2(1.44 MeV · fm)/(2)(5.89 fm) =      259 MeV.

	This is greater than the fission energy release of 200 MeV, which is probably an indication of the complexity of the fission process.



29.	We find the average kinetic energy from

		K = *kT = *(1.38 ´ 10–23 J/K)(107 K)/(1.60 ´ 10–19 J/eV) = 1.29 ´ 103 eV =     1.3 keV.



30.	For the reaction �, we determine the Q-value:

		Q 	= [M(2H) + M(3H) – m(n) – M(4He)]c2 

			= [(2.014102 u) + (3.016049 u) – (1.008665 u) – (4.002603 u)]c2(931.5 MeV/uc2) = + 17.59 MeV.

	Thus 17.59 MeV is released.



31.	For the reaction �, we determine the Q-value:

		Q 	= [M(2H) + M(2H) – m(n) – M(3He)]c2 

			= [2(2.014102 u) – (1.008665 u) – (3.016029 u)]c2(931.5 MeV/uc2) = + 3.27 MeV.

	Thus 3.27 MeV is released.



32.	For the reaction �, we must add two electron masses to the left hand side to use atomic masses.  We need one electron mass on the right hand side to use the atomic mass for hydrogen.  Thus we have two extra electron masses on the right hand side.  

	We determine the Q-value:

		Q 	= [M(1H) + M(1H) – M(2H) – 2m(e)]c2 

			= [2(1.007825 u) – (2.014102 u) – 2(0.0005486 u)]c2(931.5 MeV/uc2) = 0.42 MeV.

	For the reaction �, we determine the Q-value:

		Q 	= [M(1H) + M(2H) – M(3He)]c2 

			= [(1.007825 u) + (2.014102 u) – (3.016029 u)]c2(931.5 MeV/uc2) = 5.49 MeV.

	For the reaction �, we determine the Q-value:

		Q 	= [M(3He) + M(3He) – M(4He) – M(1H) – M(1H)]c2 

			= [2(3.016029 u) – (4.002603 u) – 2(1.007825 u)]c2(931.5 MeV/uc2) = 12.86 MeV.

















33.	For the reaction �, two atoms of 2H, or 4 u, are used as fuel.  The energy release is

		(4.03 MeV/reaction)/(4 u/reaction)(1.66 ´ 10–27 kg/u) = 6.1 ´ 1026 MeV/kg =      6.1 ´ 1023 MeV/g.

	For the reaction �, two atoms of 2H, or 4 u, are used as fuel.  The energy release is

		(3.27 MeV/reaction)/(4 u/reaction)(1.66 ´ 10–27 kg/u) = 4.9 ´ 1026 MeV/kg =      4.9 ´ 1023 MeV/g.

	For the reaction �, one atom of 2H and one atom of 3H, or 5 u, are used as fuel.  

	The energy release is

		(17.59 MeV/reaction)/(5 u/reaction)(1.66 ´ 10–27 kg/u) = 2.1 ´ 1027 MeV/kg =      2.1 ´ 1024 MeV/g.

	In the fission reaction, one atom of 235U, or 235 u, is used as fuel.  The energy release is

		(200 MeV/reaction)/(235 u/reaction)(1.66 ´ 10–27 kg/u) = 5.1 ´ 1026 MeV/kg =      5.1 ´ 1023 MeV/g.

	Thus most fusion reactions yield more energy per unit mass.

	Note that 235U is only 0.72% of natural uranium.  Thus approximately every gram of 235U would come from

		1/(0.0072) = 1.4 ´ 102 g 238U.

	On this basis the fission yield is

		(5.1 ´ 1023 MeV/g 235U)/(1.4 ´ 102 g 238U/g 235U) = 3.6 ´ 1021 MeV/g 238U.



34.	We find the minimum number of fusions by assuming 100% efficiency:

		P = E/t;

		300 W = (3.27 MeV)(1.60 ´ 10–13 J/MeV)n/(3.16 ´ 107 s/yr), 

	which gives n = 1.81 ´ 1022 fusions/yr.

	Each fusion uses two deuterium atoms, so the required mass is

		m = [(1.81 ´ 1022 atoms/yr)/(6.02 ´ 1023 atoms/mol)](2)(2 g/mol) =      0.120 g/yr.



