Chapter 10

*1. a) For each state the energy is given by E.o = h*[(l + 1)/2I, so the transition energy is

R 2h%  2(1.055 x 1073 J . s)?
AE = —(2(3)—1(2)) = — = =22x1072J] =14x 1073
57 (203) —12) == 105 kg o x 10722 ] x 107 eV
b) As in part (a)
B2 20h>
AE = — (20(21) — 19(20)) = O 9% 1072 ] = 14x 1072 oV

21
This is still in the infrared part of the spectrum.

2. From Table 10.1 £ = 1860 N/m and v = 6.42 x 10'® Hz.

a
)
AE = hy = (4.136 x 1071 eV - s) (6.42 x 10%3 Hz) — 0.266 eV

b) Set AE = kT with two degrees of freedom in the vibrational mode. Then

AFE 0.266 eV

T pu— pu—
k  8617x 1075 eV/K

= 3090 K

3. In the ground state F = (n + %) hw = Lhw = 1kA? = Luw? A% Solving for A:

h
A=,|—
pw
Using the 3Cl isotope
=——=—u =1614x107""k
H o v ma 36" &

From Table 10.1 v = 8.66 x 10'® Hz. With w = 27v we have

A 1. 10-31 J -
A= :J 055 > 107 J - —110x 102 m

pw (1.614 x 10727 kg) (27) (8.66 x 1013 s~1)

4. a) Using the result of Problem 8 for the rotational inertia we have

I=pR*= (1614 x 10" kg) (1.28 x 1071° m)2 = 2.64 x 107% kg - m?

For [ = 1 we have ) )
{1+ 1)h _ FL _ ;[uﬂ

Ero =
‘ 21 I
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Therefore

2h? 2(1. 10734 J . g)?
w:\/>= (1.055 x 107 J S>2 = 5.65 x 10" rad/s
I? (2.64 x 10~ kg - m?2)
For [ = 10 we have
I(I+1)n*  B5R° 1

Eroz —*[2
¢ ol 7 2

110%2 110 (1.055 x 1034 J . 5)?
b= 2O | 110(1.055 3 419 % 10 rads
I (2.64 x 1047 kg - m?)

b) The distance of the center of mass from the H atom is

Therefore

_ Mmcaxa
Tom = Thp

35
=_—R=124x10"1

%6 X m
Then from rotational kinematics we have for [ =1

V= Wien = (5.65 x 10" rad/s) (1.24 x 107" m) = 700 m/s

and for [ = 10:
V= WTey = (4.19 x 103 rad/s) (1.24 x 10710 m) = 5200 m/s
c)
v 0dc 2998 x 107 m/s
= = = =242 x 10'7 rad
Y e Zan 124 x10-0m x 107 rad/s
Then
(14 1)R?
= T
w2 ((2.42 x 10'7 rad/s) (2.64 x 1077 kg - m?)
(1+1) = = = 3.67 x 10°
(+1)="5 ( 1.055 x 103 J -5 8
from which it follows that [ = 6.1 x 10%.
d) E,ot = KT = h*I(l +1)/21. Thus
2 —34 7.2 9
T:hl(l+1): (1.055 x 1073* J - 5)° (3.67 x 10?) a6 101 K
21k 2(2.64 x 10~17 kg - m?) (1.38 x 1023 J/K)

With Bohr’s condition L = nh we find

L2 242
Erot = 537 — n h
21 21

The Bohr version and the correct version become similar for large values of quantum number

n or [, but they are quite different for small [.

118



CHAPTER 10

¥6. AE = E, — Ey = Ey = h*/I = hc/\.

2 34 7. -3
_RPA A (L35 X 107 T os) (13X 100 m) o kg - m?

I
he  2mc 27 (2.998 x 108 m/s)

b) The minimum energy in a vibrational transition is AE = hv. From Table 10.1 v =
6.42 x 10'3 Hz, which corresponds to a photon of wavelength A\ = ¢/v = 4.67um. A photon
of this wavelength or less is required to excite the vibrational mode, so the 1.30 mm photon
is too weak.

