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Chapter 6 ! The Schrödinger Equation

6-1.

Also, .  The Schrödinger equation is then, with these substitutions, 

.  Because the left side is real and the right side is a pure

imaginary number, the proposed Q does not satisfy Schrödinger’s equation.

6-2. For the Schrödinger equation: 

Substituting these into the Schrödinger equation yields:

, which is true, provided , i.e., if 

For the classical wave equation: (from Equation 6-1)

From above:  and also   Substituting into Equation 6-1

 (with Q replacing õ and v replacing c)  , which is true for .

6-3. (a)

Substituting into the time-independent Schrödinger equation, 

Solving for V(x), 
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(Problem 6-3 continued)

where   This is the equation of a parabola centered at x = 0.

(b) The classical system with this dependence is the harmonic oscillator.

6-4. (a)

(b) The classical turning points are the points where  or .  That occurs when

, or when .

(c) For a harmonic oscillator , so

 

Thus, 

6-5. (a) 
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(Problem 6-5 continued)

(b)

6-6. (a) For a free electron V(x) = 0, so 

  

Substituting into the Schrödinger equation gives:

 and, since  for a free particle, 

(b)

   

(c)
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6-7.

(a)

 

And 

(b)

6-8.

Normalization between !4 and +4 is not possible because the value of the integral is infinite.
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6-9. (a) The ground state of an infinite well is 

For m = mp, L = 0.1 nm:  

(b) For m = mp, L = 1 fm:  

6-10. The ground state wave function is (n = 1)  (Equation 6-32)

The probability of finding the particle in )x is approximately:

(a) for  

(b)  

(c) for x = L, 

6-11. The second excited state wave function is (n = 3)  

 (Equation 6-32).  The probability of finding the particle in )x is approximately: 

 

(a)  

(b)  

(c) for x = L, 
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6-12.    (Equation 6-24)

6-13. (a) 

(b) 

6-14. (a) This is an infinite square well of width L.  V(x) = 0 and .  From uncertainty

principle:  and

(b) The solution to the Schrödinger equation for the ground state is:

So,     

The result in (a) is about 1/10 of the computed value, but has the correct dependence on h, m,

and L.

6-15. (a) For the ground state, .

(b) Recall that state n has n half-wavelengths between x = 0 and x = L, so for n = 3,  or

.
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(Problem 6-15 continued)

(c)  in the ground state.

(d) which is the ground state energy.

6-16.

or, 

so, 

6-17. This is an infinite square well with L= 10 cm.

6-18. (a)

Letting 
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(Problem 6-18 continued)

(b)

6-19.

(a) For an electron: 

(b) For a proton: 

(c)     (See Problem 6-16)

For the electron: 

For the proton: 

6-20.   comes from the impulse-momentum theorem 

So, .  Because  where the minus sign

means "on the wall".  So 

The weight of an electron is  which is minuscule by

comparison.

6-21.

To show that

Using the trig identity  2 sinA sinB= cos(A!B) - cos(A+B), the integrand becomes
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(Problem 6-21 continued)

The integral of the first term is

  and similarly for the second term with (n + m) replacing (n ! m).

Since n and m are integers and n…m, the sines both vanish at the limits x = 0 and x = L.

for n…m.

6-22. (a)

(b)

6-23. (a)

(b)
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6-24. Because  and for a finite well also , then n = 4 is at about 8 eV, i.e., near the

top of the well.  Referring to Figure 6-14, 

6-25. For is where 

From !4 to 0 and x2 to +4: R is exponential

0 to x1 : R is oscillatory; Ek is large so p is large and 8 is small; amplitude is small because          Ek,

hence v is large.

x1 to x2: R is oscillatory; Ek is small so p is small and 8 is large; amplitude is large because         

     Ek, hence v is small.

6-26. (a) (b)

(c)  
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6-27. Referring to Figure 6-14, there will be two levels in the well when ka = B/2 (or larger) where

Squaring and rearranging, 

The well must be at least this deep.

6-28. For 

(a)

substituting .  The limits become:

(b)

Changing the variable exactly as in (a) and noting that:
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(Problem 6-28 continued)

We obtain 

6-29. (a) Classically, the particle is equally likely to be found anywhere in the box, so P(x) = constant.

In addition, .

(b)

6-30.

Multiplying by R* and integrating over the range of x,

For the infinite square well V(x) = 0 wherever R(x) does not vanish and vice versa. Thus,

 and 
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6-31. (See Problem 6-28.)  And 

   (See Problem 6-30.)

.  And 

6-32.

  Letting 

. And thus, ; limits are unchanged.

  (Note that the symmetry of V(x) would also tell us that

.)

6-33. .  For the ground state (n = 0), 

 (See Problem 6-32)
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(Problem 6-33 continued)

6-34. (a)

(b)

Letting , then
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6-35.

(a) 

(b) 

(c) 

6-36.

(a) 
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(Problem 6-36 continued)

(b)      

(c)

(d) 

6-37. (a)

(b)

(1)

Because 

(2)  is computed in Problem 6-34(b).  Using that quantity, 

   

6-38.