35.	Because the kinetic energies « mc2, we can use a non relativistic treatment: K = mv2/2 = p2/2m.  

	We assume the kinetic energy of the deuterium and the tritium can be neglected, so for momentum conservation we have

		pHe = pn.

	The kinetic energy of the particles is

		Q = KHe + Kn = (pHe2/2mHe) + (pn2/2mn) = pHe2(mn + mHe)/2mHemn ;

		17.59 MeV = pHe2(1 u + 4 u)/2(4 u)(1 u), which gives pHe2 = 28.1 MeV · u.

	The kinetic energy of 4He is

		KHe = pHe2/2mHe = (28.1 MeV · u)/2(4 u) = 3.5 MeV.

	The kinetic energy of n is

		Kn = pn2/2mn = (28.1 MeV · u)/2(1 u) = 14 MeV.

	This result is      not independent      of the plasma temperature, which is a measure of the initial kinetic energies.



36.	The rate at which input energy is needed by the reactor is

		P = [(1000 ´ 106 W)/(0.30)](3600 s/h)/(1.60 ´ 10–13 J/MeV) = 7.50 ´ 1025 MeV/h. 

	If we assume equal contributions from the two equations, four deuterium nuclei release 

		4.03 MeV + 3.27 MeV = 7.30 MeV.

	Each water molecule has two H atoms.  If 0.015% of them are deuterium nuclei, the number of water molecules needed for fuel is

		N 	= (7.50 ´ 1025 MeV/h)/[(7.30 MeV)/(4 nuclei)](2 nuclei/molecule)(0.015 ´ 10–2) 

			= 1.37 ´ 1029 molecules/h.

	The required mass of water is

		m 	= [(1.37 ´ 1029 molecules/h)/(6.02 ´ 1023 molecules/mol)](18 g/mol) 

			= 4.1 ´ 106 g/h =     4.1 ´ 103 kg/h.







37.	The number of deuterium nuclei in 1.00 kg of water is

		N 	= [(1.00 ´ 103 g)/(18 g/mol)](6.02 ´ 1023 molecules/mol)(2 nuclei/molecule)(0.015 ´ 10–2) 

			= 1.00 ´ 1022 nuclei.

	Two deuterium nuclei release 4.03 MeV, so the total energy is

		E = (1.00 ´ 1022 nuclei)(4.03 MeV)(1.60 ´ 10–13 J/MeV)/(2 nuclei) =     3.23 ´ 109 J.

	This is      65´      the energy from burning 1.0 kg of gasoline.



38.	(a)	If we look at the reactions for the carbon cycle, we see that one carbon atom is used in the first 

		reaction and one carbon atom is produced in the last reaction.  If we add all of the reactions, we get

			�.

	(b)	If we ignore the gamma rays and the pair annihilation, the Q-value is

			Q 	= [4M(1H) – M(4He)  – 4m(e)]c2 

				= [4(1.007825 u) – (4.002603 u) – 4(0.0005486 u)]c2(931.5 MeV/uc2) = + 24.69 MeV.

		When we include the energy from the electron-positron annihilation, the total energy release is

			24.69 MeV + 2(1.022 MeV) =      26.73 MeV.

	(c)	For the reaction �, we determine the Q-value:

			Q 	= [M(12C) + M(1H)  – M(13N)]c2 

				= [(12.000000 u) + (1.007825 u) – (13.005739 u)]c2(931.5 MeV/uc2) =      + 1.94 MeV.

		For the decay �, we determine the Q-value:

			Q 	= [M(13N) – M(13C)  – 2m(e)]c2 

				= [(13.005739 u) – (13.003355 u) – 2(0.0005486 u)]c2(931.5 MeV/uc2) =      + 1.20 MeV.

		For the reaction �, we determine the Q-value:

			Q 	= [M(13C) + M(1H)  – M(14N)]c2 

				= [(13.003355 u) + (1.007825 u) – (14.003074 u)]c2(931.5 MeV/uc2) =      + 7.55 MeV.

		For the reaction �, we determine the Q-value:

			Q 	= [M(14N) + M(1H)  – M(15O)]c2 

				= [(14.003074 u) + (1.007825 u) – (15.003065 u)]c2(931.5 MeV/uc2) =      + 7.30 MeV.

		For the decay �, we determine the Q-value:

			Q 	= [M(15O) – M(15N)  – 2m(e)]c2 

				= [(15.003065 u) – (15.000108 u) – 2(0.0005486 u)]c2(931.5 MeV/uc2) =      + 1.73 MeV.

