
Chapter 11

1.

logR +
K

logR
= A+

B

T

This can be rearranged to find

(logR)2 −
(
A+

B

T

)
(logR) +K = 0

This is a quadratic equation that can be solved numerically at any given temperature.
a) T = 77 K: logR = 2.372 so R = 236 Ω
b) T = 20 K: logR = 2.786 so R = 611 Ω
c) T = 1 K: logR = 7.7389 so R = 5.48× 107 Ω

2.

logR +
K

logR
= A+

B

T

Inserting each of the R and T values, we have three equations in three unknowns (A,B,K),
which can be solved to yield A = 2.08, B = 1.97, K = 1.09.

3. Positive charges drift to the right, so the right side of the strip is at a higher potential and
the voltmeter reads positive.

4.* a)

n =
IB

eVHz
=

(0.10 A) (0.036 T)
(1.602× 10−19 C) (8.4× 10−3 V) (1.5× 10−4 m)

= 1.78× 1022 m−3

b) Graphing B vs. VH one can find a slope of approximately 4.57 T/V. Thus

n =
IB

eVHz
=

(0.10 A) (4.57 T/V)
(1.602× 10−19 C) (1.5× 10−4 m)

= 1.90× 1022 m−3

5. E = V/L = QdT/dx so

Q =
V

LdT
dx

=
12.6× 10−6 V

(0.10 m)
(

10 K
0.1 m

) = 1.26× 10−6 V/K
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6. From the table 2.43 mV corresponds to 47.2◦C.

7. Over most of the table 0.05 mV corresponds to a temperature change of 1◦C. Therefore for
0.01◦C there corresponds a voltage difference of (0.01) (0.05 mV) = 5× 10−7 V.

8.* a) Al is short one electron relative to Si, so it is p-type.
b) Se has two more outer electrons than Si, so it is n-type.
c) In is short one electron relative to Si, so it is p-type.

9. The angle between the solar
rays and a vector normal to
the surface A is λ. Therefore
Φ = Φ0 cosλ.

A

λ

a) On the equinox λ = 33◦ so Φ = Φ0 cos (33◦) = .839Φ0

On the winter solstice λ = 33◦ + 23◦ = 56◦ and Φ = Φ0 cos (56◦) = .559Φ0

On the summer solstice λ = 33◦ − 23◦ = 10◦ and Φ = Φ0 cos (10◦) = .985Φ0

b) On the equinox λ = 50◦ so Φ = Φ0 cos (50◦) = .643Φ0

On the winter solstice λ = 50◦ + 23◦ = 73◦ and Φ = Φ0 cos (73◦) = .292Φ0

On the summer solstice λ = 50◦ − 23◦ = 27◦ and Φ = Φ0 cos (27◦) = .891Φ0

c) On the equinox λ = 60◦ so Φ = Φ0 cos (60◦) = .500Φ0

On the winter solstice λ = 60◦ + 23◦ = 83◦ and Φ = Φ0 cos (83◦) = .122Φ0

On the summer solstice λ = 60◦ − 23◦ = 37◦ and Φ = Φ0 cos (37◦) = .799Φ0

These results indicate why there is generally a larger temperature gradient (as a function of
latitude) in winter than summer.

10. We require 109 W = 0.3 (200 W/m2)A, so rearranging

A =
109 W

0.3 (200 W/m2)
= 1.67× 107 m2

which corresponds to a square array 4.1 km on a side.
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11.* In general I = I0 (exp(eV/kT )− 1) and in Example 11.3

I0 =
I

exp(eV/kT )− 1
∼= 18.16µA

a)

I =
(
18.16 × 10−6A

)(
exp

(
0.200 eV

(8.617× 10−5 eV/K) (250 K)

)
− 1

)
= 0.195 A = 195 mA

b)

I =
(
18.16 × 10−6A

)(
exp

(
0.200 eV

(8.617× 10−5 eV/K) (300 K)

)
− 1

)
= 0.0416 A = 41.6 mA

c)

I =
(
18.16 × 10−6A

)(
exp

(
0.200 eV

(8.617× 10−5 eV/K) (500 K)

)
− 1

)
= 0.00187 A = 1.87 mA

12. a) Using E = Eg for the conduction band we have E − EF = Eg − Eg/2 = Eg/2. Then

exp [(E − EF ) /kT ] = exp [Eg/2kT ]

With Eg ∼= 1 eV for a semiconductor (and larger for an insulator), and kT ∼= 1
40 eV at room

temperature, we can see that Eg � 2kT and so we can neglect the −1 term in the Fermi-Dirac
factor. This leaves

FFD ∼=
1

exp [Eg/2kT ]
= exp [−Eg/2kT ]

b)

FFD ∼= exp [−Eg/2kT ] = exp
(
− 6 eV

(8.617× 10−5 eV/K) (293 K)

)
= 6.2× 10−104

c)

FFD ∼= exp [−Eg/2kT ] = exp
(
− 1.1 eV

(8.617× 10−5 eV/K) (293 K)

)
= 1.2× 10−19

d) For one mole of silicon there are 6 × 1023 atoms, so there are still plenty of conduction
electrons available.

