
Chapter 15

1.* From Newton’s second law we have for a pendulum of length L

F = mGg sin θ = mIa = mIL
d2θ

dt2

d2θ

dt2
=
mGg

mIL
sin θ ∼= mGg

mIL
θ

where we have made the small angle approximation sin θ ∼= θ. This is a simple harmonic
oscillator equation with solution θ = θ0 cos(ωt) where θ0 is the amplitude and the angular
frequency is

ω =
√
mGg

mIL

The period of oscillation is

T =
2π
ω

= 2π

√
mIL

mGg

Therefore two masses with different ratios mI/mG will have different small-amplitude periods.

2.

∆ν =
gHν

c2 =
(9.80 m/s2) (4× 105 m) (108 s−1)

(2.998× 108 m/s)2 = 4.36× 10−3 Hz

3.

∆ν
ν

= −GM
c2

( 1
r1
− 1
r2

)
= − GM

r1r2c2 (r2 − r1) =
GM

r1r2c2 (r1 − r2)

Use r1 − r2 = H and let r1
∼= r2 = r. From classical mechanics g = GM/r2, so

∆ν =
gHν

c2

4.

∆T
T

= −GM
c2

( 1
r1
− 1
r2

)
We use r2 = 6378 km and r1 = 6378 km +10 km = 6388 km.

∆T
T

= −(6.673× 10−11 m3 · kg−1 · s−2) (5.98× 1024 kg)
(2.998× 108 m/s)2

( 1
6388× 103 m

− 1
6378× 103 m

)
= 1.09× 10−12

which is the same as in the example, to three significant digits.
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5. The distance d is the sum of the radii of the earth’s orbit and Venus’s orbit (assuming circular
orbits).

d = 149.6× 109 m + 108.2× 109 m = 258.8× 109 m

The round-trip time is

t =
2d
c

=
2 (258.8× 109 m)
2.998× 108 m/s

= 1726.5 s

The percent change is therefore

200× 10−6 s
1726.5 s

(100 %) = 1.16× 10−5 %

6.* If the photon “falls” at a rate g then during the time taken to travel a distance x = 40, 000
km it has fallen a distance d :

d =
1
2
gt2 =

1
2

(
9.80 m/s2

)( 4× 107 m
2.998× 108 m/s

)2

= 8.72 cm

7. Using the mass and radius of the sun

∆ν
ν

=
GM

rc2 =
(6.673× 10−11 m3 · kg−1 · s−2) (1.99× 1030 kg)

(6.96× 108 m) (2.998× 108 m/s)2 = 2.123× 10−6

The wavelength is affected by the same factor, so the redshift of the given wavelength is

∆λ =
(
2.123× 10−6

)
(550 nm) = 1.17× 10−3 nm

8. As in the previous problem

∆ν
ν

=
GM

rc2 =
(6.673× 10−11 m3 · kg−1 · s−2) (5× 1030 kg)

(104 m) (2.998× 108 m/s)2 = 0.371

∆λ = (0.371) (550 nm) = 204 nm

9. Let us assume that g is constant over this short distance. Using E = hν we find

∆ν =
gHν

c2 =
gHE

c2h
=

(9.80 m/s2) (22.5 m) (14.4× 103 eV)
(2.998× 108 m/s)2 (4.136× 10−15 eV · s) = 8541 Hz

The percentage change is

8541 Hz
(14.4× 103 eV) / (4.136× 10−15 eV · s) (100 %) = 2.45× 10−13 %
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10.

rs =
2GM
c2 =

2 (6.673× 10−11 m3 · kg−1 · s−2) (7.35× 1022 kg)
(2.998× 108 m/s)2 = 1.09× 10−4 m

11.*
rs =

2GM
c2 =

2 (6.673× 10−11 m3 · kg−1 · s−2) (1.90× 1027 kg)
(2.998× 108 m/s)2 = 2.82 m

12.*

T =
hc3

8πkGM
=

(6.626× 10−34 J · s) (2.998× 108 m/s)3

8π (1.381× 10−23 J/K) (6.673× 10−11 m3 · kg−1 · s−2) (1.99× 1030 kg)
= 3.87× 10−7 K

