
Chapter 2

1. For a particle Newton’s second law says ~F = m~a = m
[
d2x/dt2 î+ d2y/dt2 ĵ + d2z/dt2 k̂

]
.

Using Equation (2.1) and taking the necessary derivatives:

d2x′

dt2
=
d2x

dt2
d2y′

dt2
=
d2y

dt2
d2z′

dt2
=
d2z

dt2

Therefore

~F = m~a = m

[
d2x′

dt2
î+

d2x′

dt2
ĵ +

d2x′

dt2
k̂

]
= ~F ′

2. From Equation (2.1)

~p = m

[
dx

dt
î+

dy

dt
ĵ +

dz

dt
k̂

]
In a Galilean transformation

dx′

dt
=
dx

dt
− v dy′

dt
=
dy

dt

dz′

dt
=
dz

dt

Therefore

~p = m

[
dx′

dt
+ v

]
î+

dy′

dt
ĵ +

dz′

dt
k̂ 6= ~p′

However, because

~p′ = m

[
dx′

dt
î+

dy′

dt
ĵ +

dz′

dt
k̂

]
the same form is clearly retained, given the velocity transformation dx′/dt = dx/dt− v.

3. Using the vector triangle shown, the net
speed of the light coming toward mirror
D is

√
c2 − v2 and the same on the return

trip. Therefore the total time is

t2 =
distance

speed
=

2l2√
c2 − v2

Notice that sin θ = v/c, so θ = sin−1(v/c) ∼= v/c.

θ

v

c
c2 – v2

4. As in Problem 3, sin θ = v1/v2, so θ = sin−1(v1/v2) and v =
√
v2

2 − v2
1 .
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CHAPTER 2

5. When the apparatus is rotated by 90◦, the situation is equivalent, except that we have ef-
fectively interchanged l1 and l2. Interchanging l1 and l2 in Equation (2.3) leads to Equation
(2.4).

6.* Let n = the number of fringes shifted. From the analysis in the text

n =
c (∆t′ −∆t)

λ
=
v2 (l1 + l2)

c2 λ

Solving for v and noting that l1 + l2 = 22 m,

v = c

√
nλ

l1 + l2
=
(
3.00× 108 m/s

)√(0.005) (589× 10−9 m)
22 m

= 3.47 km/s

7.* Letting l1 → l1
√

1− β2 (where β = v/c) the text equation for t1 becomes

t1 =
2 l1

√
1− β2

c (1− β)
=

2 l1

c
√

1− β2

which is identical to t2 when l1 = l2, so ∆t = 0 as required.

8. Because the Lorentz transformations depend on c (and the fact that c is the same constant
for all inertial frames), different values of c would necessarily lead two observers to different
conclusions about (say) the order or positions of two spacetime events, in violation of Postulate
1.

9. Let an observer in S send a light signal along the +x-axis with speed c. According to the
Galilean transformations, an observer in S′ would measure the speed of the signal to be

dx′

dt
=
dx

dt
− v = c− v

Therefore the speed of light cannot be constant under the Galilean transformations.
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10. From the Principle of Relativity, we know that the correct transformation must be of the form
(assuming y = y′ and z = z′)

x = ax′ + bt′ x′ = ax− bt

The spherical wavefront equations give us

ct = (ac+ b) t′ ct′ = (ac− b) t

Substitute the second wavefront equation into the first:

ct = (ac+ b)(ac− b) t/c

c2 = (ac+ b)(ac− b) = a2c2 − b2

Now v is the speed of the origin of the x′-axis with respect to the x-axis . We can find that
speed by setting x′ = 0 which gives 0 = ax − bt, or v = x/t = b/a, or equivalently b = av.
Substituting this into the equation above for c2 yields

c2 = a2c2 − a2v2 = a2
(
c2 − v2

)
Solving for a:

a =
1√

1− v2

c2

= γ

This expression, along with b = av, can be substituted into the original expressions for x and
x′ to obtain

x = γ (x′ + vt′) x = γ (x− vt)
which in turn can be solved for t and t′ to complete the transformations.

11.* When v << c we find 1− β2 → 1, so

x′ =
x− βct√

1− β2
→ x− βct = x− vt

t′ =
t− βx/c√

1− β2
→ t− βx/c ∼= t

x =
x′ + βct′√

1− β2
→ x′ + βct′ = x′ + vt′

t =
t′ + βx′/c√

1− β2
→ t′ + βx′/c ∼= t′

12. a) Conversion 100 km/h = 27.77 m/s so

β = v/c = (27.77 m/s)/
(
3.00× 108 m/s

)
= 9.3× 10−8

b) β = v/c = (290 m/s)/ (3.00× 108 m/s) = 9.7× 10−7
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c) v = 2.3vsound = (2.3) (330 m/s) and

β = v/c = (2.3) (330 m/s) /
(
3.00× 108 m/s

)
= 2.5× 10−6

d) Conversion 27,000 km/h = 7500 m/s so

β = v/c = (7500 m/s)/
(
3.00× 108 m/s

)
= 2.5× 10−5

e) (25 cm/2 ns) = 1.25× 108 m/s so β = v/c = (1.25× 108 m/s)/ (3.00× 108 m/s) = 0.42
f) (10−14 m /0.35× 10−22 s) = 2.857× 108 m/s

β = v/c = (2.857× 108 m/s)/
(
3.00× 108 m/s

)
= 0.95

13. From the Lorentz transformations

∆t′ = γ
[
∆t− v∆x/c2

]
But ∆t′ = 0 in this case, so solving for v we find

v = c2∆t/∆x

Inserting the values ∆t = t2 − t1 = −a/2c and ∆x = x2 − x1 = a,

v = c2 (−a/2c) /a = −c/2
We conclude that the frame K’ travels at a speed c/2 in the −x-direction. Note that there is
no motion in the transverse direction.

