
Chapter 10

1.* a) For each state the energy is given by Erot = h̄2l(l + 1)/2I, so the transition energy is

∆E =
h̄2

2I
(2(3)− 1(2)) =

2h̄2

I
=

2 (1.055× 10−34 J · s)2

10−46 kg ·m2 = 2.2× 10−22 J = 1.4× 10−3 eV

b) As in part (a)

∆E =
h̄2

2I
(20(21)− 19(20)) =

20h̄2

I
= 2.2× 10−21 J = 1.4× 10−2 eV

This is still in the infrared part of the spectrum.

2. From Table 10.1 κ = 1860 N/m and ν = 6.42× 1013 Hz.
a)

∆E = hν =
(
4.136× 10−15 eV · s

) (
6.42× 1013 Hz

)
= 0.266 eV

b) Set ∆E = kT with two degrees of freedom in the vibrational mode. Then

T =
∆E
k

=
0.266 eV

8.617× 10−5 eV/K
= 3090 K

3. In the ground state E =
(
n+ 1

2

)
h̄ω = 1

2 h̄ω = 1
2kA

2 = 1
2µω

2A2. Solving for A:

A =

√
h̄

µω

Using the 35Cl isotope

µ =
m1m2

m1 +m2
=

35
36

u = 1.614× 10−27 kg

From Table 10.1 ν = 8.66× 1013 Hz. With ω = 2πv we have

A =

√
h̄

µω
=

√√√√ 1.055× 10−34 J · s
(1.614× 10−27 kg) (2π) (8.66× 1013 s−1)

= 1.10× 10−11 m

4. a) Using the result of Problem 8 for the rotational inertia we have

I = µR2 =
(
1.614× 10−27 kg

) (
1.28× 10−10 m

)2
= 2.64× 10−47 kg ·m2

For l = 1 we have

Erot =
l(l + 1)h̄2

2I
=
h̄2

I
=

1
2
Iω2
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Therefore

ω =

√
2h̄2

I2 =

√√√√ 2 (1.055× 10−34 J · s)2

(2.64× 10−47 kg ·m2)2 = 5.65× 1012 rad/s

For l = 10 we have

Erot =
l(l + 1)h̄2

2I
=

55h̄2

I
=

1
2
Iω2

Therefore

ω =

√
110h̄2

I2 =

√√√√110 (1.055× 10−34 J · s)2

(2.64× 10−47 kg ·m2)2 = 4.19× 1013 rad/s

b) The distance of the center of mass from the H atom is

xcm =
mClxCl

M
=

35
36
R = 1.24× 10−10 m

Then from rotational kinematics we have for l = 1

v = ωxcm =
(
5.65× 1012 rad/s

) (
1.24× 10−10 m

)
= 700 m/s

and for l = 10:

v = ωxcm =
(
4.19× 1013 rad/s

) (
1.24× 10−10 m

)
= 5200 m/s

c)

ω =
v

xcm
=

0.1c
xcm

=
2.998× 107 m/s
1.24× 10−10 m

= 2.42× 1017 rad/s

Then

ω =

√
l(l + 1)h̄2

I2

l(l + 1) =
ω2I2

h̄2 =
(

(2.42× 1017 rad/s) (2.64× 10−47 kg ·m2)
1.055× 10−34 J · s

)2

= 3.67× 109

from which it follows that l ∼= 6.1× 104.
d) Erot = kT = h̄2l(l + 1)/2I. Thus

T =
h̄2l (l + 1)

2Ik
=

(1.055× 10−34 J · s)2 (3.67× 109)
2 (2.64× 10−47 kg ·m2) (1.38× 10−23 J/K)

= 5.6× 1010 K

5.* With Bohr’s condition L = nh̄ we find

Erot =
L2

2I
=
n2h̄2

2I

The Bohr version and the correct version become similar for large values of quantum number
n or l, but they are quite different for small l.
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6.* ∆E = E1 − E0 = E1 = h̄2/I = hc/λ.