13. Rearranging the formula given in the previous problem,

M =
hc3

8πkGT
=

(6.626× 10−34 J · s) (2.998× 108 m/s)3

8π (1.381× 10−23 J/K) (6.673× 10−11 m3 · kg−1 · s−2) (293 K)
= 2.63×1021 kg

which is about
2.63× 1021 kg
1.99× 1030 kg

= 1. 32× 10−9

solar masses.

rs =
2GM
c2 =

2 (6.673× 10−11 m3 · kg−1 · s−2) (2.63× 1021 kg)
(2.998× 108 m/s)2 = 3.91× 10−6 m

14.* Set the change in the photon’s energy equal to the change in gravitational potential energy:

∆E = h∆ν = −GMm

r1
−
(
−GMm

r2

)
= −GMm

( 1
r1
− 1
r2

)
where M is the mass of the earth and m is the equivalent mass of the photon. Now m =
E/c2 = hν/c2, so

h∆ν = −GMhν

c2

( 1
r1
− 1
r2

)
∆ν
ν

= −GM
c2

( 1
r1
− 1
r2

)

176



CHAPTER 15

15. Using the formula from the previous problem and recalling that the earth’s radius is 6378 km,

∆ν
ν

= −GM
c2

( 1
r1
− 1
r2

)
= −(6.673× 10−11 m3 · kg−1 · s−2) (5.98× 1024 kg)

(2.998× 108 m/s)2

( 1
6.678× 106 m

− 1
6.378× 106 m

)
= 3.127× 10−11

Therefore
∆ν =

(
3.127× 10−11

) (
294× 106 Hz

)
= 9.19× 10−3 Hz

16. g = GM/r2 which can be differentiated to give

dg = −2GM
r3 dr

For a small change let dg ∼= |dg| and dr ∼= ∆r = 3 m. Also notice that the distance from the
center of the earth is 6.378× 106 m +3× 105 m = 6.678× 106 m. Then

∆g ∼= 2 (6.673× 10−11 m3 · kg−1 · s−2) (5.98× 1024 kg)
(6.678× 106 m)3 (3 m) = 8.04× 10−6 m/s2

This is about 10−7g, so it is a very small effect.

17. If we use λ = h/mc for a relativistic particle of mass m , we have

λ =
h

mc
= πrs =

2πGm
c2

Solving for m we have

m =

√
hc

2πG
=

√√√√(6.626× 10−34 J · s) (2.998× 108 m/s)
2π (6.673× 10−11 m3 · kg−1 · s−2)

= 2.18× 10−8 kg

The Planck energy is

EPl = mc2 =
(
2.18× 10−8 kg

) (
2.998× 108 m/s

)2
= 1.96× 109 J = 1.22× 1028 eV

18. a) The combination of G, h, and c that has the right units is

λPl =

√
Gh

c3 =

√√√√(6.673× 10−11 m3 · kg−1 · s−2) (6.626× 10−34 J · s)
(2.998× 108 m/s)3 = 4.05× 10−35 m

b)

λ =
h

mc
=

hc

mc2 =
1240× 10−9 eV ·m

1.22× 1028 eV
= 1.02× 10−34 m

which is the same order of magnitude as (a).

177



CHAPTER 15

19. The combination of constants that gives time is

tPl =

√
Gh

c5 =

√√√√(6.673× 10−11 m3 · kg−1 · s−2) (6.626× 10−34 J · s)
(2.998× 108 m/s)5 = 1.35× 10−43 s

The time for light to travel the Planck length is

t =
λPl

c
=

√
Gh

c5 = 1.35× 10−43 s

as we found in this problem.

20. As in Problem 15

∆ν
ν

= −GM
c2

( 1
r1
− 1
r2

)
= −(6.673× 10−11 m3 · kg−1 · s−2) (5.98× 1024 kg)

(2.998× 108 m/s)2

×
( 1

3.587× 107 m + 6.378× 106 m
− 1

6.378× 106 m

)
= 5.91× 10−10

Therefore
∆ν =

(
5.91× 10−10

) (
2× 109 Hz

)
= 1.18 Hz
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