14.* There is no motion in the transverse direction, so y = z = 3.5 m.

γ =
1√

1− β2
=

1√
1− 0.82

= 5/3

x = γ (x′ + vt′) =
5
3

(2 m + 0.8c (0)) = 10/3 m

t = γ
(
t′ + vx′/c2

)
=

5
3

(
0 + (0.8c) (2 m) /c2

)
= 8.9× 10−9 s

15. a)

t =
√
x2 + y2 + z2

c
=

√
(3 m)2 + (5 m)2 + (10 m)2

3.00× 108 m/s
= 3.86× 10−8 s

b) With β = 0.8 we find as in previous problems γ = 5/3. Then y′ = y = 5 m, z′ = z = 10 m,

x′ = γ (x− vt) =
5
3

(
3 m −

(
2.40× 108 m/s

)
(3.86× 10−8 s)

)
= −10.4 m

t′ = γ
(
t− vx/c2

)
=

5
3

[(
3.86× 10−8 s

)
−
(
2.40× 108 m/s

)
(3 m) /

(
3.00× 108 m/s

)2
]

= 51.0 ns

c) √
x′2 + y′2 + z′2

t′
=

√
(−10.4 m)2 + (5 m)2 + (10 m)2

51.0× 10−9 s
= 2.994× 108 m/s

which agrees with c to within rounding errors.
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16. Try setting ∆x′ = 0 = γ (∆x− v∆t). Thus

0 = ∆x− v∆t = a+ va/2c

Solving for v we find v = −2c, which is impossible. There is no such frame K′.

17. For the smaller values of β we use the binomial expansion γ =
(
1− β2

)−1/2 ∼= 1 + β2/2.
a) γ ∼= 1 + β2/2 = 1 + 4.3× 10−15 b) γ ∼= 1 + β2/2 = 1 + 4.7× 10−13

c) γ ∼= 1 + β2/2 = 1 + 3.1× 10−12 d) γ ∼= 1 + β2/2 = 1 + 3.1× 10−10

e) γ =
(
1− β2

)−1/2
= (1− 0.422)−1/2 = 1.10

f) γ =
(
1− β2

)−1/2
= (1− 0.952)−1/2 = 3.20

18. At the point of reflection the light has traveled a distance L + v∆t1 = c∆t1. On the return
trip it travels L− v∆t2 = c∆t2. Then the total time is

∆t = ∆t1 + ∆t2 =
2Lc

c2 − v2 =
2L/c

1− v2/c2

But from time dilation we know (with ∆t′ = proper time = 2L0/c)

∆t = γ∆t =
2L0/c√

1− v2/c2

Comparing these two results for ∆t we get

2L/c
1− v2

c2

=
2L0/c√

1− v2/c2

which reduces to
L = L0

√
1− v2/c2

19. With a contraction of 1%, L/L0 = 0.99 =
√

1− v2/c2. Thus

1− β2 = (0.99)2 = 0.9801

Solving for β, we find β = 0.14 or v = 0.14 c.

20. The round-trip distance is d = 40 ly. Assume the same constant speed v = βc for the entire
round trip. In the rocket’s reference frame the distance is only d′ = d

√
1− β2 . Then in the

rocket’s frame of reference

v =
distance

time
=

d′

40 y
=

40 ly
√

1− β2

40 y
= c

√
1− β2
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Rearranging
β =

v

c
=
√

1− β2

Solving for β we find β =
√

0.5 , or v =
√

0.5 c ∼= 0.71c. To find the elapsed time t on earth,
we know t′ = 40 y, so

t = γt′ =
1√

1− β2
40 y = 56.6 y

21.* In the muon’s frame t′ = 2.2µs, d′ = d
√

1− β2 where d = 9.5 cm. Thus

v =
d′

t′
=
d
√

1− β2

t′

Also v = βc, so

β =
v

c
=
d
√

1− β2

ct′

Now all quantities are known except β. Solving for β we find β = 1.4× 10−4.

22. Converting the speed to m/s we find 25,000 mi/h = 11,176 m/s. From tables the distance is
3.84× 108 m. In the earth’s frame of reference the time is the distance divided by speed, or

t =
d

v
=

3.84× 108 m
11, 176 m/s

= 34, 359 s

In the astronauts’ frame the time elapsed is t′ = t/γ = t
√

1− β2 . The time difference is

∆t = t− t′ = t− t
√

1− β2 = t
[
1−

√
1− β2

]
Evaluating numerically

∆t = 34, 359 s

1−
√√√√1−

(
11, 176 m/s

3.00× 108 m/s

)2
 = 2.4× 10−5 s

23. T ′ = γT0, so we know that

γ = 5/3 =
1√

1− v2/c2

Solving for v we get
v = 4c/5
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24. L = L0/γ so clearly γ = 2 in this case. Thus 2 = 1/
√

1− v2/c2 and solving for v we find
v =
√

3 c/2.