I =
h̄2λ

hc
=

h̄λ

2πc
=

(1.055× 10−34 J · s) (1.3× 10−3 m)
2π (2.998× 108 m/s)

= 7.28× 10−47 kg ·m2

b) The minimum energy in a vibrational transition is ∆E = hν. From Table 10.1 ν =
6.42 × 1013 Hz, which corresponds to a photon of wavelength λ = c/ν = 4.67µm. A photon
of this wavelength or less is required to excite the vibrational mode, so the 1.30 mm photon
is too weak.

7.

∆E = hν =
(
6.626× 10−34 J · s

) (
6.42× 1013 Hz

)
= 4.25× 10−20 J

Using this energy for a rotational transition from the ground state to the lth state we have

∆E =
h̄2l (l + 1)

2I
so

l (l + 1) =
2I∆E
h̄2 =

2 (7.28× 10−47 kg ·m2) (4.25× 10−20 J)
(1.055× 10−34 J · s)2 = 556

so l ∼= 24. This is prohibited by the ∆l = ±1 selection rule.

8. Combining R = r1 + r2 with m1r1 = m2r2 we find that

r1 =
m2

m1 +m2
R

and
r2 =

m1

m1 +m2
R

Therefore

I = m1r
2
1 +m2r

2
2 = m1

(
m2

m1 +m2
R
)2

+m2

(
m1

m1 +m2
R
)2

=
m1m2 (m1 +m2)

(m1 +m2)2 R2 = µR2

9. a)

∆E =
h̄2

2I
(3 (4)− 2 (3)) =

3h̄2

I

I =
3h̄2

∆E
=

3 (1.055× 10−34 J · s)2

(1.43× 10−3 eV) (1.602× 10−19 J/eV)
= 1.46× 10−46 kg ·m2

b)

µ =
m1m2

m1 +m2
=

(12) (16)
28

u = 1.139× 10−26 kg
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Then I = µR2, so

R =

√
I

µ
=

√
1.46× 10−46 kg ·m2

1.139× 10−26 kg
= 1.13× 10−10 m

which is a reasonable answer.

10.* a) The distance of each H atom from the line is d = (0.0958 nm) (sin 52.5◦) = 7.60×10−2 nm.
Then

I = 2mHd
2 = 2

(
1.67× 10−27 kg

) (
7.60× 10−11 m

)2
= 1.93× 10−47 kg ·m2

b)

E1 =
h̄2

I
=

(1.055× 10−34 J · s)2

1.93× 10−47 kg ·m2 = 5.77× 10−22 J = 3.61 meV

E2 =
3h̄2

I
=

3 (1.055× 10−34 J · s)2

1.93× 10−47 kg ·m2 = 1.73× 10−21 J = 10.81 meV

c)

λ =
hc

E1
=

(6.626× 10−34 J · s) (2.998× 108 m/s)
5.77× 10−22 J

= 344µm

11. First we need to compute the rotational inertia. Including both the nucleus and electrons we
have

I =
2
5
mαr

2
nuc +

2
5

(2me) a2
0

=
2
5

((
6.64× 10−27 kg

) (
1.9× 10−15 m

)2
+ 2

(
9.109× 10−31 kg

) (
5.29× 10−11 m

)2
)

= 2.04× 10−51 kg ·m2

Notice that the nuclear contribution was negligible.
a)

Erot =
h̄2

I
=

(1.055× 10−34 J · s)2

2.04× 10−51 kg ·m2 = 5.46× 10−18 J = 34.1 eV

b) This is greater than the ionization energy for helium, and therefore it is not likely to be
observed.

12.

ν ′ = ν ± h̄

2πI
(2l + 3)

with ν = c/λ = 1.00× 1013 Hz. Thus

ν ′ = 1.00× 1013 Hz ± 1.055× 10−34 J · s
2π (1.46× 10−45 kg ·m2)

(2l + 3)

or
ν ′ = 1.00× 1013 Hz ±

((
2.30× 1010 Hz

)
l + 3.45× 1010 Hz

)
where l is an integer and then as usual λ = c/ν ′.
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13.

