Chapter 3

1. The required field is homogeneous within the desired region and decreases in magnitude to
zero as rapidly as possible outside that region. The magnitude of the field is B = E/vy. The
best design is an electromagnet with flat, parallel pole faces that are large compared with the
distance between them. But no matter what the design, it is impossible to eliminate edge
effects.

2. el =evB KB Gin)

B=E/v=(2x10° V/m)/(2 x 106 m/s) = 0.10 T :

3. Assume the speed is exact. Non-relativistically use the energy eV = %mv2

mv?  (9.1094 x 1073 kg) (2.00 x 107 m/s)”

V=" 7= 2(1.6022 x 1019 C)

=11371V

Relativistically eV = K = (y — 1)mc?

v —

511 keV
e

] =1141.0 V
\/1 2.00x107 m/s )
29979><108 m/s

The results differ by about 4 volts, or about 0.34%. Relativity is required only if that level of
precision is needed.

*4. eE = evB so E=vB = (5.0 x 10 m/s) (1.3 x 1072 T) = 6.50 x 10* V/m
- eIy (L 2_1<6E) LN eEr
Y= 3% T\ vo)]  2\m /) \w/) = 2mu}

1.602 1 19 1 4 2
_ (1.602 x 10712 C) (6.50 x 10* V/m) (0.02 m)* =0.1452 x 102 m =9.15 cm

2(9.109 x 10-31 kg) (5.0 x 106 m/s)?

-

(@) (b)
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*9.

10.

CHAPTER 3

At terminal velocity the net force is zero, so Fy = fu, = mg and v, = mg/ f.

mg mg
Vy = — =
! f 6rnr

(4 3) g 2gpr*
Vy = —TToTr e
! 3 P 6mnr 9n

UAS:
r=3/=
\ 29

4
m = p (volume) = §7rp1”3

Solving for r

a)
nuy (1.82 x 1075 kg -m~t - s71) (1.3 x 1073 m/s)
"N 2gp \l 2 (9.80 m/s?) (900 kg/m?) I
b)
4 4
m=pV = cwpr® = - (900 kg/m®) (347 x 1076 m)’ = 1.58 x 107 kg
3 3
c)
mg  (1.58 x 10713 kg) (9.80 m/s?) 9
= M9 —119x 107k
= 1.3 % 10-3 m/s 9> 107" ke/s
Lyman:
1 —1
A= R (1= )| = Ra' = (1096776 % 107 ™) = 91.2
Balmer:
1 1N\ -1 7 -1\
A= [RH (22 . 2)} = 4R;" = 4(1.096776 x 10" m™") " = 364.7 nm
d = (400 mm—)"' = 2.5 um and A = dsinf

in first order. Also tanf = y/z so

= rtanf = (2.5 m) tan [sin_l()\/d)} Light
Grating
fed: 656.5
y = (2.5 m) tan {sin1 (M)] = 68.0 cm
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Blue-green:
486.3
y = (2.5 m) tan {sim_1 (25()0;1:2)] =49.6 cm
Violet: 434.9
y = (2.5 m) tan {sin_1 (nm)] =44.1 cm
2500 nm
11. d = (420 mm~')"" = 2.381 yum A = 656.5 nm for red

For n = 1 (first order) we have nA = dsinf so § = sin"'(\/d)

656.5 nm

=z tanf = (2. t in~! (
y = xtan (2.5 m) tan {sm 5381 m

)] — 717 cm

Similarly for n = 2 we find y = 165.3 ¢cm and for n = 3 we find y = 368.0 cm. Therefore the
separations are: between n = 1 and n = 2, Ay = 165.3 cm —71.7 cm = 93.6 cm; between

n=2and n =3, Ay = 368.0 cm —165.3 cm = 202.7 cm.

12. a) To get a charge of +1 with three quarks requires two charges of +2e/3 and one of charge

—e/3.

b) To get a charge of zero we could have either two +e/3 and one —2¢/3 or one +2¢/3 and
two —e/3. At this point in the text there is no reason to prefer either choice (the latter turns

out to be correct).