		For the reaction �, we determine the Q-value:

			Q 	= [M(15N) + M(1H) – M(12C) – M(4He)]c2 

				= [(15.000108 u) + (1.007825 u) – (12.000000 u) – (4.002603 u)]c2(931.5 MeV/uc2) =    + 4.96 MeV.

	(d)	For the nuclei with higher atomic number, there is a      greater repulsion      between the positive 

		charges, so higher kinetic energies are required.  Thus higher temperatures are required.



































39.	(a)	To initiate the reaction, the kinetic energy of the initial nuclei must be sufficient to overcome the 

		Coulomb barrier.  The radii of the two initial nuclei for the first reaction of the carbon cycle are

			rC = (1.2 fm)(12)1/3 = 2.75 fm;

			rp = (1.2 fm)(1)1/3 = 1.2 fm.

		We assume the total kinetic energy equals the Coulomb energy when the nuclei are in contact:

			KC-p = UC-p = ZCZpe2/4pÅ0(rC + rp).

		The radii of the two initial nuclei for the deuteron-tritium reaction are

			rd = (1.2 fm)(2)1/3 = 1.51 fm;

			rt = (1.2 fm)(3)1/3 = 1.73 fm.

		We assume the total kinetic energy equals the Coulomb energy when the nuclei are in contact:

			Kd-t = Ud-t = ZdZte2/4pÅ0(rd + rt).

		Thus the ratio is

			KC-p/Kd-t = ZCZp(rd + rt)/ZdZt(rC + rp) = (6)(1)(1.51 fm + 1.73 fm)/(1)(1)(2.75 fm + 1.2 fm) =     4.9´.

	(b)	Because the kinetic energy is proportional to the temperature, we have

			KC-p/Kd-t = TC-p/Td-t ;

			4.9 = TC-p/(3 ´ 108 K), which gives TC-p =      1.5 ´ 109 K.



40.	(a)	If n is the density of particles, for equal numbers of 2H and 3H atoms we have

			r = 200 ´ 103 kg/m3 = !n(2 u)(1.66 ´ 10–27 kg/u) + !n(3 u)(1.66 ´ 10–27 kg/u), 

		which gives n =      4.8 ´ 1031 particles/m3.

	(b)	To meet the Lawson criterion, we have

			nt = 3 ´ 1020 s/m3;

			(4.8 ´ 1031 particles/m3)t = 3 ´ 1020 s/m3, which gives      t = 6 ´ 10–12 s.



41.	Because the quality factor for gamma rays is ˜ 1, we have

		effective dose (Gy) = effective dose (Sv)/QF = (4.0 Sv)/1 =      4.0 Gy.



42.	Because the quality factor for a-particle radiation is ˜ 20, we have

		effective dose (rem) = effective dose (rad) ´ QF;

		rada ´ 20 = radX ´ 1;

		radX = (50 rad)(20) =      1000 rad.



43.	Because the quality factor for slow neutrons is ˜ 3 and for fast neutrons is ˜ 10, we have

		effective dose (rem) = effective dose (rad) ´ QF;

		radslow ´ 3 = radfast ´ 10;

		radslow = (50 rad)(10)/(3) =      167 rad.



44.	The energy deposited is

		E = (50 rad)(1.00 ´ 10–2 J/kg · rad)(70 kg) =      35 J.



45.	If the counter counts 90% of the intercepted b particles, we have

		n = (0.90)(0.20)(0.025 ´ 10–6 Ci)(3.7 ´ 1010 decays/s · Ci) =     1.7 ´ 102 counts/s.



46.	If the decay rate were constant, the time required would be 

		t1 = (36 Gy)/(1.0 ´ 10–2 Gy/min)(60 min/h)(24 h/day) = 2.50 days.

	This time is (2.50 days)/(14.3 days) = 0.175 half-lives.

	The activity of the source at this time would be

		(1.0 ´ 10–2 Gy/min)(!)0.175 = 0.886 ´ 10–2 Gy/min.

	If we approximate the exponential decay as linear, and use the average activity, we get

		t2 = (36 Gy)/!(1.0 ´ 10–2 Gy/min + 0.886 ´ 10–2 Gy/min)(1440 min/day) = 2.65 days       ˜ 2.7 days.



