CHAPTER 45 – Astrophysics and Cosmology





		Note:	A factor that appears in the analysis of energies is


			e2/4pÅ0 = (1.60 ´ 10–19 C)2/4p(8.85 ´ 10–12 C2/N · m2) = 2.30 ´ 10–28 J · m = 1.44 MeV · fm.





1.	Using the definition of the parsec, we find the equivalent distance in m:


		D = d/f;


		1 pc = (1.50 ´ 1011 m)/[(1.000²)/(3600²/°)(180°/p rad)] = 3.094 ´ 1016 m.


	From the definition of the light-year, we have


		1 pc = (3.094 ´ 1016 m)/(3.00 ´ 108 m/s)(3.16 ´ 107 s/yr) = 3.26 ly.





2.	We find the distance from


		D = 1/f = [1/(0.38²)](3.26 ly/pc) =      8.6 ly.





3.	We find the distance from


		D = 1/f = [1/(0.00019°)(3600²/°)](3.26 ly/pc) =      4.8 ly.





4.	(a)	We find the parallax angle from


			D = 1/f;


			36 pc = 1/f, which gives f =       0.028².


	(b)	We convert this to degrees:


			f = (0.028²)/(3600²/°) =      (7.7 ´ 10–6)°.





5.	We find the parallax angle from


		D = 1/f;


		(55 ly)/(3.26 ly/pc) = 1/f, which gives f =      0.059².


	The distance in parsecs is


		D = (55 ly)/(3.26 ly/pc) =     17 pc.





6.	We find the distance in light-years:


		D = (35 pc)(3.26 ly/pc) = 114 ly.


	Thus the light takes     114 yr      to reach us.





7.	The star farther away will subtend a smaller angle, so the parallax angle will be      less.


	From D = 1/f, we see that


		D1/D2 = 2 = f2/f1 ,   or     f1/f2 = !.





8.	(a)	The apparent brightness of the Sun is     ¬ = 1.3 ´ 103 W/m2.


	(b)	The  absolute luminosity of the Sun is


			L = ¬A = (1.3 ´ 103 W/m2)4p(1.5 ´ 1011 m)2 =      3.7 ´ 1026 W.





9.	The apparent brightness is determined by the absolute luminosity and the distance:


		L = ¬A = ¬4pD2.


	If we form the ratio for the apparent brightness at the Earth and at Jupiter, we get


		¬E/¬J = (DJ/DE)2;


		(1.3 ´ 103 W/m2)/¬J  = (5.2)2, which gives ¬J  =      48 W/m2.























10.	The diameter of our Galaxy is 100,000 ly so the angle subtended by our Galaxy is


		fGalaxy = d1/D1 = (100,000 ly)/(2 ´ 106 ly) = 0.05 rad =      2.9°.


	The angle subtended by the Moon at the Earth is


		fMoon = d2/D2 = (3.48 ´ 106 m)/(3.84 ´ 108 m) = 9.06 ´ 10–3 rad =  0.52°.


	Thus we have


		fGalaxy ˜ 6fMoon .





11.	If we assume negligible mass change, as a red giant, the density of the Sun will be


		r 	= M/V = M/)pr3;


			= (2 ´ 1030 kg)/)p(1.5 ´ 1011 m)3 =     1.4 ´ 10–4 kg/m3.





12.	The angle subtended at the Earth by the Sun as a white dwarf will be


		f = d/D = (3.48 ´ 106 m)/(1.5 ´ 1011 m) = 2.3 ´ 10–5 rad =      4.8².





13.	The density of the white dwarf is


		rdwarf	= M/V = M/)pr3;


				= (2.0 ´ 1030 kg)/)p(6.38 ´ 106 m)3 =     1.8 ´ 109 kg/m3.


	The ratio of densities will be the ratio of masses:


		rdwarf/rEarth = Mdwarf/MEarth = (2.0 ´ 1030 kg)/(5.98 ´ 1024 kg) =      3.3 ´ 105.





14.	The density of the neutron star is


		rns	= Mns/Vns = Mns/)prns3;


			= (1.5)(2 ´ 1030 kg)/)p(11 ´ 103 m)3 =     5.4 ´ 1017 kg/m3.


	From the result for Problem 13 we see that


		rns = (3 ´ 108)rdwarf.


	For the density of nuclear matter we calculate the density of a proton:


		rp = mp/)prp3 = (1.67 ´ 10–27 kg)/)p (1.2 ´ 10–15 m)3 = 2.3 ´ 1017 kg/m3.


