52. (a) We write $\vec{b} = b\hat{j}$ where b > 0. We are asked to consider

$$\frac{\vec{b}}{d} = \left(\frac{b}{d}\right)\hat{j}$$

in the case d > 0. Since the coefficient of \hat{j} is positive, then the vector points in the +y direction.

- (b) If, however, d < 0, then the coefficient is negative and the vector points in the -y direction.
- (c) Since $\cos 90^{\circ} = 0$, then $\vec{a} \cdot \vec{b} = 0$, using Eq. 3-20.
- (d) Since \vec{b}/d is along the y axis, then (by the same reasoning as in the previous part) $\vec{a} \cdot (\vec{b}/d) = 0$.
- (e) By the right-hand rule, $\vec{a} \times \vec{b}$ points in the +z direction.
- (f) By the same rule, $\vec{b} \times \vec{a}$ points in the -z direction. We note that $\vec{b} \times \vec{a} = -\vec{a} \times \vec{b}$ is true in this case and quite generally.
- (g) Since $\sin 90^{\circ} = 1$, Eq. 3-27 gives $|\vec{a} \times \vec{b}| = ab$ where a is the magnitude of \vec{a} . Also, $|\vec{a} \times \vec{b}| = |\vec{b} \times \vec{a}|$ so both results have the same magnitude.
- (h) and (i) With d>0, we find that $\vec{a}\times(\vec{b}/d)$ has magnitude ab/d and is pointed in the +z direction.