13. a) 2808 2.120;’ m-K )69 mm

b

) 2808 2913015 mR 589 um
c) o 2.898 ;ég;m K =1.16 um
b

) T 220 T()}g;m R osesx 107K
c) B 2.83;3021?0_391' K 35K
d) 288 x100m-K o0 g

1m
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2898 x 1078 m-K

T =142 x 107" K
204 m <10
P oT} T <1900 K)4
0 P=P—t=(—""") P,=199 P,
B ord 0 1T T g0k ) 0 0

The power increases by a factor of 19.9.

Let hc/ kT = x. For A >> he/kT we have x << 1. Then using a Taylor series

:132

emzl—i-x—i-?—i-...%“l—i-x

because © << 1. Then ¢* — 1 = z and

_2nc*h/N° | 2mc*h 2w Ph ART 2mekT

A o~
er —1 \x N he A\

2808 x 103 m- K
Amax - 3000 K = 966 nm

which is in the near infrared.

The graph is a characteristic Planck law curve with a maximum at A = 966 nm (see Problem
17).

a) Numerical integration of the Z(\, T") function shows that approximately 8.1% of the radiated
power is between 400 nm and 700 nm. Details of the calculation are:

%1077 he 71077 4.796 x 10~°
2ch _ TN AN = (374 x 10716 / 2B X ) A5 an
e 4%10-7 exp< )ka) ( % ) 4x10-7 eXP A

= 3.71 x 10> W/m?

That is the power per unit area emitted over visible wavelengths. Over all wavelengths we

know the power per unit area is R = ¢T* = 4.59 x 105 W/m?. Therefore the fraction emitted

in the visible is
3.7128 x 10° W/m2

= 0.081
4.59 x 105 W /m?
b) Using computed numerical intensity values
Z(400 nm,T')
——= = 0.073
Z(966 nm, T')
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Z(700 nm, T)

= =0.754
Z(966 nm, T")

In this limit exp (he/AET) >> 1 so

2rc*h h
Z()\,T)§Lexp (— ¢ >

Ao \kT

The exponential goes to zero faster than A°, so the intensity approaches zero in this limit.

20.

21.

*22.

a) At this temperature the power per unit area is
R=0oT"= (568 x 10" W-m™2-K) (293 K)! = 419 W/m?
For the basketball, a sphere of radius r = 12.5 cm, we get
P =R (4mr?) = (419 W/m?) (47) (0.125 m)* = 82.3 W
b) At this temperature the power per unit area is
R=0oT"=(568x 10" W-m™2-K) (310 K)! = 525 W/m?

For the human body assume a rectangular solid roughly 1.7 m by 0.3 m by 0.2 m, so the net
area of the six surfaces is 2[(1.7 m) (0.3m) + (1.7 m) (0.2 m) + (0.3 m) (0.2 m)] = 1.82 m?.
Then

P =525 W/m* (1.82 m?)

or about 1000 W. Numerical values will vary depending on estimates of the human body size.

2.898 x 107 m - K
Amax = 0K =9.35 pum

Taking derivatives

Oy a (mm:) 827@&__ n’n? (mm)
oz~ o "L oz2 — 12 "M\L

Substituting these values into the wave equation produces

1 0% . /nmx n?n? | /nrx
028t28m< L >_ T Sm( L > =0

2 2,22
Fa T o
ot? L2

where Q = nhe/L.
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Let r = ,/nZ + n2 + n? be the radius of a three-dimensional number space with the n; the
three components of that space. Then let dN be the number of allowed states between r and
r + dr. This corresponds to the number of points in a spherical shell of number space, which
is

dN = ; (47rr2) dr

where we have used the fact that 47r? dr is the “volume” of the shell (area 477 by thickness
dr), and the 1/8 is due to the fact that only positive numbers n; are allowed, so only 1/8 of
the space is available. Therefore

or r = 2Lv/c. Then from this dr = (2L/c) dv. Putting everything together:

1 9 T 4 7w /2Lv\? 2L A P12
dN = g (4’/T7" ) dr = §T dr = 5 (C) Tdy = 03 dv
From the diagram at right we see that the N L

average x-component of the velocity (c) of
electromagnetic radiation within the cavity is