∆E = hν =
h̄2

2I
[(l + 1) (l + 2)− l (l + 1)]

Therefore we can say that for a particular transition ν = C/µ where C is a constant, because
I = µR2. Then dν/dµ = −C/µ2, or, taking absolute values, dν/dµ = C/µ2 = ν/µ. Thus
∆ν/ν = ∆µ/µ as required.

14. a) The Maxwell-Boltzmann factor is FMB = A exp (−E/kT ). The energies of the three
rotational levels are

E0 = 0 E1 =
h̄2

I
E2 =

3h̄2

I
Thus the Maxwell-Boltzmann factors are

l = 0: FMB = A

l = 1:

FMB = A exp
(
− h̄2

IkT

)
= A exp

(
− (1.055× 10−34 J · s)2

(10−46 kg ·m2) (1.381× 10−23 J/K) (293 K)

)
= 0.973A

l = 2:

FMB = A exp
(
− 3h̄2

IkT

)
= A exp

(
− 3 (1.055× 10−34 J · s)2

(10−46 kg ·m2) (1.381× 10−23 J/K) (293 K)

)
= 0.921A

b) The degeneracy factor g(E) is 1 for l = 0, 3 for l = 1, and 5 for l = 2. Therefore the level
populations n(E) are

l = 0: n(E) = g(E)FMB = A

l = 1: n(E) = g(E)FMB = 3 (0.973A) = 2.92A

l = 2: n(E) = g(E)FMB = 5 (0.921A) = 4.61A

c) For the lower rotational states the degeneracy factor causes the state populations to increase
with increasing l. However, as l increases and the rotational energy increases, the exponential
factor begins to take over and decrease the state populations.

15.* The gap between adjacent lines is h (∆ν) = h̄2/I.
a)

I =
h̄2

h (∆ν)
=

(1.055× 10−34 J · s)2

(6.626× 10−34 J · s) (7× 1011 Hz)
= 2.4× 10−47 kg ·m2

b) ω = 2πν =
√
κ/µ with ν = 8.65× 1013 Hz. The reduced mass is (using the 35Cl isotope)

µ =
m1m2

m1 +m2
=

35
36

u = 1.614× 10−27 kg

Solving for κ we find

κ = 4π2ν2µ = 4π2
(
8.65× 1013 Hz

)2 (
1.614× 10−27 kg

)
= 478 N/m

in good agreement with Table 10.1.
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16. a)
P = qx =

(
1.602× 10−19 C

) (
2.67× 10−10 m

)
= 4.28× 10−29 C ·m

b) The fractional ionic character is the ratio

4.28× 10−29 C ·m
5.41× 10−29 C ·m = 0.79

17. ∆E = hν = hc/λ, so the wavelength is

λ =
c

ν
=

2.998× 108 m/s
8.72× 1013 Hz

= 3.44µm

which is in the infrared part of the spectrum.

18.* a) Using dimensional analysis and the fact that the energy of each photon is hc/λ = 3.14 ×
10−19 J,

N

t
=

2.5× 10−3 J/s
3.14× 10−19 J

= 7.96× 1015 s−1

b) 0.02 mole is equal to 0.02NA = 1.20× 1022 atoms. Then the fraction participating is

7.96× 1015

1.20× 1022 = 6.63× 10−7

c) The transitions involved have a fairly low probability, even with stimulated radiation. We
are saved by the large number of atoms available.

19. a) From Chapter 9 we have

∆ν =
ν0

c

√
kT

m

We also have in general ν = c/λ so ∆ν =
(
c/λ2

)
∆λ. Therefore

∆λ =
λ2∆ν
c

=
λ2ν0

c2

√
kT

m
=
λ

c

√
kT

m

Using the neon mass 3.32× 10−26 kg we get

∆λ =
6.328× 10−7 m
2.998× 108 m/s

√
(1.381× 10−23 J/K) (293 K)

3.32× 10−26 kg
= 7.37× 10−13 m

b)

∆E =
hc

λ2 ∆λ =
h̄

2τ

∆λ =
h̄λ2

2hcτ
=

λ2

4πcτ
=

(6.328× 10−7 m)2

4π (2.998× 108 m/s) (10−3 s)
= 1.06× 10−19 m

The Doppler broadening is much more significant than the Heisenberg broadening.