AE = hv = (6.626 x 107 J-5) (6.42 x 10" Hz) = 4.25 x 1072 J
Using this energy for a rotational transition from the ground state to the /th state we have

2
Ap - LI+
21
SO
_2IAE  2(7.28 x 107*" kg - m?) (4.25 x 10720 J)
Rt (1.055 x 1034 J - 5)?

so [ = 24. This is prohibited by the Al = 41 selection rule.

L(I+1) = 556

8. Combining R = rq + ro with mqr; = mary we find that

™ = 7m2 R
my + Mo
and m
o = L R
mi + mo
Therefore
I = mur2+meri=m <mZR>2+m (mlR>2
N i 22 = my + mo 2 mi + mo
_ mamy (m1 + Tz)Rz — uR?
(m1 + mg)
9. a)
h? 3h°
AE =—(3(4) —2 = —
(B -20) ="
3h? 3(1.055 x 1073+ J - s)
I= = = 1.46 x 107 kg - m?
AE ~ (143 x 102 eV) (1.602 x 10-19 J/eV) 8 &
b)
mims (12) (16) —26
= = =1139x 107~ k
# my + Mo 28 b % &
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Then I = puR?, so

T [1.46 x 106 kg - m? 1
R:\/;:\/ T w3107 m

which is a reasonable answer.

a) The distance of each H atom from the line is d = (0.0958 nm) (sin 52.5°) = 7.60 x 10~2 nm.
Then

I =2myd® =2 (1.67 x 107 kg) (7.60 x 10" m)’ = 1.93 x 107" kg - m”

b)
R2 (1.055 x 10734 J - 5)°
E=—= =577Tx 1072 ] =3.61 meV
YT T T 193 x 1017 kg - m? % e

3K 3(1.055x 1071 J - 5)”
I 1.93x 10747 kg - m2

F, =1.73x 1072 J =10.81 meV

_ he (6626 x 107 J -5) (2.998 x 10° m/s) _ 344 pm

N = =
E 5.77 x 10722 ]

First we need to compute the rotational inertia. Including both the nucleus and electrons we

have
2 2
I = gmariuc+g(2me)a3

= g ((6.64 x 10727 kg) (1.9 x 1071 m)2 iy (9.109 % 1031 kg) (5_29 < 10-11 m)2)
= 2.04 x 107°! kg - m*

Notice that the nuclear contribution was negligible.

a)
R2 (1055 x 10734 J - 5)°
By =— = =546 x 1079 J =34.1eV
T T T 204 x 10-5 kg - m? % ¢
b) This is greater than the ionization energy for helium, and therefore it is not likely to be
observed.

I
"=+ — (2
v v 27?[(l+3)

with v = ¢/\ = 1.00 x 10'® Hz. Thus

1.055 x 10734 J - 5
"=1.00 x 10"® Hz + 20+ 3
Y 8 2t (146 x 10-5 kg -2y 2 T3

or

v =1.00 x 10" Hz + ((2.30 x 100 Hz) ]+ 3.45 x 10" Hz)

where [ is an integer and then as usual A = ¢/v/'.
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2

h
AE:hV:5ﬂ0+1ML+®—ZU+U]

Therefore we can say that for a particular transition v = C'/u where C' is a constant, because
I = puR% Then dv/du = —C/u?, or, taking absolute values, dv/du = C/u* = v/u. Thus
Av/v = Ap/p as required.

a) The Maxwell-Boltzmann factor is Fyp = Aexp(—E/kT). The energies of the three
rotational levels are

h? 3h
0 0 1 Ji 2 I
Thus the Maxwell-Boltzmann factors are
=0: FMB == A
[=1:
B2 (1.055 x 1073 J - 5)?
Fyp=A ——— | =A — =0.973A
MB exp ( Ik:T) €xXp ( (10=46 kg - m?) (1.381 x 10=23 J/K) (293 K) 0973
[=2:
352 3(1.055 x 10734 J - )
Fyp=A ——— | =A — =0.921A
MB exp ( [k;T) exp ( (10-46 kg - m?) (1.381 x 10-2 J/K) (293 K) 09

b) The degeneracy factor g(F) is 1 for { =0, 3 for [ = 1, and 5 for [ = 2. Therefore the level
populations n(E) are
[=0: n(E) =g(E)Fuyp = A
=1 n(E) = g(F)Fyp = 3(0.973A) = 2.92A
[ =2: n(E) = g(E)Fyp =5(0.921A) = 4.61A
c¢) For the lower rotational states the degeneracy factor causes the state populations to increase

with increasing [. However, as [ increases and the rotational energy increases, the exponential
factor begins to take over and decrease the state populations.