	Thus we see that


		rns ˜ rnuclear matter.





15.	For the reaction �, we determine the Q-value:


		Q 	= [M(4He) + M(4He) – M(8Be)]c2 


			= [2(4.002603 u) – (8.005305 u)]c2(931.5 MeV/uc2) = – 0.0922 MeV =     – 92.2 keV.


	For the reaction �, we determine the Q-value:


		Q 	= [M(4He) + M(8Be) – M(12C)]c2 


			= [(4.002603 u) + (8.005305 u) – (12.000000 u)]c2(931.5 MeV/uc2) =      7.366 MeV.


	Note that the total Q-value is 7.27 MeV.





16.	(a)	For the reaction �, we determine the Q-value:


			Q 	= [M(12C) + M(12C) – M(24Mg)]c2 


				= [2(12.000000 u) – (23.985042 u)]c2(931.5 MeV/uc2) = 13.93 MeV.


		Thus      13.93 MeV is released.


	(b)	We find the radius of the carbon nucleus from


			r = (1.2 fm)A1/3 = (1.2 fm)(12)1/3 = 2.75 fm.


		If the two nuclei are just touching, the Coulomb potential energy must be the initial kinetic 


		energies of the two nuclei:


			2K = U = ZCZCe2/4pÅ02r  = (6)(6)(1.44 MeV · fm)/2(2.75 fm) = 9.4 MeV.


		Thus each carbon nucleus has a kinetic energy of      4.7 MeV.


	(c)	We find the temperature from


			K = *kT;


			(4.7 MeV)(1.60 ´ 10–13 J/MeV) = *(1.38 ´ 10–23 J/K)T, which gives T =      4 ´ 1010 K.





17.	(a)	For the reaction �, we determine the Q-value:


			Q 	= [M(16O) + M(16O) – M(28Si) – M(4He)]c2 


				= [2(15.994915 u) – (27.976927 u) – (4.002603 u)]c2(931.5 MeV/uc2) = 9.594 MeV.


		Thus      9.594 MeV is released.


	(b)	We find the radius of the oxygen nucleus from


			r = (1.2 fm)A1/3 = (1.2 fm)(16)1/3 = 3.02 fm.


		If the two nuclei are just touching, the Coulomb potential energy must be the initial kinetic 


		energies of the two nuclei:


			2K = U = ZOZOe2/4pÅ02r  = (8)(8)(1.44 MeV · fm)/2(3.02 fm) = 15.25 MeV.


		Thus each oxygen nucleus has a kinetic energy of      7.6 MeV.


	(c)	We find the temperature from


			K = *kT;


			(7.6 MeV)(1.60 ´ 10–13 J/MeV) = *(1.38 ´ 10–23 J/K)T, which gives T =      6 ´ 1010 K.





18.	From Wien’s displacement law we can compare the temperatures of the two stars:


		l1T1 = l2T2 ,   or


		T2/T1 = l1/l2 = (800 nm)/(400 nm) = 2.


	If r is the radius of a star, the radiating area is A = 4pr2.  From the Stefan-Boltzmann law we have


		L = ¬4pD2 µ AT4 = 4pr2T4.


	If we form the ratio for the two stars, we get


		(D2/D1)2 = (T2/T1)4 = (2)4, which gives       D2 = 4D1 .





19.	From Wien’s displacement law we can compare the temperatures of the two stars:


		l1T1 = l2T2 ,   or


		T2/T1 = l1/l2 = (500 nm)/(700 nm) = 5/7.


	If r is the radius of a star, the radiating area is A = 4pr2.  From the Stefan-Boltzmann law we have


		L = ¬4pD2 µ AT4 = 4pr2T4.


	If we form the ratio for the two stars, we get


		¬2/¬1 = (r2/r1)2(T2/T1)4;


		1/0.091 = (r2/r1)2(5/7)4, which gives r2/r1 = 6.5, so       d2/d1 = 6.5 .





20.	(a)	For the vertices of the triangle we choose 	(b)	We can get 180° only approximately.


		the North pole and two points on a latitude 		For the vertices of the triangle we choose


		line on opposite sides of the Earth, 			the North pole and two points on a latitude


		as shown on the diagram.				line very close together, so the angle at the 


												North pole is negligible, as shown on the 												diagram.