25. The clocks’ rates differ by a factor of γ = 1/
√

1− v2/c2 . Since β is very small we will use the
binomial theorem approximation γ ∼= 1 + β2/2. Then the time difference is

∆t = t− t′ = t− γt = t (γ − 1)

Using γ − 1 ∼= β2/2 and the fact that the time for the trip equals distance divided by speed,

∆t = t
(
β2/2

)
=

8× 106 m
375 m/s

(
375 m/s

3.00×108 m/s

)2

2
= 1.67× 10−8 s = 16.7 ns

26.* a) L′ = L/γ = L
√

1− v2/c2 = 3.58× 104 km
√

1− 0.942 = 1.22× 104 km
b) Earth’s frame:

t = L/v =
3.58× 107 m

(0.94) (3.00× 108 m/s)
= 0.127 s

Golf ball’s frame:
t′ = t/γ = 0.127 s

√
1− 0.942 = 0.0433 s

27. Spacetime invariant (see Section 2.9): c2∆t2 −∆x2 = c2∆t′ 2 −∆x′ 2. We know ∆x = 4 km,
∆t = 0, and ∆x′ = 5 km. Thus

∆t′2 =
∆x′ 2 −∆x2

c2 =
(5000 m)2 − (4000 m)2

(3.00× 108 m/s)2 = 1.0× 10−10 s2

and ∆t′ = 1.0× 10−5 s

28. Converting v = 120 km/h = 33.3 m/s. Now with c = 100 m/s, we have β = v/c = 0.333

γ =
1√

1− β2
=

1√
1− 0.3332

= 1.061

We conclude that the moving person ages 6.1% slower.

29. Converting v = 300 km/h = 83.3 m/s. Now with c = 100 m/s, we have β = v/c = 0.833

γ =
1√

1− β2
=

1√
1− 0.8332

= 1.81

So the length is L = L0/γ = 40/1.81 = 22.1 m
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30. Let subscript 1 refer to firing and subscript 2 to striking the target. Therefore we can see that
x1 = 1 m, x2 = 121 m, and t1 = 3 ns.

t2 = t1 +
distance

speed
= 3 ns +

120 m
0.98c

= 3 ns + 408 ns = 411 ns

To find the four primed quantities we can use the Lorentz transformations with the known
values of x1, x2, t1, and t2. Note that with v = 0.8c, γ =

√
1− v2/c2 = 5/3.

t′1 = γ
(
t1 − vx1/c

2
)

= 0.56 ns

t′2 = γ
(
t2 − vx2/c

2
)

= 147 ns

x′1 = γ (x1 − vt1) = 0.47 m
x′2 = γ (x2 − vt2) = 37.3 m

31.* Velocity addition

ux =
u′x + v

1 + vu′x/c2

a)

ux =
0.7c+ 0.8c

1 + (0.7c)(0.8c)/c2 =
1.5c
1.56

= 0.96c

b)

ux =
−0.7c+ 0.8c

1 + (−0.7c)(0.8c)/c2 =
0.1c
0.44

= 0.23c

32. Velocity addition

u′x =
ux − v

1− vux/c2

with v = −0.8c and ux = 0.8c.

u′x =
0.8c− (−0.8c)

1− (−0.8c)(0.8c)/c2 =
1.6c
1.64

= 0.976c

33. Conversion: 110 km/h = 30.556 m/s and 140 km/h = 38.889 m/s. Let ux = 30.556 m/s and
v = −38.889 m/s. Our premise is that c = 100 m/s. Then by velocity addition

u′x =
ux − v

1− vux/c2 =
30.556 m/s − (−38.889 m/s)

1− (−38.889 m/s) (30.556 m/s) / (100 m/s)2 = 62.1 m/s

By symmetry each observer sees the other one traveling at the same speed.
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34. From Example 2.5 we have

u =
c

n

1 + nv/c

1 + v/nc

For light traveling in opposite directions

∆u =
c

n

[
1 + nv/c

1 + v/nc
− 1− nv/c

1− v/nc

]

Because v/c is very small, use the binomial expansion:

1 + nv/c

1 + v/nc
= (1 + nv/c) (1 + v/nc)−1 ∼= (1 + nv/c) (1− v/nc) ∼= 1 + nv/c− v/nc

where we have dropped terms of order v2/c2. Similarly

1− nv/c
1− v/nc

∼= 1− nv/c+ v/nc

Thus

∆u ∼= c

n
[(1 + nv/c− v/nc)− (1− nv/c+ v/nc)] =

2v
n

(1− 1/n) = 2v
(
1− 1/n2

)
Evaluating numerically

∆u ∼= 2(5 m/s)
(

1− 1
1.332

)
= 4.35 m/s

35. Clearly the speed of B is just 0.60c. To find the speed of C use ux = 0.60c and v = −0.60c:

u′x =
ux − v

1− vux/c2 =
0.60c− (−0.60c)