47.	If we start with the current definition of the roentgen, we get

		1 R 	= (0.878 ´ 10–2 J/kg)/(1.60 ´ 10–19 J/eV)(1000 g/kg)(35 eV/pair) 

			= 1.57 ´ 1012 pairs/g ˜ 1.6 ´ 1012 pairs/g.



48.	Because each decay gives one gamma ray, the rate at which energy is emitted is

		P = (1.85 ´ 10–6 Ci)(3.7 ´ 1010 decays/s · Ci)(122 ´ 103 eV/decay)(1.60 ´ 10–19 J/eV) = 1.34 ´ 10–9 J/s.

	If 50% of the energy is absorbed by the body, the dose rate is

		dose rate = (0.50)(1.34 ´ 10–9 J/s)(86,400 s/day)/(1.00 J/kg · Gy)(70 kg) =     8.2 ´ 10–7 Gy/day.



49.	The decay constant is

		l = 0.693/T1/2 = 0.693/(5730 yr) = 1.209 ´ 10–4 /yr = 3.83 ´ 10–12 s–1.

	We find the number of 14C atoms from 

		Activity = lN;

		(1.00 ´ 10–6 Ci)(3.7 ´ 1010 decays/s · Ci) = (3.83 ´ 10–12 s–1)N, which gives N = 9.67 ´ 1015 atoms.

	The mass is

		m = [(9.67 ´ 1015 atoms)/(6.02 ´ 1023 atoms/mol)](14 g/mol) = 2.25 ´ 10–7 g =      0.225 mg.



50.	(a)	�EMBED Word.Picture.8���.

	(b)	We find the number of half-lives from

			N/N0 = (!)n;

			(0.10) = (!)n,   or  n log 2 = log 10, which gives n = 3.32.

		Thus the elapsed time is

			?t = nT1/2 = (3.32)(8.0 days) =     27 days.

	(c)	We find the number of atoms from 

			Activity = lN;

			(1.00 ´ 10–3 Ci)(3.7 ´ 1010 decays/s · Ci) = [0.693/(8.0 days)(86,400 s/day)]N, 

		which gives N = 3.69 ´ 1013 atoms.

		The mass is

			m = [(3.69 ´ 1013 atoms)/(6.02 ´ 1023 atoms/mol)](131 g/mol) =      8.0 ´ 10–9 g.



51.	Because each decay gives one gamma ray, the rate at which energy is emitted is

		P 	= (2000 ´ 10–12 Ci/L)(3.7 ´ 1010 decays/s · Ci)(1.5 MeV/decay)(1.60 ´ 10–13 J/MeV) 

			= 1.78 ´ 10–11 J/s · L.

	If 10% of the energy is absorbed by the body for half a year (12 h/day), the total absorbed 

	energy rate is

		rate = (0.10)(1.78 ´ 10–11 J/s · L)(0.5 L)!(3.16 ´ 107 s/yr) = 1.4 ´ 10–5 J/yr.

	For beta particles and gamma rays, QF = 1.

	(a)	For an adult, the total dose in one year is

			dose 	= (1.4 ´ 10–5 J/yr)(1)/(1.00 J/kg · Gy)(50 kg) 

					= 2.8 ´ 10–7 Sv = 2.8 ´ 10–5 rem =      0.03 mrem ˜ 0.006% of allowed dose.

	(b)	For a baby, the total dose in one year is

			dose 	= (1.4 ´ 10–5 J/yr)(1)/(1.00 J/kg · Gy)(5 kg) 

					= 2.8 ´ 10–6 Sv = 2.8 ´ 10–4 rem =      0.3 mrem ˜ 0.06% of allowed dose.



















52.	(a)	We find the daughter nucleus by balancing the mass and charge numbers:

			Z(X) = Z(222Rn) – Z(4He) = 86 – 2 = 84;

			A(X) = A(222Rn) – A(4He) = 222 – 4 = 218, so the product nucleus is      �EMBED Word.Picture.8���.

	(b)	From Figure 42–11, we see that � is    radioactive,     and decays by both a and b – emission:

			�;     �.

		The half life for both decays is      3.1 min.

	(c)	Both daughter nuclei are     chemically reactive.  

	(d)	The decay constant is

			l = 0.693/T1/2 = 0.693/(3.8 days)(86,400 s/day) = 2.11 ´ 10–6 s–1.

		The number of radon atoms in 1.0 ng is

			N0 = [(1.0 ´ 10–9 g)/(222 g/mol)](6.02 ´ 1023 atoms/mol) = 2.71 ´ 1012 atoms.