.  In agreement with the correspondence principle.
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6-39. (a)

(b)

(c)

6-40.

From Equation 6-58.

Note that      is an even function of x and      is an odd function of x.  It follows that 

6-41. (a) For 

So, 

(b)     (Equation 6-68)

,  or 2.94% of the incident particles are reflected.
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(Problem 6-41 continued)

(c)

(d) 97.1% of the particles, or 0.971×106 = 9.71×105, continue past the step in the +x direction.

Classically, 100% would continue on.

6-42. (a) For 

So, 

(b) .  Or 1.02% are reflected at x = 0.

(c)

(d) 99% of the particles, or 0.99×106 = 9.9×105, continue in the +x direction.  Classically, 100%

would continue on.

6-43.

6-44.  imaginary and the numerator and denominator

are complex conjugates.  Thus,  and therefore , hence  
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6-45.

Substituting for C,  and solving for B, 

, which is Equation 6-66.  Substituting this value of B into Equation 6-65(a),

, which is Equation 6-67.

6-46. Using Equation 6-76,  where E = 2.0eV, V0 = 6.5 eV, and

 a = 0.5 nm.   

(Equation 6-75 yields .)

6-47.

(a) For protons:

    And 

(b) For electrons:

            

And 

No, the mass of the particle is not a factor.  (We might have noticed that  could be canceled

from each term.)
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6-48. (a)   The ground state is n = 1, so

(b) (c) 

      

(d) 

(e) 

6-49. (a) The probability density for the ground state is   The

probability of finding the particle in the range 0 < x < L/2 is :

(b)

(Note 1/3 is the classical result.)

(c)

(Note 3/4 is the classical result.)
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6-50. (a)

So,     For large n,  and

(b) For n = 1000 the fractional energy difference is  

(c) It means that the energy difference between adjacent levels per unit energy for large n is getting

smaller, as the correspondence principle requires.

6-51. (a) 

Substituting above in Equation 6-6, 

Dividing by ,  

(b) Set both sides equal to C.

and 

(c) 
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6-52. (a) The ball’s minimum speed occurs in the ground state where .

(b) The period T, the time required for the ball to make one round trip across the box is:

(This is about 1000 times the age of the universe.)

6-53. (a) The requirement is that .  This can be true only if:

. 

(b) Writing the Schrödinger equation in the form , the general solutions

of this 2nd order differential equation are:

 where .  Because the boundaries of

the box are at , both solutions are allowed (unlike the treatment in the text where one

boundary was at x = 0).  Still, the solutions are all zero at  provided that an integral

number of half wavelengths fit between  and .  This will occur for:

And for .

The solutions are alternately even and odd. 

(c) The allowed energies are: .

6-54.

(a)

So, 

And 
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(Problem 6-54 continued)

Recalling from Problem 6-3 that  the Schrödinger equation becomes

 

or, simplifying:   Thus, choosing E appropriately will

make R1 a solution.

(b) We see from (a) that , or three times the ground state energy.

(c) R1 plotted looks as below.  The single node indicates that R1 is the first excited state.  (The

energy value in [b] would also tell us that.)

6-55.
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6-56.

(a)

    

And 

(b) For a = 0.1 nm:  

6-57. (a) For 

   so the Schrödinger equation becomes:

Because the sin and cos are not proportional, this Q cannot be a solution.  Similarly, for

, there are no solutions.

(b) For , we have that 

.  And the Schrödinger equation becomes:

  for 
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6-58.

classically allowed:

0 < z < z0

The wave function will be concaved toward the z axis in the classically allowed region and

away from the z axis elsewhere.  Each wave function vanishes at z = 0 and as z ÿ 0.  The

smaller amplitude in the regions where the kinetic energy is larger.
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6-59. Writing the Schrödinger equation as:  from which we have:

.  The expectation value of Ek is

  Substituting  from above and reordering multiplied quantities

gives: 

6-60. (a)

(b) The width of the well L is still an integer number of half wavelengths, , and

deBroglie’s relations still gives: .  However, p is not given by: , but

by the relativistic expression: .  Substituting this yields:

(c)

(d) Nonrelativistic: 

E1 computed in (c) is 2.14 times the nonrelativistic value.

6-61. (a) Applying the boundary conditions of continuity to R and  at x = 0 and x = a, where the

various wave functions are given by Equations 6-74, results in the two pairs of equations below:
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(Problem 6-61 continued)

At x = 0:  

At x = a: 

Eliminating the coefficients C and D from these four equations, a straightforward but lengthy

task, yields:

* 

The transmission coefficient T is then:

Recalling that  and noting that  are complex

conjugates, substituting , T then can be written as

(b) If  then the first term in the bracket on the right side of the * equation in part (a) is

much smaller than the second and we can write:

And 

Or 

6-62. (Equation 6-72)

Where 
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(Problem 6-62 continued)

x (fm)

1 0.1403 0.5612

2 0.0197 0.0788

3 2.76 × 10!3 1.10 × 10!2

4 3.87 × 10!4 1.55× 10!3

5 5.4 × 10!5 2.2 × 10!4
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