1− (−0.60c)(0.60c)/c2 = 0.88c

36.* We can ignore the 400 km, since it’s small compared with the earth to moon distance of
3.82 × 108 m. The rotation rate is ω = 100 s−1 × 2π rad = 2π × 102 rad/s. Then the speed
across the moon’s surface is

v = ωR =
(
2π × 102 rad/s

) (
3.82× 108 m

)
= 2.40× 1011 m/s

37.* Classical:
t =

4205 m
0.98c

= 1.43× 10−5 s

Then
N = N0 exp

[
− (ln 2) t/t1/2

]
= 14.6 or about 15 muons

Relativistic:

t′ = t/γ =
1.43× 10−5 s

5
= 2.86× 10−6 s

N = N0 exp
[
− (ln 2) t/t1/2

]
= 2710 muons

Because of the exponential nature of the decay curve, a factor of five (shorter) in time results
in many more muons surviving.
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38. The circumference of the fixed point’s rotational path is 2πRe cos(39◦), where Re = radius of
earth = 6378 km. Thus the circumference of the path is 31,143 km. the rotational speed of
that point is v = 31, 143 km/24 h = 1298 km/h = 360.46 m/s. The observatory clock runs
slow by a factor of

γ =
1√

1− β2
∼= 1 + β2/2 = 1 + 7.22× 10−13

In 41.2 h the observatory clock is slow by (41.2 h) (7.22× 10−13) = 2.9746 × 10−11 h = 107
ns. In 48.6 h it is slow by (48.6 h) (7.22× 10−13) = 3.5089× 10−11 h = 126 ns.
The Eastward-moving clock has a ground speed of 31,143 km/41.2 h = 755.9 km/h = 210.0
m/s and thus has a net speed of 210.0 m/s + 360.5 m/s = 570.5 m/s. For this clock

γ =
1√

1− β2
∼= 1 + β2/2 = 1 + 1.81× 10−12

and in 41.2 hours it runs slow by (41.2 h) (1.81× 10−12) = 7.4572× 10−11 h = 268 ns.
The Westward-moving clock has a ground speed of 31,143 km/48.6 h = 640.8 km/h = 178.0
m/s and thus has a net speed of 360.5 m/s - 178.0 m/s = 182.5 m/s. For this clock

γ =
1√

1− β2
∼= 1 + β2/2 = 1 + 1.85× 10−13

and in 48.6 hours it runs slow by (48.6 h) (1.85× 10−13) = 8.991× 10−12 h = 32 ns.
So our prediction is that the Eastward-moving clock is off by 107 ns - 269 ns = −162 ns,
while the Westward-moving clock is off by 126 ns - 32 ns = 94 ns. These results are correct
for special relativity but do not reconcile with those in the table in the text, because general
relativistic effects are of the same order of magnitude.

39. The derivations of Equations (2.31) and (2.32) in the beginning of Section 2.10 will suffice.
Mary receives signals at a rate ν ′ for t′1 and a rate ν ′′ for t′2. Frank receives signals at a rate
ν ′ for t1 and a rate ν ′′ for t2.

40. T = t1 + t2 = L/v + L/c+ L/v − L/c = 2L/v

Frank sends signals at rate ν, so Mary receives νT = 2νL/v signals.
T ′ = t′1 + t′2 = 2L/γv
Mary sends signals at rate ν, so Frank receives νT ′ = 2νL/γv signals.

41. s2 = x2 + y2 + z2 − c2t2

Using the Lorentz transformation

s2 = γ2(x′ + vt′)2 + y′ 2 + z′ 2 − c2γ2(t′ − vx′/c2)2

= x′ 2γ2
(
1− v2/c2

)
+ y′ 2 + z′ 2 − c2t′ 2γ2

(
1− v2/c2

)
= x′ 2 + y′ 2 + z′ 2 − c2t′ 2 = s2

10
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42.* For a timelike interval ∆s2 < 0 so ∆x2 < c2∆t2. We will prove by contradiction. Suppose
that there is a frame K’ is which the two events were simultaneous, so that ∆t′ = 0. Then by
the spacetime invariant

∆x2 − c2∆t2 = ∆x′ 2 − c2∆t′ 2 = ∆x′ 2

But since ∆x2 < c2∆t2, this implies ∆x′ 2 < 0, which is impossible because ∆x′ is real.

43. As in Problem 42, we know that for a spacelike interval ∆s2 > 0 so ∆x2 > c2∆t2. Then in a
frame K′ in which the two events occur in the same place, ∆x′ = 0 and

∆x2 − c2∆t2 = ∆x′ 2 − c2∆t′ 2 = −c2∆t′ 2

But since ∆x2 > c2∆t2 we have c2∆t′ 2 < 0, which is impossible because ∆t′ is real.

44. In order for two events to be simultaneous in K′,
the two events must lie along the x′ axis, or along
a line parallel to the x′ axis. The slope of the x′ axis
is β = v/c, so v/c = slope = c∆t/∆x. Solving
for v, we find v = c2∆t/∆x. Since the slope of the
x′ axis must be less than one, we see that ∆x > c∆t,
so s2 = ∆x2 − c2∆t2 > 0 is required.

βSlope =

c t

x

(x1, t1) 
(x2, t2) 

x ′

45. a) and b) To find the equation of the line use the Lorentz
transformation. With t′ = 0 we have t′ = 0 = γ (t− vx/c2)
or, rearranging, ct = vx/c = βc. Thus the graph of ct vs. x
is a straight line with a slope of β.

c t

x

t 1′

t 2′

t ′

t 3′

t 4′

βSlope =
 = 0

c) Now with t′ a constant the Lorentz transformation
gives t′ = γ (t− vx/c2). Again we solve for ct:
ct = βx− ct′/γ = βx+constant. This line is parallel to
the t′ = 0 line we found earlier but shifted by the constant.

d) As we saw in (c), the lines are parallel.
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46. The diagram is shown. Note that there is only one
worldline for light, and it bisects both the x, ct axes
and the x′, ct′ axes. The x′ and ct′ axes are not
perpendicular. This can be seen as a result of the
Lorentz transformations, since x′ = 0 defines the
ct′ axis and t′ = 0 defines the x′ axis.