122



CHAPTER 10

20. a)

∆t =
2 (1 m)

2.998× 108 m/s
= 6.67× 10−9 s

b) For the 16 km round trip

∆t =
16× 103 m

2.998× 108 m/s
− 16× 103 m

(1− 3× 10−4) 2.998× 108 m/s
= −1.6× 10−8 s

Because this result is larger than the desired uncertainty in timing, it is important to take
atmospheric effects into account.

21. In a three-level system the population of the upper level must exceed the population of the
ground state. This is not necessary in a four-level system.

22. Because the 3s state has two possible configurations and the n = 2 level has eight, let us
assign a density of states g = 2 to the excited state and g = 8 to the ground state.
a)

f3

f2
=

2 exp (−βE3)
8 exp (−βE2)

= 0.25 exp
(
−E3 − E2

kT

)

= 0.25 exp
(
− 16.6 eV

(8.617× 10−5 eV/K) (293 K)

)
= 7× 10−287

b)
f3

f2
= 0.25 exp

(
− 16.6 eV

(8.617× 10−5 eV/K) (200 K)

)
= 1.2× 10−419

c)
f3

f2
= 0.25 exp

(
− 16.6 eV

(8.617× 10−5 eV/K) (500 K)

)
= 1.2× 10−168

d) Thermal excitations can be neglected.

23.* Using dimensional analysis the number density is

1980 kg/m3 1 mol
0.07455 kg

2 (6.022× 1023)
mol

= 3.20× 1028 m−3

Therefore the distance is

d =
(
3.20× 1028 m−3

)−1/3
= 3.15× 10−10 m = 0.315 nm

24.* Each charge has two unlike charges a distance r away, two like charges a distance 2r away,
and so on:
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V = − 2e2

4πε0r

(
1− 1

2
+

1
3
− 1

4
+ ...

)
The bracketed expression is the Taylor series expansion for ln 2, so

V = − 2e2

4πε0r
ln 2 = − αe2

4πε0r

and we see that α = 2 ln 2.

25. Using the positive central
charge as a guide, we find

r
+ – + – +

– + – + –

+ – + – +

– + – + –

+ – + – +

V =
e2

4πε0r

(
−4
r

+
4√
2r

+
4
2r
− 8√

5r
+

4√
8r
− ...

)

so by definition of α we have

α = 4− 4√
2
− 2 +

8√
5
− 4√

8
+ ...

26.

F = −dV
dr

= − αe2

4πε0r2 +
λ

ρ
e−r/ρ

From Equation (10.20a) we have

1 = er0/ρ
ραe2

4πε0r2
0λ

Multiplying this factor of 1 by the last term in the force equation, we get

F = − αe2

4πε0r2 +
λ

ρ
e−r/ρer0/ρ

ραe2

4πε0r2
0λ

=
αe2

4πε0r2
0

(
−r

2
0

r2 + e−(r−r0)/ρ

)
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27. Inserting r = r0 + δr into the force equation from Problem 26

F =
αe2

4πε0r2
0

(
− r2

0

(r0 + δr)2 + e−δr/ρ
)

Factoring the first term in the parentheses leaves

F =
αe2

4πε0r2
0

− 1(
1 + δr

r0

)2 + e−δr/ρ


Applying the binomial theorem(

1 +
δr

r0

)−2

= 1− 2
r0
δr +

3
r2

0
(δr)2 − ...

and we end the series at that point for small δr. The Taylor series for the exponential is

e−δr/ρ = 1− δr

ρ
+

(δr)2

2ρ2 − ...

