Chapter 11

:A+§

log R
©8 +logR T

This can be rearranged to find

(log R)* — (A + ?) (logR)+ K =0

This is a quadratic equation that can be solved numerically at any given temperature.
a) T =77 K:log R =2.372s0 R =236 Q

b) T'=20 K: log R = 2.786 so R = 611 )

c) T=1K:logR=7.738) so R =5.48 x 107

K B
logR+ —— =A+ —
©8 +logR +T

Inserting each of the R and T values, we have three equations in three unknowns (A, B, K),
which can be solved to yield A =2.08, B =1.97, K = 1.09.

3. Positive charges drift to the right, so the right side of the strip is at a higher potential and
the voltmeter reads positive.

*4. a)

1B (0.10 A) (0.036 T) .
- - — 178 x 1
" GVHZ (1602 X 10_19 C) (84 X 10—3 V) (15 % 10_4 m) 78 x 10““ m

b) Graphing B vs. Vy one can find a slope of approximately 4.57 T/V. Thus

o _ 1B _ (0.10 A) (4.57 T/V) 00 % 107 ?
eVigz  (1.602 x 1019 C) (1.5 x 10~ m)

5. E=V/L =QdT/dx so

Vo 126x10°V
= = =126 % 1070 V/K
L (0.10 m) (3$%)

0.1 m

Q
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From the table 2.43 mV corresponds to 47.2°C.

Over most of the table 0.05 mV corresponds to a temperature change of 1°C. Therefore for
0.01°C there corresponds a voltage difference of (0.01) (0.05 mV) =5 x 1077 V.

a) Al is short one electron relative to Si, so it is p-type.
b) Se has two more outer electrons than Si, so it is n-type.

c¢) In is short one electron relative to Si, so it is p-type.

The angle between the solar A
rays and a vector normal to
the surface A is A. Therefore
d = dycos .

i

a) On the equinox A = 33° so & = ¥ cos (33°) = .8399,

On the winter solstice A = 33° 4 23° = 56° and ® = @, cos (56°) = .559P,
On the summer solstice A = 33° — 23° = 10° and ® = P cos (10°) = .985P,
b) On the equinox A\ = 50° so & = P, cos (50°) = .643P

On the winter solstice A = 50° 4 23° = 73° and ¢ = P cos (73°) = .2929,
On the summer solstice A = 50° — 23° = 27° and ® = ¥, cos (27°) = .8919,
¢) On the equinox A = 60° so & = P cos (60°) = .500P

On the winter solstice A = 60° + 23° = 83° and ® = P cos (83°) = .122P,
On the summer solstice A = 60° — 23° = 37° and ® = ¥, cos (37°) = .7999,

These results indicate why there is generally a larger temperature gradient (as a function of
latitude) in winter than summer.

We require 10 W = 0.3 (200 W/m?) A, so rearranging

10° W
A= =1.67 x 10" m?
0.3(200 W/m?) e

which corresponds to a square array 4.1 km on a side.
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In general I = I (exp(eV/kT) — 1) and in Example 11.3

I
Iy = >~ 18.16 uA
° 7 exp(eV/kT) — 1 5164

a)

0.200 eV
I=(18.1 107°A —1)=0195A =1 A
(18.16 x 10°%4) (eXp ((8.617 % 105 eV /K) (250 K)) ) 0-195 95 m

b)

0.200 eV
I = (18.16 x 107°A ~1] =0.0416 A =41.6 mA
(1816 ) <eXp ((8.617 X 10-7 eV/K) (300 K)) ) -

c)

0.200 eV
I=(18.16 x 107°A —1) =0.00187 A =1. A
(18.16 x 107°A) (eXp <(8.617 x 10-5 oV /K) (500 K)) ) 0.00187 8T m

a) Using E = E, for the conduction band we have £ — Ep = E, — E,/2 = E;/2. Then
exp [(E — Er) /kT)| = exp [E,/2kT]

With E, = 1 eV for a semiconductor (and larger for an insulator), and kT = o= eV at room
temperature, we can see that £, > 2kT" and so we can neglect the —1 term in the Fermi-Dirac
factor. This leaves

1
Frp® —— —exp|—E,/2kT
P exp [E,/2kT) exp [ = Fy /2KT]
b)
~ B 6 eV B 104
Frp = exp [=Ey2kT] = exp < (8.617 x 10— eV /K) (293 K)) = 0210
c)
1.1eV
Frp = exp [=E, /2kT] = exp [ — 19 %1019
rp = oxp = Ey [2T] = exp ( (8.617 x 10-5 oV/K) (293 K)) <10

d) For one mole of silicon there are 6 x 10** atoms, so there are still plenty of conduction
electrons available.

a) Replacing ey with key we have for the new Bohr radius

Aregrh’
ah = 0% = 11.7a = 11.7(5.29 x 1072 nm) = 0.619 nm
me

b) This value is about 2.6 times the lattice spacing. This is consistent with the fact that the
electron is very weakly bound, and hence the doped silicon should have a higher electrical
conductivity than pure silicon.
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From Bohr theory

me4

T oop? (47e2)?