�


	








21.	(a)	The Schwarzschild radius for a star with mass equal to that of our Sun is


			R 	= 2GMS/c2 


				= 2(6.67 ´ 10–11 N · m2/kg2)(1.99 ´ 1030 kg)/(3.00 ´ 108 m/s)2 = 2.95 ´ 103 m = 2.95 km.


	(b)	The Schwarzschild radius for a star with mass equal to that of the Earth is


			R 	= 2GME/c2 


				= 2(6.67 ´ 10–11 N · m2/kg2)(5.97 ´ 1024 kg)/(3.00 ´ 108 m/s)2 = 8.9 ´ 10–3 m = 8.9 mm.





22.	If we use the data for our galaxy, we have


		R 	= 2GM/c2 


			= 2(6.67 ´ 10–11 N · m2/kg2)(3 ´ 1041 kg)/(3.00 ´ 108 m/s)2 =      4 ´ 1014 m.





�


23.	If we consider a triangle with its three vertices 


	on a great circle, such as one through the North 


	and South poles as shown in the diagram, we see 


	that the sum of the angles is      540°.






































24.	To escape from an object with mass M and radius r, the kinetic energy of the body must be greater than the gravitational potential energy at the surface:


		!mv2 = GMm/r,   or   vesc2 = 2GM/r.


	At the Schwarzschild radius we have


		vesc2 = 2GM/(2GM/c2) = c2,   or      vesc = c.





25.	We find the distance from Hubble’s law:


		v = Hd;


		(0.010)(3.00 ´ 108 m/s) = [(70 ´ 103 m/s/Mpc)/(106 pc/Mpc)(3.26 ly/pc)]d, 


	which gives d =      1.4 ´ 108 ly.





26.	We find the distance from Hubble’s law:


		v = Hd;


		3.5 ´ 106 m/s = [(70 ´ 103 m/s/Mpc)/(106 pc/Mpc)(3.26 ly/pc)]d, 


	which gives d =      1.6 ´ 108 ly.





27.	We estimate the speed of the galaxy from Hubble’s law:


		v = Hd = [(70 ´ 103 m/s/Mpc)/(3.26 ly/pc)](12 ´ 103 Mly) = 2.6 ´ 108 m/s =      0.86c.


























28.	(a)	We find the receding speed of the galaxy from


			v = Hd = [(70 ´ 103 m/s/Mpc)/(3.26 ly/pc)](1.0 Mly) = 2.15 ´ 104 m/s = (7.2 ´ 10–5)c.


		For the Doppler shift of the wavelength we have


			l/l0 = {[1 + (v/c)]/[1 – (v/c)]}1/2;


			l/(656 nm) = [(1 + 7.2 ´ 10–5)/(1 – 7.2 ´ 10–5)]1/2, which gives l =     656 nm.


	(b)	We find the receding speed of the galaxy from


			v = Hd = [(70 ´ 103 m/s/Mpc)/(3.26 ly/pc)](1.0 ´ 102 Mly) = 2.15 ´ 106 m/s = (7.2 ´ 10–3)c.


		For the Doppler shift of the wavelength we have


			l/l0 = {[1 + (v/c)]/[1 – (v/c)]}1/2;


			l/(656 nm) = [(1 + 7.2 ´ 10–3)/(1 – 7.2 ´ 10–3)]1/2, which gives l =     661 nm.


	(c)	We find the receding speed of the galaxy from


			v = Hd = [(70 ´ 103 m/s/Mpc)/(3.26 ly/pc)](1.0 ´ 104 Mly) = 2.15 ´ 108 m/s = 0.72c.


		For the Doppler shift of the wavelength we have


			l/l0 = {[1 + (v/c)]/[1 – (v/c)]}1/2;


			l/(656 nm) = [(1 + 0.72)/(1 – 0.72)]1/2, which gives l = 1.63 ´ 103 nm =      1.63 mm.





29.	We find the speed from the Doppler shift:


		l/l0 = {[1 + (v/c)]/[1 – (v/c)]}1/2;


		(610 nm)/(434 nm) = {[1 + (v/c)]/[1 – (v/c)]}1/2, which gives v =     0.328c.


	We find the distance from Hubble’s law:


		v = Hd;


		(0.328)(3.00 ´ 108 m/s) = [(70 ´ 103 m/s/Mpc)/(106 pc/Mpc)(3.26 ly/pc)]d, 


	which gives d =      4.6 ´ 109 ly.