Lightlines

t ′ = 0

x ′ = 0c t

x

47. The diagram shows that the events A and B that occur at the same time in K occur at
different times in K′.

1
2

c t c t ′

x ′

x

48.* The Doppler shift gives

λ = λ0

√
1− β
1 + β

With numerical values λ0 = 670 nm and λ = 540 nm, solving this equation for β gives
β = 0.212. The astronaut’s speed is v = βc = 6.4× 107 m/s. Instead of a red light violation
the astronaut gets a speeding ticket.

49. According to the fixed source (K) the signal and receiver move at speeds c and v, respectively,
in opposite directions, so their relative speed is c + v. The time interval between receipt of
signals is ∆t = λ/(c+ v) = 1/ν0. By time dilation

∆t′ = ∆t/γ =
λ

γ(c+ v)

Using λ = c/v0 and γ = 1/
√

1− v2/c2 we find

∆t′ =
c
√

1− v2/c2

ν0(c+ v)
=

√
1− β2

ν0(1 + β)
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ν ′ = 1/∆t′ =
ν0(1 + β)√

1− β2
= ν0

√
1 + β

1− β

50. For a fixed source and moving receiver, the length of the wave train is cT +vT . Since n waves
are emitted during time T ,

λ =
cT + vT

n

and the frequency ν = c/λ is
ν =

cn

cT + vT

As in the text n = ν0T
′
0 and T ′0 = T/γ. Therefore

ν =
cν0T/γ

cT + vT
=
ν0

√
1− β2

1 + β
= ν0

√
1− β
1 + β

51.*

ν = ν0

√
1− β
1 + β

= (400 Hz)

√
1− 0.92
1 + 0.92

= 82 Hz

3 vv 2 1

52. The Doppler shift function

ν ′ = ν0

√
1− β
1 + β

is the rate at which #1 and #2 receive signals from each
other and the rate at which #2 and #3 receive signals
from each other. But for signals between #1 and #3 the rate is

ν ′′ = ν ′
√

1− β
1 + β

= ν0
1− β
1 + β

3

1

2

53. The Doppler shift function

ν ′ = ν0

√
1− β
1 + β

is the rate at which #1 and #2 receive signals from
each other and the rate at which #2 and #3 receive
signals from each other.

13
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As for #1 and #3 we will assume that these plumbing vans are non-relativistic (v << c).
Otherwise it would be necessary to use the velocity addition law and apply the transverse
Doppler shift. From the figure we see that

ν ′ =
1

t0 + (t2 − t1)

Now ν0 = 1/t0 and

t2 − t1 = 2x/c =
2vt0 cos θ

c

With an angle of 45◦ cosθ = 1/
√

2 and

ν ′ =
1

1/ν0 + (2v cos θ)/cν0
=

ν0

1 + (2v cos θ) /c
=

ν0

1 +
√

2 v/c

54.* The Doppler shift to higher wavelengths is (with λ0 = 589 nm)

λ = 700 nm = λ0

√
1 + β

1− β
Solving for β we find β = 0.171. Then

t = v/a =
(0.171) (3.00× 108 m/s)

25 m/s2 = 2.052× 106 s

which is 23.75 days. One problem with this analysis is that we have only computed the time
as measured by earth. We are not prepared to handle the non-inertial frame of the spaceship.

55.* Let the instantaneous momentum be in the x-direction and the force be in the y-direction.
Then d~p = ~F dt = γmd~v and d~v is also in the y-direction. So we have

~F = γm
d~v

dt
= γm~a

56. The magnitude of the centripetal force is

γma = γm
v2

r

for circular motion. For a charged particle F = qvB, so

qvB = γm
v2

r

or, rearranging

qBr = γmv = p

r =
p

qB

When the speed increases the momentum increases, and thus for a given value of B the radius
must increase.

14
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57.

~p = γm~v =
m~v√

1− v2/c2

~F =
d~p

dt

The momentum is the product of two factors that contain the velocity, so we apply the product
rule for derivatives:

~F = m
d

dt

 m~v√
1− v2/c2


= m

 d~v/dt√
1− v2/c2

+ ~v
d

dt

 1√
1− v2/c2


= γm~a+m~v

(
−1

2

)(
−2v
c2

)
γ3dv

dt

= γm~a+ γ3m~a

(
v2

c2

)

= γ3m~a

[
1− v2

c2 +
v2

c2

]
= γ3m~a

58. From the previous problem F = γ3ma. We have a = 1019 m/s2 and m = 1.67× 10−27 kg.
a)

γ =
1√

1− v2/c2
=

1√
1− 0.012

= 1.00005

F = (1.00005)3
(
1.67× 1−27 kg

) (
1019 m/s2

)
= 1.67× 10−8 N

b) As in (a) γ = 1.005 and F = 1.70× 10−8 N
c) As in (a) γ = 2.294 and F = 2.02× 10−7 N
d) As in (a) γ = 7.0888 and F = 5.95× 10−6 N

59. p = γmv, with

γ =
1√

1− v2/c2
=

1√
1− 0.922

= 2.5516

m =
p

γv
=

10−16 kg ·m/s
(2.5516) (0.92) (3.00× 108 m/s)