Replacing ¢y with xey we have a new Rydberg energy

Ey

1 Ey 136¢eV
= = P 0,099 eV
2h° (4med)" k2 K (11.7)

This is more than a factor of ten less than the band gap for pure silicon, again consistent with
the idea that the doped version has a higher electrical conductivity.

Answers will vary depending on algorithms used, but students should find that using a second-
order method results in some improvement.

a) I = Iy (exp (eV/kT) —1). To find the value of V for the diode, use the loop rule: V4+IR = 6
V,s0V =6V —IR. We are given that Iy = 1.75 pA and [ = 80 mA with 7" = 293 K.

I
= 45714 = exp (eV/kT)
0
In45714 = eV _e(6V-IR)

KT kT
Solving for R we find

6V — (kTInd5714) /e 6V — (8.617 x 107° eV/K) (293 K) /e
R = - =747 Q
I 0.080 A

Vi = IR = (0.080 A) (7T4.7 Q) = 5.98 V

a) 8 =exp (eV/kT) — 1 so

ETIn9 (8617 x 107° eV/K) (293 K) (In9)
e e

b) —0.8 = exp (eV/kT) — 1 so

V= = 55.5 mV

o FTIn02 (8617 x 107 eV/K) (293 K) (In0.2)

€ €

= —40.6 mV

he 1240 eV - nm
F=—=—"—" " =191
A 650 nm I eV
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*19.

he 1240 eV - nm
F,=—=——" " =270eV
g A 460 nm ¢

20. a) The total area is (7.5 x 10%) (3.5 x 1077 m)® = 9.19 x 10~ m? so each side is the square
root of this or 0.959 mm.

b) The area of each transistor is now 107'* m?, so the number is

919 % 1077 m?

_ 7
s =919 %10

or a factor of 12 improvement.

21. From Problem 12 we have Frp = exp [—E,/2kT.

1.1 eV
Siat T'=0°C:  Fpp — 4.93 x 107
He FD = XD ( (8.617 x 107 eV/K) (273 K ) 8
1.1 eV
Siat T'=75°C:  Fpp = 1.17 x 1071
e Fp =GP < (8.617 x 105 oV/K) (348 K ) .
0.67 eV
Geat T =0°C:  Fpp = =4.27 x 107"
el = P < (8617 x 105 eV/K) (273 K ) 8

0.67 eV
(8.617 x 102 eV/K) (348 K)
The Fermi-Dirac factor is orders of magnitude higher in germanium, making the conduction

electron density too high. The result is a reverse-bias current that is too large. See Physics
Today December 1997 p. 38.

Ge at T = 75°C: Frp = exp (— ) =198 x 1071

22. a) Energy is power multiplied by time:

E = Pt =(0.15) (200 W) (3.156 x 107 s) = 9.47 x 10° ]

b) Converting we find 2.4 x 102 kW-h = 8.64 x 10'® J. Then the area is

8.64 x 10 J

_ 9 2
047 x 108 Jjm2 12> m

c¢) Using 2.5 times the area in (b) the fraction of the U.S. covered is

2.5(9.12 x 10° m?)
9 x 1012 m?

= 0.0025
or one-fourth of one percent. See American Scientist July-August 1993, p. 368.
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23. From the diode equation the current is I = Iyexp (eV/kT) — 1. Then the ratio is

Iy Iyexp(eVy/kT) -1

I, Iyexp(eV,/kT) —1

1.50 eV’
1 exXp 5 o -1
AMT=77TK: = (ot o) = —1.5x 10%
A S T —
8.617x10-5 eV/K)(77 K)
1.50 eV
I exp S 1
At T =273 K: Tf (x N A LACIERS i) - = —4.9 x 107
r &Xp ( 8.617x10-5 eV/K)(273 K ) 1
1.50 eV
T exp S 1
AtT=340K: = ( CODAT VAR K i) - — —1.7 x 10%
roexXp ( 8.617x10-5 eV/K) (340 K ) 1
1.50 eV
I, exp =
ALT =500 K = ( (EHTAD - VRGN K ) 1 = 1.3 x 10"
roexXp ((8.617><10*5 V/K) (500 K)) —1

b) The ratio changes fairly significantly as a function of temperature, which is something
diode designers must keep in mind.

24. a) An electron can be produced if the 1.1 eV band gap can be overcome. If we divide the

total energy available by the band gap energy, the maximum number of electrons that can be
produced is

1.04 x 106 eV
N =220 O 945 % 107
T

b) If the silicon is cooled well below room temperature, very few electrons will be in the
conduction band. At room temperature, however, enough electrons are in the conduction
band that additional current will be measured, tending to mask the gamma-ray signal.
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