103. We choose down as the +y direction and place the coordinate origin at the top of the building (which has height H). During its fall, the ball passes (with velocity v_1) the top of the window (which is at y_1) at time t_1 , and passes the bottom (which is at y_2) at time t_2 . We are told $y_2 - y_1 = 1.20$ m and $t_2 - t_1 = 0.125$ s. Using Eq. 2-15 we have

$$y_2 - y_1 = v_1 (t_2 - t_1) + \frac{1}{2}g (t_2 - t_1)^2$$

which immediately yields

$$v_1 = \frac{1.20 - \frac{1}{2}(9.8)(0.125)^2}{0.125} = 8.99 \text{ m/s} \ .$$

From this, Eq. 2-16 (with $v_0 = 0$) reveals the value of y_1 :

$$v_1^2 = 2gy_1 \implies y_1 = \frac{8.99^2}{2(9.8)} = 4.12 \text{ m}.$$

It reaches the ground $(y_3 = H)$ at t_3 . Because of the symmetry expressed in the problem ("upward flight is a reverse of the fall") we know that $t_3 - t_2 = 2.00/2 = 1.00$ s. And this means $t_3 - t_1 = 1.00 + 0.125 = 1.125$ s. Now Eq. 2-15 produces

$$y_3 - y_1 = v_1 (t_3 - t_1) + \frac{1}{2} g (t_3 - t_1)^2$$

 $y_3 - 4.12 = (8.99)(1.125) + \frac{1}{2}(9.8)(1.125)^2$

which yields $y_3 = H = 20.4 \text{ m}$.