\an25in9d0

/2 (¢ cosO) 2mr? sin 6 dO
&2 202 sin 6 do

(cz) =

Letting u = cos 6 we have
¢l udu _c

= T 2

On average only one-half of the photons are traveling to the right. Thus the mean velocity of
photons traveling to the right is ¢/4. Therefore

power = (intensity) (area) = gdU (AA)

For classical oscillators the Maxwell-Boltzmann distribution gives
n(E) = Aexp (—E/kT) = Aexp (—(GF)
where £ = nhyv and § = 1/kT. The mean energy is

Yoo En(E) Y52, nhy exp (=fnhv)
Solon(E)  Xaleexp (—fnhy)
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CHAPTER 3

Notice that
— ln Z exp (—fnhv)

Now letting = = exp (—Bhv) we see that by Taylor series
Zexp —Bnhv)=1+z+2>+..=(1—-2)"

— 0 1 0 hv exp (—Bhv
E:%ln(l—x) :—%ln( x)zl—exp<(—6hu))
— hv
" exp (hv/kT) —1
Using the result of Problem 23 (along with a factor of 2 for two photon polarizations) we can
see that

4T, hv 8rhy3/c?

—_ V pu—

3 exp(hv/kT)—1  exp(hv/kT) —1

To change from U to Z requires the factor ¢/4 (Problem 24), and changing from a frequency

distribution requires a factor ¢/\* (because with v = ¢/ we have |dv| = (c/ )\2> d\). Putting
these together

U, T)=2

8mh/\? 2mc’h 1
TOT) = ST e 2me
exp (hv/kET) —1)\* 4 N’ exp (he/AKT) — 1
*26.
energy per photon = hv = (6.626 x 1073 J - s) (107.7 x 10° s’1> =714x107% ]
1 photon
4 _ 29
(5.0 x 10 J/s) A 106 ] — 7.00 x 10 photons/s
27. a)
energy per photon = hv = (6.626 x 107 J-s) (1100 x 10° s71) = 7.29 x 10~ J
1 photon 29
(150 J/s) X 10E ] 2.06 x 10%° photons/s
b)

3.00 x 10® m/s
8 x 10~ m

energy per photon = h% = (6.626 x 107 J - 5) < > =248 x 1077 J

1 photon
248 x 10717 ]

(150 J/s) = 6.05 x 10'® photons/s

1 photon 1 MeV
4 MeV 1.60 x 1013 ]

(150 J/s) = 2.34 x 10" photons/s
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28.
0 2.9 eV B 14
S T Amex 10 B ov.s I
he 1 |he
GVOZT—¢ S0 VOZe[A_Qb]
171240 eV - nm
9. he 1240 eV
c eV .- nm
N=—=—— =264
A 47 eV 64 nm
If the wavelength is halved (to A = 132 nm)
he 1240 eV - nm
K=——-¢=—"—4. = 4.
3 10} 132 om 7 eV 7 eV

30. Notice that hc/A = 2.34 eV > ¢, so photoelectrons will be produced.

19
(2 « 10-3 J/s) (1075> (1 photoelectron) ( 1eV ) <1.60 x 10 C) 855 A

2.34 eV 1.60 x 1019 J electron
31.
he 1240 eV - nm
¢ = )\—t T —— 5.39 eV
K=20eV =hv—2¢
K+ ¢ 2.0eV +539eV 15
T T 136X 10 B oy X107 Hz
32.
he 1240 eV - nm
00 ( ) ) 00 20 om eV

33. eVo1 = he/A1 — ¢ and eVyy = he/ Ay — ¢. Subtracting these equations and rearranging we find
(L) (3.00 x 108 m/s) (5 — o)
¢ A2 A . m/s 207 nm 260 nm

This is about 6% from the accepted value. For the work function we use the first set of data
(the second set should give the same result):

=440 x 1075 eV -5

he (440 x 107" eV - 5) (3.00 x 10° m/s)
A1 260 x 1072 m

—1.0eV =41¢eV
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34. For 400 nm:

he 1240 eV - nm ¢ 3.00x 10% m/s
F=—=——77+#¥/¥—"—=31 = — = =7 114H
A 400 nm 3.10 eV YT 400 nm 7:50 > 107 Hz
For 700 nm:
he 1240 eV - nm ¢ 3.00x 10% m/s
E=—=""" =~ —177eV =_ = =429 x 10" H
A 700 nm ¢ YT 700 nm % g
35.
124%10°V-m 124%x10%V-m
)\min - == = 0.041
% 30 kV 0-0413 nm
36.
1240 eV -
N he _1240eVomm o o 107 m