		The initial activity is

			lN0 = (2.11 ´ 10–6 s–1)(2.71 ´ 1012)/(3.7 ´ 1010 decays/s · Ci) = 1.5 ´ 10–4 Ci =     150 mCi.

		After 1 month, the number of half-lives is

			n = (30 days)/(3.8 days) = 7.89.

		The activity is

			lN = lN0 (!)n = (150 mCi)(!)7.89 =      0.63 mCi.



�

53.	(a)	For parallel rays the object and image will be the same size, 

		so the magnification will be       1.

	(b)	When the film is pressed against the back, the image of the 

		back on the film will be the same size as the back: mback = 1.  

		From the diagram we see that the rays which form the image of 

		the front of the chest will form a larger image.  For the 

		magnification of the front we have

			mfront = h2/h1 = (d1 + d2)/d1 = (15 cm + 25 cm)/(15 cm) = 2.7.

		Thus the range of magnifications is      1 = m = 2.7,       

		depending on which part of the body is being examined.













54.	From the text we know that in a magnetic field of 1.000 T, resonance occurs when the photon has a frequency of 42.58 MHz.  The wavelength is

		l = c/f = (3.00 ´ 108 m/s)/(42.58 ´ 106 Hz) =      7.05 m, FM radio wave. 



55.	(a)	We find the other nucleus by balancing the mass and charge numbers:

			Z(X) = Z(9Be) + Z(4He) – Z(n) = 4 + 2 – 0 = 6;

			A(X) = A(9Be) + A(4He) – A(n) = 9 + 4 – 1  = 12, so the other nucleus is      �EMBED Word.Picture.8���.

	(b)	For the reaction �, we determine the Q-value:

			Q 	= [M(9Be) + M(4He) – M(12C) – m(n)]c2 

				= [(9.012182 u) + (4.002603 u) – (12.000000 u) – (1.008665 u)]c2(931.5 MeV/uc2) =    + 5.70 MeV.



56.	We find the conversion from

		K = kT 

	by converting the units for k:

		1.38 ´ 10–23 J/K = (1.38 ´ 10–23 J/K)/(1.60 ´ 10–16 J/keV) =      8.63 ´ 10–8 keV/K.







57.	The average kinetic energy is a function of the temperature:

		K = !mv2 = *kT.

	When we form the ratio for the molecules of the two isotopes at the same temperature, we get

		v235/v238 = (m238/m235)1/2 = {[238 u + 6(19 u)]/[235 u + 6(19 u)]}1/2 =     1.004.



58.	(a)	We find the number of fissions from

			n = (20 kt)(5 ´ 1012 J/kt)/(200 MeV/fission)(1.60 ´ 10–13 J/MeV) = 3.13 ´ 1024 fissions.

		Each fission uses one uranium atom, so the required mass is

			M = [(3.13 ´ 1024 atoms)/(6.02 ´ 1023 atoms/mol)](235 g/mol) = 1.2 ´ 103 g =      1.2 kg.

	(b)	We find the mass transformation from

			m = E/c2 = (20 kt)(5 ´ 1012 J/kt)/(3.00 ´ 108 m/s)2 = 1.1 ´ 10–3 kg =      1.1 g.



59.	The effective dose in rem = effective dose (rad) ´ QF.  For the two radiations, we get

		dose (rem) = ? dose (rad) ´ QF = (21 mrad/yr)(1) + (3.0 mrad/yr)(10) =       51 mrem/yr.



60.	If we assume the oceans cover 70% of the Earth’s surface and the average depth is 3 km, the mass of the ocean water is

		M = rV = (1000 kg/m3)(0.70)4p(6.38 ´ 106 m)2(3 ´ 103 m) = 1 ´ 1021 kg.

	Each water molecule has two H atoms, so the number of deuterium atoms is

		N = [(1 ´ 1021 kg)(103 g/kg)/(18 g/mol)](6.02 ´ 1023 atoms/mol)(2)(0.015 ´ 10–2) = 1 ´ 1043 atoms.

	The mass of deuterium is

		m = (1 ´ 1043 atoms)(2 g/mol)/(6.02 ´ 1023 atoms/mol) = 3 ´ 1019 g =     3 ´ 1016 kg.