Putting these two series approximations together:

F ∼= αe2

4πε0r2
0

(
−1 +

2
r0
δr − 3

r2
0

(δr)2 + 1− δr

ρ
+

(δr)2

2ρ2

)

Collecting terms:

F ∼= αe2

4πε0r2
0

((
2
r0
− 1
ρ

)
(δr) +

(
− 3
r2

0
+

1
2ρ2

)
(δr)2

)
∼= K1 (δr) +K2 (δr)2

where

K1 =
αe2

4πε0r2
0

(
2
r0
− 1
ρ

)
and K2 =

αe2

4πε0r2
0

(
− 3
r2

0
+

1
2ρ2

)

28. a) Looking at the result of the previous problem we see the spring constant is κ = −K1, and
we know that for the harmonic oscillator ω =

√
κ/µ. For NaCl

µ =
m1m2

m1 +m2
= 2.32× 10−26 kg

Recall that for NaCl we know α = 1.7476, r0 = 0.282 nm, and ρ = 0.0316 nm. These values
give

−K1 = κ = − αe2

4πε0r2
0

(
2
r0
− 1
ρ

)
= 124.7 N/m

Then the oscillation frequency is

ν =
ω

2π
=

1
2π

√
κ

µ
=

1
2π

√
124.7 N/m

2.32× 10−26 kg
= 1.17× 1013 Hz
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b)

λ =
c

ν
=

2.998× 108 m/s
1.17× 1013 Hz

= 25.6µm

which is about half the observed value.

29. a)
F = 0 = K1δr +K2(δr)2

Therefore
δr = −K2

K1
(δr)2

b) From the equipartition theorem
K1(δr)2 = kT

so from (a)

δr =
K2

K2
1
kT

The coefficient of thermal expansion α comes from ∆L = Lα∆T , or

α =
1
L

∆L
∆T

Therefore in our nomenclature

α =
1
r0

d
(
δr
)

dT
=

1
r0

K2

K2
1
k

Evaluation with K1 = −124.7 N/m and K2 = 2.35× 1012 N/m2, we find α = 7.4× 10−6 K−1,
which is on the right order of magnitude.

30. a)
3
√
π

4 ba−5/2β−3/2

π1/2a−1/2β−1/2 =
3
4
ba−2β−1 =

3bkT
4a2

b) Let 3bk/4a2 = C0. Then 〈x〉 = C0T .

C0 =
∆ 〈x〉
∆T

= αx =
(
1.67× 10−5 K−1

) (
8.47× 1028 m−3

)−1/3
= 3.80× 10−15 m/K

where we used the number density of copper from Chapter 9.

31. b) From Table 10.1 we see that typically κ ∼= 103 N/m. Using this value for a along with the
definition of C0 from Problem 30 we find

b =
4a2C0

3k
=

4 (103 N/m)2 (3.80× 10−15 m/K)
3 (1.381× 10−23 J/K)

= 4× 1014 N/m2
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32. a) E = 3
2kT so T = 2E/3k and the ideal gas law becomes

PV = NkT = Nk
2E
3k

=
2NE

3

b) From Chapter 9, N/V = 8.47 × 1028 m−3 and we know E = 3
5EF = 6.76 × 10−19 J. Thus

in SI units we have

P =
2NE
3V

=
2
3

(
8.47× 1028 m−3

) (
6.76× 10−19 J

)
= 3.8× 1010 N/m2

which is quite high. The ideal gas law may not be the best assumption for conduction electrons.

33. From the previous problem

P =
2NE
3V

=
2N
3V

3
5
EF =

2NEF
5V

We must be careful, because EF depends on the volume:

EF =
h2

8m

(3N
πV

)2/3

P =
2N
5V

h2

8m

(3N
πV

)2/3

=
( 3
π

)2/3 N5/3h2

20m
V −5/3

The bulk modulus is

B = −V ∂P
dV

= −V
( 3
π

)2/3 N5/3h2

20m

(
−5

3

)
V −8/3

=
5
3

( 3
π

)2/3 N5/3h2

20m
V −5/3 =

5P
3

Using the fact from above that P = 2NEF/5V we find

B =
5
3

2NEF
5V

=
2NEF

3V

34. For silver N/V = 5.86× 1028 m−3 and EF = 5.49 eV.
a)

B =
2NEF

3V
=

2
3

(
5.86× 1028 m−3

)
(5.49 eV)

(
1.602× 10−19 J/eV

)
= 3.44× 1010 N/m2

b) The computed result is about one-third of the measured value.