The gap between adjacent lines is h (Av) = h?/I.

a)
h? (1.055 x 1073+ J - s)?
I= = =24 x 107" kg - m®
h(Av)  (6.626 x 10-3% J - 5) (7 x 101 Hz) 8 &

b) w = 2rv = \/Kk/p with v = 8.65 x 10'® Hz. The reduced mass is (using the 3*Cl isotope)

= —— 4y =1614x10“k
b vms 36 &

Solving for x we find
k= dr*?p = 4n° (8.65 x 10" Hz)2 (1.614 x 107" kg) = 478 N/m

in good agreement with Table 10.1.
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16. a)
P =gz =(1.602x107" C) (267 x 107 m) =428 x 107 C-m

b) The fractional ionic character is the ratio

428 x 1072 C-m

SAl X105 Com 07

17. AE = hv = he/ A, so the wavelength is

c 2998 x 10® m/s
A== — 344
LT BT x 108 H,  oAem

which is in the infrared part of the spectrum.

*18. a) Using dimensional analysis and the fact that the energy of each photon is he/\ = 3.14 x
10719 7,
N  25x107° J/s

— = = 7.96 x 10" 7!
t T 314x1019] XA

b) 0.02 mole is equal to 0.02N4 = 1.20 x 10*? atoms. Then the fraction participating is

7.96 x 10

_ -7

c¢) The transitions involved have a fairly low probability, even with stimulated radiation. We
are saved by the large number of atoms available.

19. a) From Chapter 9 we have

AI/:@ E
c\ m

We also have in general v = ¢/\ so Av = (c/ )\2) AM. Therefore

2 2
A)\:)\AV:)\QVO /ka:é/kiT
c c m c\ m

Using the neon mass 3.32 x 1072% kg we get

AN = . 1019
2.998 x 108 m/s\/ 3.32 x 1026 kg 7.37 x 10 m
b)

he 3

AE = —A)N= —
A2 A 27
2 328 x 107 m)?

Al - (6.528 10" m) =1.06 x 107 m

T 2her  Amer  Anm (2.998 x 108 m/s) (103 s)

The Doppler broadening is much more significant than the Heisenberg broadening.
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a)
2 (1 m)
At = =6.67 x 1077
2.998 x 10° m/s S
b) For the 16 km round trip
16 x 10° m 16 x 10° m

= —-16x10"%s

At = - —~
2.998 x 105 m/s (1 — 3 x 10-4)2.998 x 108 m/s

Because this result is larger than the desired uncertainty in timing, it is important to take
atmospheric effects into account.

In a three-level system the population of the upper level must exceed the population of the
ground state. This is not necessary in a four-level system.

Because the 3s state has two possible configurations and the n = 2 level has eight, let us
assign a density of states g = 2 to the excited state and g = 8 to the ground state.
a)
B 2ep(E0E) g o5 o, (—E3 — EQ)
f2 8exp (—[E») ET
16.6 eV
= 0.25 - =7x 107
P ( (8.617 x 10-5 eV/K) (293 K)) 8
b)
fg 16.6 eV —419
— =0.25 — =1.2x10
fa P\ 78617 x 1075 eV/K) (200 K) 8
c)
13 16.6 eV _168
— =0.25 — =12x10
fa P\ 718617 x 10-3 oV /K) (500 K) 8

d) Thermal excitations can be neglected.