	If we assume equal contributions from the reactions in Eq. 43–8a and Eq. 43–8b, the average energy released by a deuterium nucleus is

		(4.03 MeV + 3.27 MeV)/(2 + 2) = 1.8 MeV/nucleus.

	Thus the total energy released is

		E = (1.8 MeV/nucleus)(1 ´ 1043 nuclei) = 1.8 ´ 1043 MeV =      3 ´ 1030 J. 



61.	Because the QF for gamma rays is 1, the dose in rem is the dose in rad.  The allowed dose rate is

		(5.0 rem/yr)/(50 wk/yr)(40 h/wk) = 2.5 ´ 10–3 rem/h = 2.5 ´ 10–3 rad/h.

	If the dose rate falls off as the square of the distance, we form the ratio:

		(dose rate)2/(dose rate)1 = (r1/r2)2;

		(2.5 ´ 10–3 rad/h)/(0.052 rad/h) = [(1.0 m)/r2]2, which gives r2 =      4.6 m.



62.	(a)	�EMBED Word.Picture.8���.

	(b)	If we ignore the K of the daughter, the K of the a particle is the Q-value:

			Ka = Q 	= [M(226Ra) – M(222Rn) – M(4He)]c2 

					= [(226.025402 u) – (222.017570 u) – (4.002603 u)]c2(931.5 MeV/uc2) =      4.871 MeV.

	(c)	From momentum conservation, the momenta of the a particle and the daughter will have equal 

		magnitudes:

			pRn 	= pa = (2maKa)1/2 

				= [2(4 u)(1.66 ´ 10–27 kg/u)(4.87 MeV)(1.6 ´ 10–13 J/MeV)]1/2 =      1.02 ´ 10–19 kg · m/s.

	(d)	The kinetic energy of the daughter is

			KRn 	= pRn2/2mRn 

					= (1.02 ´ 10–19 kg · m/s)2/2(222 u)(1.66 ´ 10–27 kg/u) = 1.4 ´ 10–14 J =      0.088 MeV.

		Because this is less than 2% of the Q-value, our approximation is valid.



63.	Because the reaction � requires an input of energy, the Q-value is negative:

		Q = [M(18O) + M(1H) – m(n) – M(18F)]c2;

		– 2.453 MeV = [(17.999160 u) + (1.007825 u) – (1.008665 u) – M(18F)]c2(931.5 MeV/uc2),

	which gives M(18F) =      18.000953 u.



64.	(a)	We find the number of fissions from

			P = E/t;

			3400 MW = (200 MeV)(1.60 ´ 10–19 J/eV)n/(3.16 ´ 107 s), which gives n = 3.36 ´ 1027 fissions.

		Each fission uses one uranium atom, so the required mass is

			m = [(3.36 ´ 1027 atoms)/(6.02 ´ 1023 atoms/mol)](235 g/mol) = 1.31 ´ 106 g =      1.31 ´ 103 kg.

	(b)	We find the activity from the number of Sr atoms produced:

			Activity 	= lNSr  

						= [(0.693)/(29 yr)(3.16 ´ 107 s/yr)](0.06)(3.36 ´ 1027)/(3.7 ´ 1010 decays/s · Ci) 

						=      4.1 ´ 106 Ci.



65.	In the net reaction four protons produce 26.2 MeV.  Thus the heat of combustion is

		[(26.2 MeV)/(4 u)](1.6 ´ 10–13 J/MeV)/(1.66 ´ 10–27 kg/u) =      6.31 ´ 1014 J/kg.

	This is      ˜ 107´ the heat of combustion of coal.



66.	(a)	The energy is radiated uniformly over a sphere, so the total energy rate is

			P = (1400 W/m2)4p(1.50 ´ 1011 m)2 =     4.0 ´ 1026 J/s     = 2.5 ´ 1039 MeV/s.

	(b)	In the net reaction four protons produce 26.2 MeV.  (The neutrinos escape with 0.5 MeV.)  

		Thus the consumption of protons is

			n = (2.5 ´ 1039 MeV/s)/[(26.2 MeV)/4 protons] =      3.8 ´ 1038 protons/s.

	(c)	We find the time from

			t 	= N/n 

				= [(2.0 ´ 1030 kg)/(1.66 ´ 10–27 kg/proton)]/(3.8 ´ 1038 protons/s) = 3.2 ´ 1018 s      ˜ 1011 yr.