= 1.42× 10−25 kg
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60.* The initial momentum is

p0 = γmv =
1√

1− 0.52
m (0.5c) = 0.57735mc

a) p/p0 = 1.01

1.01 =
γmv

0.57735mc
γv = (1.01) (0.57735 c) = .58312 c

Substituting for γ and solving for v,

v =
[

1
(.58312 c)2 +

1
c2

]−1/2

= 0.504 c

b) Similarly

v =
[

1
(.63509 c)2 +

1
c2

]−1/2

= 0.536 c

c) Similarly

v =
[

1
(1.1547 c)2 +

1
c2

]−1/2

= 0.756 c

61. 230-MeV protons have K = 230 MeV and E = K + E0 = 1168 MeV. Then

p =

√
E2 − E2

0

c
= 696.0 MeV/c

Converting to SI units

p = 696.0 MeV/c
(

1.60× 10−13 J
MeV

)(
c

3.00× 108 m/s

)
= 3.71× 10−19 kg ·m/s

From Problem 56

B =
p

qr
=

3.71× 10−19 kg ·m/s
(1.60× 10−19 C) (15 m)

= 0.155 T

62. Initially Mary throws her ball with velocity (primes showing the measurements are in Mary’s
frame):

u′Mx
= 0 u′My

= −u0

After the elastic collision, the signs on the above expressions are reversed, so the change in
momentum as measured by Mary is

∆p′M =
mu0√

1− u2
0/c

2
− −mu0√

1− u2
0/c

2
=

2mu0√
1− u2

0/c
2
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Now for Frank’s ball, we know uFx = 0 and uFy = u0. The velocity transformations give for
Frank’s ball as measured by Mary

u′Fx = −v u′Fy = u0

√
1− v2/c2

To find γ for Frank’s ball, note that u′Fx + u′Fy = v2 + u2
0 (1− v2/c2)

Then

γ =
1√

1− u′2F/c2
=

1√
1− v2/c2 − u2

0 (1− v2/c2) /c2
=

1√
(1− u2

0/c
2) (1− v2/c2)

Using p′ = γmu′ along with the reversal of velocities in an elastic collision, we find

∆p′F = γm (−u0)
√

1− v2/c2 − γmu0

√
1− v2/c2 = −2γmu0

√
1− v2/c2

=
−2mu0

√
1− v2/c2√

(1− u2
0/c

2) (1− v2/c2)
=

−2mu0√
(1− u2

0/c
2)

Finally

∆p′ = ∆p′F + ∆p′M =
−2mu0 + 2mu0√

(1− u2
0/c

2)
= 0

as required.

63. To prove by contradiction, suppose that K = 1
2γmv

2. Then

K = E − E0 = γmc2 −mc2 = (γ − 1)mc2 =
1
2
γmv2

This implies γ − 1 = v2/2c2, or γ = 1 + v2/2c2, which is clearly false.

64. The source of the energy is the internal energy associated with the change of state, commonly
called that latent heat of fusion Lf . Let m be the mass equivalent of 2 grams and M be the
mass of ice required.

m =
E

c2 =
LfM

c2

Rearranging

M =
mc2

Lf
=

(0.002 kg) (3.00× 108 m/s)2

334× 103 J/kg
= 5.39× 108 kg

65. In general K = (γ − 1)mc2, so γ = 1 +K/mc2. For 9 GeV electrons:

γ = 1 +
9000 MeV
0.511 MeV

= 1.76× 104
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Then from the definition of γ we have

β =

√
1− 1

γ2 =

√√√√1− 1
(1.76× 104)2 = 1− 1.6× 10−9

Thus v = (1− 1.6× 10−9) c = 0.9999999984 c. For 3.1 GeV positrons:

γ = 1 +
3100 MeV
0.511 MeV

= 6068

β =

√√√√1− 1
(6068)2 = 1− 1.4× 10−8

Thus v = (1− 1.4× 10−8) c = 0.999999986 c.

66. Note that the proton’s mass is 938 MeV/c2. In general K = (γ − 1)mc2, so γ = 1 +K/mc2.
Then from the definition of γ we have

β =

√
1− 1

γ2

For the first section K = 0.750 MeV, and

γ = 1 +
0.750 MeV
938 MeV

= 1.00080

β =

√
1− 1

γ2 = β =

√
1− 1

1.000802 = 0.040

Thus v = 0.04 c at the end of the first stage. For the other stages the computations are similar,
and we tabulate the results:

K (GeV) γ β
0.400 1.43 0.71

8 9.53 0.994
150 160.9 0.99998
1000 1067 0.9999996

67.* a)

p = γmu =
(511 keV/c2) (0.01 c)√

1− 0.012
= 5.11 keV/c

E = γmc2 =
(511 keV/c2) (c2)√

1− 0.012
= 511.03 keV

K = E − E0 = 511.03 keV − 511.00 keV = 30 eV

The results for (b) and (c) follow with similar computations and are tabulated:

β p (keV/c) E (keV) K (keV)
0.1 51.4 513.6 2.6
0.9 1055 1172 661
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68.* E = 2E0 = γE0 so γ = 2. Then

β =

√
1− 1

γ2 =
√

3
2

and v =
√

3 c/2.