Using dimensional analysis the number density is

1mol  2(6.022 x 10%)
0.07455 kg mol

1980 kg/m? =3.20 x 10® m™®

Therefore the distance is

1/

d=(3.20 x 10% m™*)" P 315%x107° m = 0.315 nm

Each charge has two unlike charges a distance r away, two like charges a distance 2r away,
and so on:
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2e? 1 1 1
V=- 1—=—4+-—=-4..
47T607°( 2+3 4+ )

The bracketed expression is the Taylor series expansion for In 2, so

and we see that o = 21n 2.

25. Using the positive central
charge as a guide, we find

-

GOOOE
OOOOO
GOOOE
OOOOLO
GOOOE

v e? 4 N 4 N 4 8 n 4
Cdmegr \ o 2r 2 Bro VS
so by definition of a we have

4 8 4
ao=4———-24 ——-—+ ..

V2 NG

26.
2
po WV ae A
dr dmegr?  p
From Equation (10.20a) we have
| rolo_POE
dmeqri\

Multiplying this factor of 1 by the last term in the force equation, we get

2 2
Foo 9 A el PO
dmegr?  p Amegrd
2 2
I 1L
dregrd \ 12
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Inserting r = rg + 6r into the force equation from Problem 26

ae? r
F= ——0 et/
Amegrd \ (ro + 6r)°

Factoring the first term in the parentheses leaves

ae? 1

F = —
degrd (1 + %)

5 + e~or/p

Applying the binomial theorem
s\~ 2 3
<1+T> :1——67“—1——2(57“)2—
To To 7o
and we end the series at that point for small ér. The Taylor series for the exponential is
or . (6r)°
p o 2p?

Putting these two series approximations together:

ae? 2 3 2 or (6r)
Fe 2 (14 25— 2@ e1- 2
dmegrd ( - To " r(%( Rl p N 2p?

ae? 2 1 3 1 9
et (5 5) o+ (3 07)
=~ K (6r) + Ky (67)°

ae? (2 1 ae? 3 1
K1:4 3 <—> and ngiz <—2+2>
Terg \To P Amegrs g 2p

a) Looking at the result of the previous problem we see the spring constant is k = — K, and

we know that for the harmonic oscillator w = \/x/u. For NaCl

e~brlp — 1 —

12

Collecting terms:

T
1%

where

p= T2 939 % 107 kg
my + me
Recall that for NaCl we know a = 1.7476, ro = 0.282 nm, and p = 0.0316 nm. These values

give

2 1
K =h= ot (—):124.71\1/111
p

Then the oscillation frequency is

1 1 [ 1247N
p= = B = TN/ 10y
2r 2m\lp 27\ 2.32 x 10726 kg
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b)
¢ 2.998 x 10® m/s
—_ — = p— 2 .
A R T AR T ER TP

which is about half the observed value.

a)
F =0= Klﬁ—l- KQ((ST)2
Therefore K
or = —ﬁ(ér)z
b) From the equipartition theorem
Ki(6r)° = kT
so from (a)
K,
or = ?lsz
The coefficient of thermal expansion a comes from AL = La AT, or
1AL
“TLAT

Therefore in our nomenclature

1) 1K,
ro dT _70?12

Evaluation with K7 = —124.7 N/m and K, = 2.35 x 10" N/m? we find « = 7.4 x 107¢ K1
which is on the right order of magnitude.

a)
%ba_5/2573/2 _ §ba*25_1 _ 30kT
7T1/2CL71/25*1/2 4 4a?
b) Let 3bk/4a* = Cy. Then (z) = C,T.
Ay | 28 3\ "1/3 _ ~15
Co="x7 =or= (167 x 1077 K1) (847 x 10® m™®) """ =3.80 x 107" m/K

where we used the number density of copper from Chapter 9.

b) From Table 10.1 we see that typically x = 10* N/m. Using this value for a along with the
definition of Cj from Problem 30 we find

 4a®Cy  4(10° N/m)? (3.80 x 1075 m/K)
-3k 3(1.381 x 10-23 J/K)

b =4 x 10" N/m?
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32. a) E = 3kT so T = 2E/3k and the ideal gas law becomes

33.

34.

35.