67.	In the net proton-proton cycle, four protons produce two neutrinos.  If we use the result from Problem 66 for the rate at which protons are consumed, for the rate at which neutrinos are produced we have

		nn = (3.8 ´ 1038 protons/s)(2 neutrinos/4 protons)(3.16 ´ 107 s/yr) = 6.0 ´ 1045 neutrinos/yr.

	The neutrinos are spread uniformly over a sphere centered at the Sun, so the number that would pass through an area of 100 m2 at the Earth that is always perpendicular to the neutrino flux is

		Nn0 = [(6.0 ´ 1045 neutrinos/yr)/4p(1.50 ´ 1011 m)2](100 m2) = 2.1 ´ 1024 neutrinos/yr.

	At a latitude of 40° the ceiling is not always perpendicular to the neutrino flux, so the number is reduced by a factor of cos 40°, which we assume as an average value for the annual variation in the elevation of the Sun.  During the daily rotation of the Earth, the neutrino flux will vary sinusoidally from zero to the maximum.  (We take both directions through the ceiling as positive.)  To average this variation, we use a factor of cos 45°, so we have

		Nn = Nn0 cos 40° cos 45° = (2.1 ´ 1024 neutrinos/yr) cos 40° cos 45° ˜      1 ´ 1024 neutrinos/yr.



68.	The kinetic energy of the products is

		Kpr = Kb + Q.

	Because the kinetic energies « mc2, we can use a non relativistic treatment: K = mv2/2 = p2/2m.  

	The least kinetic energy is required when the product particles move together with the same speed.  

	With the target at rest, for momentum conservation we have

		pb = ppr = mprv,   or   

		Kb = pb2/2mb = (mpr2/2mb)v2 = (mpr/mb)Kpr ,   or   Kpr = (mb/mpr)Kb .

	When we use this in the kinetic energy equation, we get

		(mb/mpr)Kb = Kb + Q;

		[(mb/mpr) – 1]Kb = Q, which gives Kb = – Qmpr/(mpr – mb).













69.	(a)	If we assume a thin target, we find the cross section for backward scattering from

			R/R0  = ns x;

			1.6 ´ 10–5 = (5.9 ´ 1028 m–3)s (4.0 ´ 10–7 m), which gives s = 6.8 ´ 10–28 m2 =       6.8 bn.

	(b)	If we assume the cross section is the area presented by the nucleus, we have

			s = 6.8 ´ 10–28 m2 = pr2, which gives r = 1.5 ´ 10–14 m, so the diameter is       3 ´ 10–14 m.



70.	(a)	For the reaction �, we determine the Q-value:

			Q 	= [M(12C) + M(12C)  – M(24Mg)]c2 

				= [2(12.000000 u) – (23.985042 u)]c2(931.5 MeV/uc2) = + 13.93 MeV.

		Thus      13.93 MeV is released.

	(b)	If the two nuclei are just touching, the Coulomb potential energy must be the initial kinetic 

		energies of the two nuclei:

			2K = U = ZCZCe2/4pÅ0R  = (6)(6)(1.44 MeV · fm)/(6.0 fm) = 8.6 MeV.

		Thus each carbon nucleus has a kinetic energy of      4.3 MeV.

	(c)	We find the temperature from

			K = *kT;

			(4.3 MeV)(1.60 ´ 10–13 J/MeV) = *(1.38 ´ 10–23 J/K)T, which gives T =      3 ´ 1010 K.



71.	(a)	The rate of decay is

			Activity = (0.10 ´ 10–6 Ci)(3.7 ´ 1010 decays/s · Ci) =      3.7 ´ 103 decays/s.

	(b)	Because the QF for beta particles is 1, the dose in Sv is the dose in Gy:

			dose rate = (3.7 ´ 103 decays/s)(1.4 MeV/decay)(3.16 ´ 107 s/yr)(1.6 ´ 10–13 J/MeV)/

									(50 kg)(1.00 J/kg · Gy) =     5.2 ´ 10–4 Sv/yr ˜ 0.15 background. 



72.	The activity released into the atmosphere was

		activity = (2.0 ´ 107 Ci)(3.70 ´ 1010 Bq/Ci) = 7.4 ´ 1017 Bq.

	If we assume uniform spreading over the surface of the Earth, we have

		activity/m2 = (7.4 ´ 1017 Bq)/4p(6.38 ´ 106 m)2 =      1.45 ´ 103 Bq/m2.
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