K 5x 1010 eV

A photon produced by bremsstrahlung is still an x ray, even though this falls outside the
normal range for x rays.

a7 1240 eV
eV -nm
38.
AN = i (1 —cosf)
mc
so at maximum cosf = —1 and
Q _ 2h _ 2hc _ 2 (1240 eV - nm) _ 0.16 x 10-°
A Adme me2h (511.0 keV) (530 nm)

This corresponds to A\ = 5 x 10712 m and therefore is not easily observed.

39. The maximum change in the photon’s energy is obtained in backscattering (# = 180°), so

1 —cosf =2 and A\ = 2h/mc = 4.853 x 107'2 m. The photon’s original wavelength was

B he B 1240 eV - nm

= = 0. 1 =31 1 —11
i 10000 oV 0.0310 nm 3.10 x 10 m

A

and the new wavelength is \' = A+ A\ = 3.586 x 10~ m. The electron’s recoil energy equals
the change in the photon’s energy, or
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he  he 1240 eV - nm 1240 eV - nm

K = —— — = —
A N 3.10 x 1072 nm  3.586 x 102 nm

= 5420 eV = 5.42 keV

40. Use the Compton scattering formula but with the proton’s mass:

h h he 1240 eV - nm
AA = e (Imeost) = o = 3 = Sasar Moy o2
41.
h hc 1240 eV - nm
Ae = — = = =1.32f

me  mc? 938.27 MeV o

The photon energy is
h
E= TC — 938 MeV
In principle this could be observed, but the energy requirements are high.
*42. AX \
U 0.004 = XC (1 —cos®) SO A = 250, (1 — cos )

A =250 (243 x 107 m) (1 - c0s30°) = 8.14 x 10~ m
A = 250 (2.43 x 10712 m) (1 —c0s90°) =6.08 x 107"° m

A =250 (2.43 x 1072 m) (1 —cos170°) =1.21 x 1077 m

43. By conservation of energy we know the electron’s recoil energy equals the energy lost by the
photon:

i he _he _he(N—)) _ hcAX
PN U U U U

Using A = A + A\
hc A\ hv A\ hv A\

AA+AN)  A+AN A1 +ANN

Conservation of p,:

h
pecosgb—l—ycos@:

h
PeCOS$ =+ —
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Conservation of p:
h
Pesing — —sinf =0
A
h
De SIN ¢ = v sin 0

Dividing equation (2) by equation (1)
2 sinf

tang = 3~
X—YCOS

Using X' = A+ = (1 — cos ) .
)\+%(1ch59)

tand) = h hcos 6
A )x—&-%(l—cos@)

Multiplying above and below by A {/\ + L (1 — cos 6)},
Asin 6

M sin 0 B
)\h+:1—2c(1 —cosf) — Ahcosl ()\4—%) (1 — cosf)

tan ¢ =

mc2

Trig identity: (sin€) /(1 — cos@) = cot(6/2)
1 0 1 6
cot | = | = ———cot | =
(2) =z )

tan ¢ A t
an — CO — =
A+ 2 1+ -

mc

Inverting
hv 0
cot ¢ = |} + W] tan <2>
44.
, hc
N=A4+A(1—cosb) = E%—&(l—cos@)

1240 eV -
= e (2.43 x 1073 nm) (1 —cos110°) = 5.03 pm

N e
700 x 103 eV +

h 1240 eV -
¢ OV 547 % 10° eV = 247 keV

El = — =
N 5.03 x 1073 nm

By conservation of energy
K. = E—FE' =700 keV —247 keV = 453 keV (agrees with K formula in the previous problem)

From Problem 43

k 110°
700 eV] an (2()) — 3.3845

hv 0
cot ¢ = l1+mc2] tan <2> = l1+ P11 oV
¢ =16.5°
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For = 90° we know N = X\ + \. = 2.00243 nm