69. For a constant force, work = kinetic energy change = Fd = mc2/4, because 25% = 1/4.

d =
mc2

4F
=

(80 kg) (3.00× 108 m/s)2

4 (8 N)
= 2.25× 1017 m = 23.8 ly

70. E = K + E0 = 2E0 + E0 = 3E0 = γE0, so γ = 3. Then

β =

√
1− 1

γ2 = β =

√
1− 1

32 =
2
√

2
3
∼= 0.943

Thus v ∼= 0.943 c.

71. a) E = K + E0 = 0.1E0 + E0 = 1.1E0 = γE0, so γ = 1.1. Then

β =

√
1− 1

γ2 = β =

√
1− 1

1.12 = 0.417

and v = 0.417 c.
b) As in (a) γ = 2 and v =

√
3 c/2.

c) As in (a) γ = 11 and v = 0.996 c.

72.

K = E − E0 =
E0√

1− β2
− E0

K + E0 =
E0√

1− β2

Rearranging

1− β2 =
(

E0

K + E0

)2

β2 = 1−
(

E0

K + E0

)2

β =

√√√√1−
(

E0

K + E0

)2
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73. Using E = γmc2 along with p = γmv we see that γ = E/c2 = p/mv. Solving for v/c we find
β = v/c = pc/E.

74.* It is the same for protons, electrons, or any particle.

K = (γ − 1)mc2 = 1.01
(1

2
mv2

)
= 0.505mc2β2

γ − 1 =
1√

1− β2
− 1 = 0.505β2

Rearranging and solving for β, we find β = 0.114 or v = 0.114 c.

75. Converting 0.1 ounce = 2.835× 10−3 kg.

E = mc2 =
(
2.835× 10−3 kg

) (
3.00× 108 m/s

)2
= 2.55× 1014 J

Eating 10 ounces results in a factor of 100 greater mass-energy increase, or 2.55 × 1016 J.
This is a small increase compared with your original mass-energy, but it will tend to increase
your weight; depending on how they are prepared, peanuts generally contain about 100 kcal
of food energy per ounce.

76. The energy needed equals the kinetic energy of the spaceship.

K = (γ − 1)mc2 =

 1√
1− β2

− 1

mc2

=
(

1√
1− 0.32

− 1
)(

104 kg
) (

3.00× 108 m/s
)2

= 4.35× 1019 J

or 4.35% of 1021 J.

77.* Up to Equation (2.56) the derivation in the text is complete. Then using the integration by
parts formula ∫

x dy = xy −
∫
y dx

and noting that in this case x = u and y = γu, we have∫
u d(γu) = γu2 −

∫
γu du

Thus

K = m
∫ γu

0
u d(γu) = γmu2 −m

∫
γu du

= γmu2 −m
∫ u√

1− u2/c2
du
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Using integral tables or simple substitution

K = γmu2 +mc2
√

1− u2/c2
∣∣∣∣u
0

= γmu2 +mc2
√

1− u2/c2 −mc2

=
mc2 +mc2 (1− u2/c2)√

1− u2/c2
−mc2 = γmc2 −mc2

78. Converting 0.11 cal/g/◦C = 460 J/kg/◦C = cV (specific heat). From thermodynamics the
energy ∆E used to change the temperature by ∆T is mcV ∆T . Thus

∆E = (1000 kg) (460 J/(kg ·◦ C) (0.5◦C) = 2.30× 105 J

∆m =
∆E
c2 =

2.30× 105 J
(3.00× 108 m/s)2 = 2.56× 10−12 kg

The source of this energy is the internal energy of the arrangement of atoms and molecules
prior to the collision.

79.

Eb = [2mp + 2mn −m (He)] c2

= [2 (1.007276 u) + 2(1.008665 u) − 4.001505 u] c2
(931.494 MeV

c2 · u
)

= 28.3 MeV

80.

∆E = [mn −mp −me] c2

= [1.008665 u − 1.007276 u − 0.000549 u] c2
(931.494 MeV

c2 · u
)

= 0.782 MeV

81.*
E = K + E0 = 1 TeV + 938 MeV ∼= 1 TeV

p =

√
E2 − E2

0

c
=

√
(1 TeV + 938 MeV)2 − (938 MeV)2

c
= 1.000938 TeV/c

γ =
E + E0

E0
=

1.000938 TeV
0.000938 TeV

= 1067

β2 = 1− 1
γ2 = 1− 8.78× 10−7

β =
√

1− 8.78× 10−7 ∼= 1− 4.39× 10−7

v = βc ∼= 0.999999561 c
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82. a) E =
√
p2c2 + E2

0 =
√

(30 GeV)2 + (511 keV)2 ∼= 30.0 GeV

K = E − E0 = 30.0 GeV

b) E =
√
p2c2 + E2

0 =
√

(30 GeV)2 + (0.938 GeV)2 = 30.015 GeV

K = E − E0 = 30.015 GeV − 0.938 GeV = 29.08 GeV

83.* E = K + E0 = 200 MeV +106 MeV = 306 MeV

p =

√
E2 − E2

0

c
=

√
(306 MeV)2 − (106 MeV)2

c
= 287.05 MeV/c

γ =
E

E0
=

306 MeV
106 MeV

= 2.887

β =

√
1− 1

γ2 = 0.938 so v = 0.938 c

84. a) In the inertial frame moving with the negative charges in wire 1, the negative charges in
wire 2 are stationary, but the positive charges are moving. The density of the positive charges
in wire 2 is thus greater than the density of negative charges, and there is a net attraction
between the wires.
b) By the same reasoning as in (a), note that the positive charges in wire 2 will be stationary
and have a normal density, but the negative charges are moving and have an increased density,
causing a net attraction between the wires.
c) There are two facts to be considered. First, (a) and (b) are consistent with the physical
result being independent of inertial frame. Second, we know from classical physics that two
parallel wires carrying current in the same direction attract each other. That is, the same
result is achieved in the “lab” frame.