35. This is the same as the high-field limit. With µB/kT � 1 we have tanh (µB/kT ) ∼= 1 so
µ ∼= µ.

127



CHAPTER 10

36. a) See graph.

–

1 2 3 4
µ

µ

B

µµ =     tank ( (

kT

µB
kT

b)
µ = µ tanh(5) = 0.99991µ

and the approximate result of Problem 35 is off by only 0.009%.
c)

µ = µ tanh(0.10) = 0.0997µ

The approximate result is off by just 0.3%.

37.* Magnetic dipole moment has units A·m2, so M has units A·m2/m3 = A/m. µ0 has units
T·m/A and B has units T, so χ = µ0M/B has units (T ·m/A) (A/m) /T which reduces to no
units.

38. a) If we assume that every atom’s magnetic moment is a Bohr magneton aligned in the same
direction, M = nµB where n is the number density.

n =
7.92 × 103 kg

m3

1 mol
0.05585 kg

(
6.022× 1023

1 mol

)
= 8.54× 1028 m−3

Thus
M = nµB =

(
8.54× 1028 m−3

) (
9.274× 10−24 J/T

)
= 7.92× 105 A/m

b) The computed value is almost exactly one-half the measured value.
c) This implies that there are two unpaired spins per atom.

39.*

Bc = Bc(0)
(

1−
(
T

Tc

)2)
= 0.1Bc(0)

Thus (T/Tc)
2 = 0.9 and T =

√
0.9Tc ∼= 0.95Tc. Similarly for a ratio of 0.5 we find T =√

0.5Tc ∼= 0.71Tc, and for a ratio of 0.9 we find T =
√

0.1Tc ∼= 0.32Tc.
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40. The energy gap at T = 2 K is

Eg(2 K) =
hc

λ
=

1240 eV · nm
5.68× 105 nm

= 2.18× 10−3 eV

Inserting Equation (10.45) into Equation (10.45a) gives

Eg(T ) = 1.74 (3.54kTc)
(

1− T

Tc

)1/2

Using Eg(2 K) = 2.18× 10−3 eV and k = 8.62× 10−5 eV/K we get

4.11 K = Tc

(
1− T

Tc

)1/2

Solving by calculator we get Tc = 5.3 K which is closest to vanadium.

41.* Using the value given in the text, Tc = 4.146 K for a mass of 203.4 u, we get

M0.5Tc = constant = 5.91296 u0.5 ·K
and so for a mass of 201 u we find Tc = 4.171 K and for a mass of 204 u we find Tc = 4.140 K.

42. With 16O the molar mass in grams is

88.906 + 2(137.33) + 3(63.546) + 7(16.00) = 666.204

Replacing all the 16O atoms with 18O adds 14 grams per mole, changing the mass to 680.204.
Using the BCS formula for the isotope effect

M0.5
1 Tc1 = M0.5

2 Tc2

and assuming Tc = 93 K (exactly) for the first sample

Tc2 =
(
M1

M2

)1/2

Tc1 =
(666.204

680.204

)1/2

(93 K) = 92.0 K

a change of 1.0 kelvin.

43. Extrapolating on the graph it could be at about 130 K.

44.*
B = µ0In =

(
4π × 10−7 N/A2

)
(5.0 A)

(
3000 m−1

)
= 18.85 mT

Φ = BA = Bπd2/4 =
(
18.85× 10−3 T

) π (0.025 m)2

4
= 9.25× 10−6 T ·m2

Φ
Φ0

=
9.25× 10−6 T ·m2

2.068× 10−15 T ·m2 = 4.5× 109 flux quanta

This large number shows how small the flux quantum is.
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45. We know that for niobium Bc = 0.206 T. Then the diameter (twice the radius) is

D = 2R =
µ0I

πB
=

(4π × 10−7 N/A2) (5.5 A)
π (0.206 T)

= 1.07× 10−5 m

which is quite small.