13.* a) Replacing ε0 with κε0 we have for the new Bohr radius

a′0 =
4πε0κh̄2

me2 = 11.7a0 = 11.7
(
5.29× 10−2 nm

)
= 0.619 nm

b) This value is about 2.6 times the lattice spacing. This is consistent with the fact that the
electron is very weakly bound, and hence the doped silicon should have a higher electrical
conductivity than pure silicon.
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14. From Bohr theory

E0 =
me4

2h̄2 (4πε20)2

Replacing ε0 with κε0 we have a new Rydberg energy

E ′0 =
me4

2h̄2 (4πε20)2
κ2

=
E0

κ2 =
13.6 eV
(11.7)2 = 0.099 eV

This is more than a factor of ten less than the band gap for pure silicon, again consistent with
the idea that the doped version has a higher electrical conductivity.

15. Answers will vary depending on algorithms used, but students should find that using a second-
order method results in some improvement.

16.* a) I = I0 (exp (eV/kT )− 1). To find the value of V for the diode, use the loop rule: V +IR = 6
V, so V = 6 V −IR. We are given that I0 = 1.75µA and I = 80 mA with T = 293 K.

I

I0
= 45714 = exp (eV/kT )

ln 45714 =
eV

kT
=
e (6 V− IR)

kT

Solving for R we find

R =
6 V − (kT ln 45714) /e

I
=

6 V − (8.617× 10−5 eV/K) (293 K) /e
0.080 A

= 74.7 Ω

b)
VR = IR = (0.080 A) (74.7 Ω) = 5.98 V

17. a) 8 = exp (eV/kT )− 1 so

V =
kT ln 9
e

=
(8.617× 10−5 eV/K) (293 K) (ln 9)

e
= 55.5 mV

b) −0.8 = exp (eV/kT )− 1 so

V =
kT ln 0.2

e
=

(8.617× 10−5 eV/K) (293 K) (ln 0.2)
e

= −40.6 mV

18.

E =
hc

λ
=

1240 eV · nm
650 nm

= 1.91 eV
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19.*

Eg =
hc

λ
=

1240 eV · nm
460 nm

= 2.70 eV

20. a) The total area is (7.5× 106) (3.5× 10−7 m)2 = 9.19 × 10−7 m2 so each side is the square
root of this or 0.959 mm.
b) The area of each transistor is now 10−14 m2, so the number is

N =
9.19× 10−7 m2

10−14 m2 = 9.19× 107

or a factor of 12 improvement.

21. From Problem 12 we have FFD ∼= exp [−Eg/2kT ].

Si at T = 0◦C: FFD ∼= exp
(
− 1.1 eV

(8.617× 10−5 eV/K) (273 K)

)
= 4.93× 10−21

Si at T = 75◦C: FFD ∼= exp
(
− 1.1 eV

(8.617× 10−5 eV/K) (348 K)

)
= 1.17× 10−16

Ge at T = 0◦C: FFD ∼= exp
(
− 0.67 eV

(8.617× 10−5 eV/K) (273 K)

)
= 4.27× 10−13

Ge at T = 75◦C: FFD ∼= exp
(
− 0.67 eV

(8.617× 10−5 eV/K) (348 K)

)
= 1.98× 10−10

The Fermi-Dirac factor is orders of magnitude higher in germanium, making the conduction
electron density too high. The result is a reverse-bias current that is too large. See Physics
Today December 1997 p. 38.

22. a) Energy is power multiplied by time:

E = Pt = (0.15) (200 W)
(
3.156× 107 s

)
= 9.47× 108 J

b) Converting we find 2.4× 1012 kW·h = 8.64× 1018 J. Then the area is

8.64× 1018 J
9.47× 108 J/m2 = 9.12× 109 m2

c) Using 2.5 times the area in (b) the fraction of the U.S. covered is

2.5 (9.12× 109 m2)
9× 1012 m2 = 0.0025

or one-fourth of one percent. See American Scientist July-August 1993, p. 368.
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23. From the diode equation the current is I = I0 exp (eV/kT )− 1. Then the ratio is

If
Ir

=
I0 exp (eVf/kT )− 1
I0 exp (eVr/kT )− 1

a)

At T = 77 K:
If
Ir

=
exp

(
1.50 eV

(8.617×10−5 eV/K)(77 K)

)
− 1

exp
(

−1.50 eV
(8.617×10−5 eV/K)(77 K)

)
− 1

= −1.5× 1098

At T = 273 K:
If
Ir

=
exp

(
1.50 eV

(8.617×10−5 eV/K)(273 K)

)
− 1

exp
(

−1.50 eV
(8.617×10−5 eV/K)(273 K)

)
− 1

= −4.9× 1027

At T = 340 K:
If
Ir

=
exp

(
1.50 eV

(8.617×10−5 eV/K)(340 K)

)
− 1

exp
(

−1.50 eV
(8.617×10−5 eV/K)(340 K)

)
− 1

= −1.7× 1022

At T = 500 K:
If
Ir

=
exp

(
1.50 eV

(8.617×10−5 eV/K)(500 K)

)
− 1

exp
(

−1.50 eV
(8.617×10−5 eV/K)(500 K)

)
− 1

= −1.3× 1015

b) The ratio changes fairly significantly as a function of temperature, which is something
diode designers must keep in mind.

24. a) An electron can be produced if the 1.1 eV band gap can be overcome. If we divide the
total energy available by the band gap energy, the maximum number of electrons that can be
produced is

N =
1.04× 106 eV

1.1 eV
= 9.45× 105

b) If the silicon is cooled well below room temperature, very few electrons will be in the
conduction band. At room temperature, however, enough electrons are in the conduction
band that additional current will be measured, tending to mask the gamma-ray signal.
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