30.	The Doppler shift is 


		l/l0 = {[1 + (v/c)]/[1 – (v/c)]}1/2.


	From the binomial expansion for small x, we have (1 – x)–1 ˜ 1 + x.  Thus when v/c « 1, we get


		l/l0 = {[1 + (v/c)]/[1 – (v/c)]}1/2 ˜ {[1 + (v/c)]2}1/2 = 1 + (v/c).   or   l ˜ l0 + (v/c)l0 .


	Thus the fractional wavelength change is


		(l – l0)/l0 = ?l/l0 ˜ v/c.





31.	We find the peak wavelength from


		lT = 2.90 ´ 10–3 m · K;


		l(2.7 K) = 2.90 ´ 10–3 m · K, which gives l = 1.1 ´ 10–3 m =      1.1 mm.





32.	We express the critical density in terms of the nucleon density from


		rc = M/V = nmn/V;


		10–26 kg/m3 = n(1.67 ´ 10–27 kg)/V, which gives n/V =      6 nucleons/m3.





33.	If d µ 1/T, when we form the ratio for two different times, we get


		d/d0 = T0/T, where T0 = 2.7 K is the temperature today.


	(a)	From Fig. 45–24 we estimate the temperature to be 3000 K, so we have


			d/d0 = T0/T = (2.7 K)/(3000 K) ˜      10–3.


	(b)	From Fig. 45–24 we estimate the temperature to be 1010 K, so we have


			d/d0 = T0/T = (2.7 K)/(1010 K) ˜      10–10.


	(c)	From Fig. 45–24 we estimate the temperature to be 1013 K, so we have


			d/d0 = T0/T = (2.7 K)/(1013 K) ˜      10–13.


	(d)	From Fig. 45–24 we estimate the temperature to be 1027 K, so we have


			d/d0 = T0/T = (2.7 K)/(1027 K) ˜      10–27.








34.	We find the equivalent temperature from


		E = Mc2 = *kT,   or   T = %Mc2/k. 


	(a)	For the kaon threshold we have


			T = %Mc2/k = %(500 MeV)(1.60 ´ 10–13 J/MeV)/(1.38 ´ 10–23 J/K) = 4 ´ 1012 K.


		We estimate the time from Fig. 45–24: t ˜       10–5 s.


	(b)	For the Y threshold we have


			T = %Mc2/k = %(9500 MeV)(1.60 ´ 10–13 J/MeV)/(1.38 ´ 10–23 J/K) = 7 ´ 1013 K.


		We estimate the time from Fig. 45–24: t ˜       10–7 s.


	(c)	For the muon threshold we have


			T = %Mc2/k = %(100 MeV)(1.60 ´ 10–13 J/MeV)/(1.38 ´ 10–23 J/K) = 8 ´ 1011 K.


		We estimate the time from Fig. 45–24: t ˜       10–4 s.





35.	The absolute luminosity depends on the radius of the star and the temperature:


		L µ AT4 = 4pr2T4.


	(a)	For case A we have


			temperature increases, luminosity is constant, and size decreases.


	(b)	For case B we have


			temperature is constant, luminosity decreases, and size decreases.


	(c)	For case C we have


			temperature decreases, luminosity increases, and size increases.





36.	For the luminosity we have L = ¬4pd2.  If we form the ratio with constant luminosity, we get


		(dstar/dSun)2 = ¬Sun/¬star;


		{dstar/[(1.5 ´ 1011 m)/(9.5 ´ 1015 m/ly)]}2 = 1011, which gives dstar =     5 ly.





37.	For the conservation of angular momentum, with constant mass, we have


		Iw = I0 w0 ;


		^Mr2w = ^Mr02w0 ;


		(5 km)2w = (7 ´ 105 km)2(1 rev/mo), 


	which gives w = 2 ´ 1010 rev/mo = (2 ´ 1010 rev/mo)/(30 day/mo)(24 h/day)(3600 s/h) =     8 ´ 103 rev/s.





38.	We simplify the ratio of rotational kinetic energies by using the conservation of angular momentum:


		K/K0 = !Iw2/!I0 w0 2 = w/w0 = (2 ´ 1010 rev/mo)/(1 rev/mo) =      2 ´ 1010.