2F 2NE
v 3k 3

b) From Chapter 9, N/V = 8.47 x 10%® m™® and we know E = 2Ep = 6.76 x 107 J. Thus

in SI units we have

— 2NE _ 2 28 -3 —-19 _ 10 2
P_W_g(&zwxm m~*) (6.76 x 1071 J) = 3.8 x 10'° N/m

which is quite high. The ideal gas law may not be the best assumption for conduction electrons.

From the previous problem

_2NE _2N3

INE
P = Ep = ol

3V.  3vs5 ' sV

We must be careful, because Er depends on the volume:

2 N2/3
e = 5 (o7)

~ 8m \xV

P

_W R <3N)2/3 - (Y
5V 8m \nV T 20m
The bulk modulus is

oP 3\2/3 N°/3p2 s 5
B = -V—=-V(= —— Vs
A% (71') 20m ( 3)
_ 5(3>2/3 N5/3h2v_5/3 _ g
3 20m 3

Using the fact from above that P = 2N Er/5V we find

™

_ 52NEp _2NEg

B_— =
3 5V 3V

For silver N/V = 5.86 x 10%® m™ and Er = 5.49 eV.
a)

ONEp 2
B= BVF =3 (5.86 x 10 m~*) (5.49 eV) (1.602 x 107" J/eV) = 3.44 x 10'° N/m”

b) The computed result is about one-third of the measured value.

This is the same as the high-field limit. With uB/kET > 1 we have tanh (uB/kT) = 1 so
=
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36. a) See graph.

U= p tank (%)

b)
7l = ptanh(5) = 0.999914

and the approximate result of Problem 35 is off by only 0.009%.

c)
71 = ptanh(0.10) = 0.0997u

The approximate result is off by just 0.3%.

*37. Magnetic dipole moment has units A-m? so M has units A-m?/m® = A/m. pu, has units
T-m/A and B has units T, so x = pyM/B has units (T - m/A) (A/m) /T which reduces to no

units.

38. a) If we assume that every atom’s magnetic moment is a Bohr magneton aligned in the same
direction, M = nup where n is the number density.

7.92 x 103 kg 1 mol (6.022 x 1023
n =

=854 x 10®¥ m™
m? 0.05585 kg ) AT

1 mol

Thus
M =npg = (8.54 x 10 m~*) (9.274 x 107" J/T) = 7.92 x 10° A/m

b) The computed value is almost exactly one-half the measured value.

c¢) This implies that there are two unpaired spins per atom.

*39.

B. = B.(0) (1 - <§>2> — 0.1B,(0)

Thus (T/7,)* = 0.9 and T = +/0.97, = 0.957,. Similarly for a ratio of 0.5 we find T =
Vv0.5T,. = 0.717,, and for a ratio of 0.9 we find T' = +/0.17,. = 0.327...
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40. The energy gap at T'=2 K is

he 1240 €V - nm
E(2K) = — = =218 x 1072 eV
2K = = 5@ 105 om 810" e

Inserting Equation (10.45) into Equation (10.45a) gives
T 1/2
E,(T) = 1.74 (3.54kT)) (1 - T)
Using F,(2 K) =2.18 x 1073 eV and k = 8.62 x 107 eV /K we get
T 1/2
411K =T, (1 - =
( Tc)

Solving by calculator we get T, = 5.3 K which is closest to vanadium.

*41. Using the value given in the text, T, = 4.146 K for a mass of 203.4 u, we get
M°3T. = constant = 5.91296 u’® - K
and so for a mass of 201 u we find 7, = 4.171 K and for a mass of 204 u we find T, = 4.140 K.

42. With 'O the molar mass in grams is
88.906 + 2(137.33) + 3(63.546) + 7(16.00) = 666.204

Replacing all the 60 atoms with 80 adds 14 grams per mole, changing the mass to 680.204.
Using the BCS formula for the isotope effect

Mi).E)Tcl = M20.5TC2

and assuming 7. = 93 K (exactly) for the first sample

M\ ? 666.204\ 1/2
To=("L) T,= 93 K) = 92.0 K
2 (M2> ! (680.204) (93 K)

a change of 1.0 kelvin.
43. Extrapolating on the graph it could be at about 130 K.