85.* As in the solution to Problem 21 we have

β =
v

c
=
d
√

1− β2

ct′

where d is the length of the particle track and t′ the particle’s lifetime in its rest frame. In
this problem t′ = 8.2×10−11 s and d = 24 mm. Solving the above equation we find β = 0.698.
Then

E =
E0√

1− β2
=

1672 MeV√
1− .6982

= 2330 MeV
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86.

F =
dp

dt
=

d

dt
(γmv) =

d

dt

mv (1− v2

c2

)−1/2


= mγ
dv

dt
− mv

2
γ3
(
− 2v
c2

)
dv

dt

= mγ
dv

dt

[
1 +

v2γ2

c2

]
= mγ

dv

dt

[
1 +

v2/c2

1− v2/c2

]

= mγ
dv

dt

[
1

1− v2/c2

]
= mγ3dv

dt
= m

dv

dt

1

(1− v2/c2)3/2

87.* The number n received by Frank at ν ′ is half the number sent by Mary at that rate, or νL/γv.
The detected time of turnaround is

t =
n

ν ′
=

νL/γv

ν
√

(1− β) / (1 + β)
=

L
√

1 + β

γv
√

1− β =
L (1 + β)

v
=
L

v
+
L

c

Similarly, the number n′ received by Mary at ν ′ is

n′ = ν ′
T ′

2
= ν

√
1− β
1 + β

L

γv
=
νL (1− β)

v

Her turnaround time is T ′/2 = L/γv.

88. For Frank t2 = T − t1 = L/v − L/c

# signals = ν ′′t2 = ν

√
1 + β

1− β
(
L

v
− L

c

)
=
νL

γv

Total number received =
νL

γv
+
νL

γv
=

2νL
γv

Mary’s age =
total number received

ν
=

2L
γv

For Mary t′2 = T ′ − t′1 = L/γv

# signals = ν ′′t′2 = ν

√
1 + β

1− β
L

γv
=
νL

v
(1 + β)

Total number received =
νL

v
(1− β + 1 + β) =

2νL
v

Frank’s age =
total number received

ν
=

2L
v
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89. a) From Table 2.1

number =
νL

v
(1− β) =

(52 y−1) (4 ly)
0.8 c

(1− 0.8) = 52

b)

t1 =
L

v
+
L

c
=

4 ly
0.8 c

+
4 ly
c

= 9 y

number = ν ′t1 =
νL

v

√
1− β2 = 156

c) Frank:

ν ′′t′2 =
νL

v

√
1− β2 = 156

so the total is 156 + 156 = 312.
Mary: number = 2νL/v = 520

d) Frank: T = 2L/v = 10 y Mary: T ′ = 2L/γv = 6 y
e) From part (c) 520 weeks = 10 years and 312 weeks = 6 years, which checks with (d).

90. a) K = E + E0 = 200E0 so K = 199E0 = 199 (511 keV) = 102 MeV
b) γ = 200

β =

√
1− 1

γ2 = 0.9999875

v = 0.9999875 c

c)

p =

√
E2 − E2

0

c
=

√
(200× 511 keV)2 − (511 keV)2

c
= 102 MeV/c

91. For the proton

p = γmu =
1√

1− 0.92

(
938 MeV/c2

)
(0.9 c) = 1940 MeV/c

For the electron

E =
√
p2c2 + E2

0 =
√

(1940 MeV)2 + (0.511 MeV)2 = 1940 MeV

γ =
E

E0
=

1940 MeV
0.511 MeV

= 3797

β =

√
1− 1

γ2 =

√
1− 1

37972 =
√

1− 6.94× 10−8 ∼= 1− 3.97× 10−8

v =
(
1− 3.97× 10−8

)
c
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b) For the proton

K = (γ − 1)E0 =
(

1√
1− 0.92

− 1
)

(938 MeV) = 1214 MeV

For the electron
γ =

K + E0

E0
=

1214 MeV + 0.511 MeV
0.511 MeV

= 2377

β =

√
1− 1

γ2 =

√
1− 1

23772 =
√

1− 1.77× 10−7 ∼= 1− 8.85× 10−8

v =
(
1− 8.85× 10−8

)
c

92. In the frame of the decaying K0 meson, the pi mesons must recoil with equal speeds in opposite
directions in order to conserve momentum. In that reference frame the available kinetic energy
is 498 MeV −2 (140 MeV) = 218 MeV. The pi mesons share this equally, so each one has a
kinetic energy of 109 MeV in that frame. The speed of each pi meson can be found:

γ =
K + E0

E0
=

109 MeV + 140 MeV
140 MeV

= 1.779

u =

√
1− 1

γ2 c = 0.827 c

The greatest and least speeds in the lab frame are obtained when the pi mesons are released
in the forward and backward directions. Then by the velocity addition laws:

vmax =
0.9 c+ 0.827 c

1 + (0.9) (0.827)
= 0.990 c

vmin =
0.9 c− 0.827 c

1− (0.9) (0.827)
= 0.285 c
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