46.

P = I2R =
I2ρL

A

where ρ is resistivity, L is length, and A is area. Now A = πr2, so

P =
I2ρL

πr2

The surface area is 2πrL so the power per unit area is

P

area
=

I2ρL

πr2 (2πrL)
=

I2ρ

2π2r3 = 100 W/m2

Using r = 3.75× 10−4 m we find

I2 =
2π2 (3.75× 10−4 m)3 (100 W/m2)

1.72× 10−8 Ω ·m = 6.052 A2

or I = 2.46 A.

47. a) From the BCS theory we have

Bc(4.2 K) = Bc(0)
(

1−
(
T

Tc

)2)
= (0.206 T)

(
1−

( 4.2
9.25

)2
)

= 0.1635 T

From the result of Problem 45 we know that

I =
πBcD

µ0
=
π (0.1635 T) (7.5× 10−4 m)

4π × 10−7 T ·m/A
= 307 A

b) This is a lot more current than the copper can carry (more than 100 times).

48. Because νj is directly proportional to V , it is known to within one part in 1010, or(
10−10

) (
483.6× 109 Hz

)
= 48.36 Hz

which is pretty fine tuning.
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49. By conversion 550 km/h = 152.78 m/s. Then from kinematics v2 = 2ax, so

a =
v2

2x
=

(152.78 m/s)2

2 (3500 m)
= 3.33 m/s2

This is about g/3, which would certainly be noticeable.

50. a) To compute escape speed use conservation of energy, with 1
2mv

2
esc = GMm/Re:

vesc =

√
2GM
Re

=

√
2 (6.673× 10−11 m3 · kg−1 · s−1) (5.98× 1024 kg)

6.378× 106 m
= 11.1 km/s

b) From Chapter 9

v =
4√
2π

√
kT

m
=

4√
2π

√√√√(1.381× 10−23 J/K) (293 K)
4 (1.661× 10−27 kg)

= 1245 m/s

c) There are always enough helium atoms on the (high-speed) tail of the Maxwell-Boltzmann
distribution that a significant number can escape, given enough time.

51. Equating the centripetal force with the Lorentz (magnetic) force we get

mv2

R
= qvB

or mv = p = qBR. The formula p = qBR is also correct relativistically, and note that for
these extremely high energies E ∼= pc = qBRc. Therefore the energy is

E ∼= qBRc =
(
1.602× 10−19 C

)
(13.5 T)

(27000 m
2π

) (
2.998× 108 m/s

)
= 2.786× 10−6 J = 17.4 TeV

52.* a) In a RL circuit the current is
I = I0e

−Rt/L

For small values of R let us approximate the exponential with the Taylor expansion 1−Rt/L.
Then

10−9 = 1− I

I0
= 1− e−Rt/L ∼= Rt

L

R ≤ 10−9L

t
= 10−9

(
3.14× 10−8 H

2.5 y (3.16× 107 s/y)

)
= 4.0× 10−25 Ω

b) For a 10% loss

t =
0.1

10−9 (2.5 y) = 2.5× 108 y
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53. From the BCS theory

B = Bc(0)
(

1−
(
T

Tc

)2)
Then

∆S
V

= − ∂

∂T

(
B2

2µ0

)
=

2B2
c (0)

µ0Tc

(
T

Tc
−
(
T

Tc

)3)
For numerical values use T = 6 K, Tc = 9.25 K, and Bc(0) = 0.206 T.

∆S
V

=
2 (0.206 T)2

(4π × 10−7 T ·m/A) (9.25 K)

(
6

9.25
−
( 6

9.25

)3
)

= 2743 J ·m−3 ·K−1

The volume of one mole of niobium is

V =
92.91 g

8.57 g/cm3 = 10.84 cm3 = 1.084× 10−5 m3

Thus
∆S =

(
2743 J ·m−3 ·K−1

) (
1.084× 10−5 m3

)
= 2.97× 10−2 J/K

for one mole of niobium. The superconducting state has a lower entropy than the normal
state.
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