*44,
B = jigIn = (47 x 1077 N/A?) (5.0 A) (3000 m~") = 18.85 mT

)7T(0025m)2:9'25><10—6T.m2

® = BA = Brd’/4=(1885x 10 T
P 925% 1076 T - m?
®y  2.068 x 10715 T - m?
This large number shows how small the flux quantum is.

= 4.5 x 10° flux quanta
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We know that for niobium B, = 0.206 T. Then the diameter (twice the radius) is

pol (47 x 1077 N/A?) (5.5 A) 5
D =2R = = =1. 1
r="F% 7 (0.206 T) 07> 107" m

which is quite small.

_ IPpL

P=1r
="

where p is resistivity, L is length, and A is area. Now A = 712, so

B I*pL
2

P

The surface area is 27rL so the power per unit area is

P ?pL r
PE_— ~ P 100 W/m?

area 772 (2rrL)  2m2r3

Using r = 3.75 x 107* m we find

272 (3.75 x 107* m)” (100 W /m?)
I? = = 6.052 A?
1.72x 108 Q- m

or I =2.46 A.

a) From the BCS theory we have

B.(4.2 K) = B.(0) (1 - (;)2) — (0.206 T) (1 - (94225)2> — 0.1635 T

From the result of Problem 45 we know that

mB.D  m(0.1635 T) (7.5 x 107! m)
o 47 x 10-7 T -m/A

b) This is a lot more current than the copper can carry (more than 100 times).

Because v; is directly proportional to V', it is known to within one part in 10, or

(10*10) (483.6 x 10° Hz) — 48.36 Hz

which is pretty fine tuning.
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49. By conversion 550 km/h = 152.78 m/s. Then from kinematics v? = 2az, so

v? (152.78 m/s)?
= =2 Y _333m/s?
T 92 T T 2(3500 m) m/s

This is about g/3, which would certainly be noticeable.

50. a) To compute escape speed use conservation of energy, with $mvZ, = GMm/R,:

2GM  [2(6.673 x 10-1' m3 - kg~! -51) (5.98 x 1024 kg)
esc — = =11.1k
Vese =\ 7R, \/ 6.378 x 105 m m/s
b) From Chapter 9
4 [kT 4 | (1381 x 1023 J/K) (293 K)
- [T _ — 1245
" Ve m \/QN 4(1.661 x 1027 kg) m/s

c¢) There are always enough helium atoms on the (high-speed) tail of the Maxwell-Boltzmann
distribution that a significant number can escape, given enough time.

51. Equating the centripetal force with the Lorentz (magnetic) force we get

2

DA

or mv = p = qBR. The formula p = ¢BR is also correct relativistically, and note that for
these extremely high energies I = pc = qBRc. Therefore the energy is

27000 m

™

E = gBRec=(1602x 107" C) (135 T) ( ) (2.998 x 10° m/s)

= 2786 x 107 J =174 TeV

*52. a) In a RL circuit the current is
I = Ioe ™/*

For small values of R let us approximate the exponential with the Taylor expansion 1 — Rt/ L.
Then / Y
10°%9=1——=1—¢ft/x"__
To ¢ L

L _ 109 ( 3.14 x 10 H

R<107°=
= t 2.5y (3.16 x 107 s/y)

) =40x107%Q

b) For a 10% loss
0.1

10-9

t= (25y)=25x10%y
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53. From the BCS theory

B = B,(0) (1 - (;)j

AS_ 0 (B) _2B(0) T_<T>3
vV N or 2:““0 B /J“OTC Tc Tc

For numerical values use "= 6 K, T. = 9.25 K, and B.(0) = 0.206 T.

Then

AS 2(0.206 T) 6 6 \? I
— — = 2743 J - K
V.  (drx 107 T-m/A)(9.25 K) \9.25 <9.25) -
The volume of one mole of niobium is
92.91
Ve_"2P8 1084 cm® = 1.084 x 107° m®
8.57 g/cm?

Thus
AS = (2743 J-m ™ K™') (1.084 x 107> m*) = 2.97 x 1072 J/K

for one mole of niobium. The superconducting state has a lower entropy than the normal
state.
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