39.	The kinetic energy of the neutron star is


		K 	= !Iw2 = !(^Mr2)w2 


			= !(^)(1.5)(2.0 ´ 1030 kg)(5.0 ´ 103 m)2[(1.0 rev/s)(2p rad/rev)]2 = 5.92 ´ 1038 J.


	The power output is


		P = E/t = (10–9 day–1)(5.92 ´ 1038 J)/(86,400 s/day) =      7 ´ 1024 W.









































40.	If R is the radius of the universe, the volume is


		V = )pR3.


	We find the increase in radius from Hubble’s law:


		?R = v ?t = HR ?t.


	Thus the rate at which the universe in expanding is


		?V/?t = 4pR2 ?R/?t = 4pR3H = 3VH.


	The rate at which hydrogen atoms have to be created is given by


		?m/?t = mH ?N/?t = r ?V/?t = r 3VH.


	If we find the rate per unit volume, we have


		(?N/?t)/V 	= 3r H/mH 


						= 3(10–27 kg/m3) )(103 m/km)3 (70 km/s/Mpc)(3.16 ´ 107 s/yr/


									(3.26 ´ 106 ly/Mpc)(9.46 ´ 1012 km/ly)(1.67 ´ 10–27 kg/atom) 


						= 0.13 atoms/km3/yr.


	Thus hydrogen atoms would need to be created at the rate      1 H atom/km3 every 8 years.





41.	We use M for the mass of the universe and n for the number of nucleons.


	(a)	If nucleons provide 2% of the mass, we have


			0.02M = nmn ,   and   0.98M = (109 n)mn .


		When we combine these, we get


			n(939 ´ 106 eV)/0.02 = (109 n)mn/0.98, which gives mn =      46 eV.


	(b)	If nucleons provide 5% of the mass, we have


			0.05M = nmn ,   and   0.95M = (109 n)mn .


		When we combine these, we get


			n(939 ´ 106 eV)/0.05 = (109 n)mn/0.95, which gives mn =      18 eV.





42.	We find the temperature of the stars from


		lT = 2.90 ´ 10–3 m · K;


		(600 ´ 10–9 m)T1 = 2.90 ´ 10–3 m · K, which gives T1 = 4800 K;


		(400 ´ 10–9 m)T2 = 2.90 ´ 10–3 m · K, which gives T2 = 7300 K.


	From the H–R diagram, we estimate the luminosities:


		L1 = 1026 W, and L2 = 2 ´ 1027 W.


	From the Stefan-Boltzmann law, the absolute luminosity depends on the radius of the star and the temperature:


		L µ AT4 = 4pr2T4.


	When we form the ratio, we get


		L2/L1 = (r2/r1)2(T2/T1)4 = (r2/r1)2(l1/l2)4;


		(2 ´ 1027 W)/(1026 W) = (r2/r1)2(600 nm/400 nm)4, which gives r2/r1 =     2.





43.	We find half the subtended angle from


		f = 1/30 pc = (1/30)²/(3600²/°) ˜ (1 ´ 10–5)°.


	Thus the minimum subtended angle is      ˜ (2 ´ 10–5)°.





44.	The wavelengths for the same transition in hydrogen-like atoms are given by


		1/l = (constant)Z2.


	Thus we have


		l¢/l = lH/lHe = (ZHe/ZH)2 = (2/1)2 = {[1 + (v/c)]/[1 – (v/c)]}1/2, which gives v =      0.88c.





45.	We find the temperature from


		E = *kT,   or   T = %Mc2/k = %(1.8 TeV)(1.60 ´ 10–7 J/TeV)/(1.38 ´ 10–23 J/K) =     1.4 ´ 1016 K.


	From Fig. 45–24 we see that this is the      hadron era.





46.	We find the speed of the gas clouds from the radial acceleration provided by the gravitational attraction:


		GMm/R2 = mv2/R,   or   v2 = GM/R,


	where


		M = (2 ´ 109)(2.0 ´ 1030 kg) = 4.0 ´ 1039 kg, and


		R = (60 ly)(9.46 ´ 1015 m/ly) = 5.7 ´ 1017 m.


	To account for the gases moving in opposite directions on the two sides of the cloud, we have


		v/c 	= ± (1/c)(GM/R)1/2 


			= ± (1/3.00 ´ 108 m/s)[(6.67 ´ 10–11 N · m2/kg2)(4.0 ´ 1039 kg)/(5.7 ´ 1017 m)]1/2 = ± 2.3 ´ 10–3.