AN\, 243x10°3
A Ae x M 1922 %1073 = 0.122%
A A 2 nm

E =2mc* = 2(938.3 MeV) = 1877 MeV

This energy could come from a particle accelerator.

a) To find the minimum energy consider the zero-momentum frame. Let E, be the energy of
the electron in that frame, and Ej is the rest energy of the electron. From conservation of
energy and momentum:

hv L} — E§
momentum: — =p, = ~——— or hv =\/E2? — E3
c ¢
energy: hv + E, = 3E or hv =3Fy — E,

Squaring and subtracting these two equations gives

5
0= —10E] + 6 E.Ey or Ee = 2 Eo

This tells us that for the transformation form the lab frame to the zero-momentum frame,
v =5/3 and v = 0.8¢. Then from the momentum equation we have in the zero-momentum

frame
25 F? 4
hy =4/ 90 —E§:§EO

In the lab the photon’s energy is obtained using a Doppler shift:

1+8 4. [1+08
hny = hwy| 2 = Z By, | — 4Fy = 2.04 MeV
Vb =T T3 108 - O ¢

b) The proton’s rest energy is Mc?. Now as in (a) we let the proton’s energy in the lab frame
be E, and conservation of momentum and energy give

momentum: hy =/ E2 — (Mc2)?

energy: hv + E, = 2E, + Mc?
Squaring and subtracting, we find

(Mc2)* 4 2E2% + 2Ey M c?

E =
P 2E’()“|—]\4C2

This is very close to E, = Mc? Therefore the zero-momentum and lab frames are equivalent,
and we conclude hvy,, = 2E, = 1.02 MeV.
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48. The maximum energy transfer occurs when 6 = 180° so that A\ = (h/mc)(1—cos ) = 2h/me.
By conservation of energy the kinetic energy of the electron is
he  he  he he

AN N A+AN
Multiplying through by A(A + A\) we find
A+ ANK = he(A 4+ AX) — hel = he AN
NEK 4+ XAMK — heAXN =0

This is a quadratic equation that with numerical values can be solved for A to find A =
1.20 x 107" m. Then

K=FE-F =

he 1.24 keV - nm
p="c_ — 104 keV
X 120 x 10-2 nm ¢

49. To find the asteroid mass m note that the earth (matter) would supply an equal mass m to
the process, so

GM?
2 2 — E
mc SRy
2 ) —11 13 leg—1 . o2 ) 1024 k 2
m:GME:(667><10 m° - kg s7%) (5.98 x O2 g) :1.04><1015kg
4Rpc? 4(6378 x 103 m) (3.00 x 108 m/s)

Then

C[3m]"Y" [3(1.04 x 10 kg)
B ~ \ 47 (5000 kg/m3)
which is pretty small. Evaluating the energy:

g GME _ (667x 107" m® kg! 5% (5.98 x 10* kg)® _ 87 % 107 ]
2R, 2 (6378 x 103 m) ‘

E 187 x 107 ]
nuclear arsenals 2000 (4.2 x 10%5 J)
There is a lot of energy in the annihilation process!

1/3
— =3.68 k
dmtp ) -

=92x 108

*50. For maximum recoil energy the scattering angle is § = 180° and ¢ = 0. Then as usual
AN = 2h/me. Using the result of Problem 43

AN/ , 2h/me , 2hv /mc?
— — — 1%
1+ AN 1+ 2h/meA 1 + 2hv/mc?

For the given value of K = 100 keV we can solve this equation:

" <1+ 2iw> _ 2 (hv)?

2 2

mce me
2 9 2K
(o) 7" = (13 () = K =0
This constitutes a quadratic equation in Ar which can be solved numerically to yield hv = 217

keV.
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51. See graph below.

Log A max
2L
Micro-
wave e— Background
-3
-4
IR
-5
-6
Visible — T
-7
uv

-8 | ! ! ! ! Loa T
5 9

52. a) For 6 = 180° we have X" — X\ = 2h/mc. Therefore

,  hc he
TN A+ 2
b) With A = h¢/E we find
he 1 1 2 -
[ _ _ ( ) = 71.9 keV
he o on — 120 =\ 750905 eV | 511000 eV )
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