	Because v « c, we use the result from Problem 30:


		?l/l0 ˜ v/c =     ± 2.3 ´ 10–3.


	This will be in addition to the shift from any overall receding of the galaxy.





47.	Because Venus has a more negative value,     Venus is brighter.


	We write the logarithmic scale as


		m = k log ¬.


	We find the value of k from


		m2 – m1 = k(log ¬2 – log ¬1) = k log(¬2/¬1);


		+ 5 = k log(1/100), which gives k = – 2.5. 


	For Venus and Sirius, we have


		mV – mS = k log(¬V/¬S);


		– 4.4 – (– 1.4) = – 2.5 log(¬V/¬S), which gives      ¬V/¬S = 16.





48.	For the critical density we have


		rc = M/V = M/)pr3;


		10–26 kg/m3 = (2.0 ´ 1030 kg)/)pr3, which gives r = 3.6 ´ 1018 m =      4 ´ 102 ly.


	When we compare to the Earth-Sun distance we get


		r/rES = (3.6 ´ 1018 m)/(1.5 ´ 1011 m) =      2.4  ´ 107.


	When we compare to our Galaxy we get


		r/rGalaxy = (4 ´ 102 ly)(50,000 ly) =      8 ´ 10–3.





49.	We find the equivalent mass of the photon from


		m = E/c2.


	To escape from a mass M and radius R, the energy of the photon must be greater than the gravitational potential energy at the surface:


		mc2 = GMm/R, so the Schwarzschild radius is        R = GM/c2.


















































50.	If there are N nucleons, approximately half of them will be protons.  Thus there will be !N electrons.  From Eqs. 41–12 and 41–13, the average energy of an electron for a system where the energy levels are filled to the Fermi energy is 3EF/5.  Thus the total energy of the electrons is


		�


	For a spherical volume, we get


		�


	The Fermi energy for the nucleons will have a similar expression; however, because mn » me , their Fermi energy is negligible.


	For electric charges, Gauss’s law shows that the electric field at the surface of a spherical charge distribution is the same as that of a point charge with the total charge of the sphere.  Thus the potential at the surface is


		V = q/4pÅ0r = r()pr3)/4pÅ0r  = r)pr2/4pÅ0.


	If we compare the Coulomb force qQ/4pÅ0r2 with the gravitational force GmM/r2, we see that the gravitational potential of a spherical mass will be – r)pr2G, where we use the negative sign because like masses attract, while like charges repel.


	When we bring in the next dm as a spherical shell, dm = r4pr2 dr, the increase in potential energy is


		dEg = – r)pr2G dm = – Gr2[(4p)2/3]r4 dr.


	To find the total gravitational energy we integrate from r = 0 to r = R:


		�


	Thus the total energy is


		�


	We find the equilibrium radius from dE/dR = 0:


		�


	Because the mass of the electrons is negligible, N = M/mn.  Thus we have


		�EMBED Word.Picture.8���


	For a mass equal to that of the Sun, we get


		�EMBED Word.Picture.8���















































51.	If we have only N = M/mn neutrons, the Fermi energy is


		�


	The gravitational energy will be the same, so the total energy is


		�


	We find the equilibrium radius from dE/dR = 0:


		�


	In terms of the mass, this is


		�EMBED Word.Picture.8���


	For a mass of 1.5 solar masses, we get


		�





�


52.	(a)	A photon of energy E will have a mass 


		m = E/c2, and a momentum p = E/c = mc.  


		We assume the deflection is small.  


		Using the coordinate system shown in 


		the figure, this means y ˜ R and r2 ˜ x2 + R2.  


		We want the deflection in the y-direction.  


		When the photon is at the position x, the 


		vertical component of the gravitational 


		force will produce an impulse Fy dt in the 


		time dt = dx/c.  Thus we have


			dpy	= – (GMm/r2) cos q dt 


				= – (GMm/cr2)(R/r) dx 


				= – (GMmR/c)[dx/(x2 + R2)3/2].


		To find the total deflection we integrate over the path from x = – 8 to x = + 8:


			�


		For the magnitude of the deflection angle we have


			?q = – ?py/p = 2GM/c2R.


	(b)	When we use the data for the Sun, we get


			?q 	= [2(6.67 ´ 10–11 N · m2/kg2)(2.0 ´ 1030 kg)/(3.00 ´ 108 m/s)2(7.0 ´ 108 m)](180°/p)(3600²/°) 


				= 0.87².
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