
Chapter 3

1. The required field is homogeneous within the desired region and decreases in magnitude to
zero as rapidly as possible outside that region. The magnitude of the field is B = E/v0. The
best design is an electromagnet with flat, parallel pole faces that are large compared with the
distance between them. But no matter what the design, it is impossible to eliminate edge
effects.

E

v

X B (in)
2. eE = evB

B = E/v = (2× 105 V/m)/(2× 106 m/s) = 0.10 T

3. Assume the speed is exact. Non-relativistically use the energy eV = 1
2mv

2

V =
mv2

2e
=

(9.1094× 10−31 kg) (2.00× 107 m/s)2

2 (1.6022× 10−19 C)
= 1137.1 V

Relativistically eV = K = (γ − 1)mc2

V =

 1√
1−

(
2.00×107 m/s

2.9979×108 m/s

)2
− 1


[

511 keV
e

]
= 1141.0 V

The results differ by about 4 volts, or about 0.34%. Relativity is required only if that level of
precision is needed.

4.* eE = evB so E = vB = (5.0× 106 m/s) (1.3× 10−2 T) = 6.50× 104 V/m

y =
1
2
at2 =

1
2

(
F

m

)(
l

v0

)2

=
1
2

(
eE

m

)(
l

v0

)2

=
eEl2

2mv2
0

=
(1.602× 10−19 C) (6.50× 104 V/m) (0.02 m)2

2 (9.109× 10−31 kg) (5.0× 106 m/s)2 = 9. 1452× 10−2 m = 9.15 cm

5.
FB

Ff

Fg

FB

FE

Ff

Fg

(a) (b)
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6. At terminal velocity the net force is zero, so Ff = fvt = mg and vt = mg/f .

7.*
vt =

mg

f
=

mg

6πηr
m = ρ (volume) =

4
3
πρr3

vt =
(4

3
πρr3

)(
g

6πηr

)
=

2gρr2

9η

Solving for r

r = 3
√
ηvt
2gρ

8. a)

r = 3
√
ηvt
2gρ

= 3

√√√√(1.82× 10−5 kg ·m−1 · s−1) (1.3× 10−3 m/s)
2 (9.80 m/s2) (900 kg/m3)

= 3.47µm

b)

m = ρV =
4
3
πρr3 =

4
3
π
(
900 kg/m3

) (
3.47× 10−6 m

)3
= 1.58× 10−13 kg

c)

f =
mg

vt
=

(1.58× 10−13 kg) (9.80 m/s2)
1.3× 10−3 m/s

= 1.19× 10−9 kg/s

9.* Lyman:

λ =
[
RH

(
1− 1
∞2

)]−1

= R−1
H =

(
1.096776× 107 m−1

)−1
= 91.2 nm

Balmer:

λ =
[
RH

( 1
22 −

1
∞2

)]−1

= 4R−1
H = 4

(
1.096776× 107 m−1

)−1
= 364.7 nm

10. d = (400 mm−1)−1 = 2.5µm and λ = d sin θ
in first order. Also tan θ = y/x so
y = x tan θ = (2.5 m) tan

[
sin−1(λ/d)

]
x

yθLight

Grating

Screen

Red:
y = (2.5 m) tan

[
sin−1

(656.5 nm
2500 nm

)]
= 68.0 cm
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Blue-green:

y = (2.5 m) tan
[
sin−1

(486.3 nm
2500 nm

)]
= 49.6 cm

Violet:
y = (2.5 m) tan

[
sin−1

(434.2 nm
2500 nm

)]
= 44.1 cm

11. d = (420 mm−1)−1 = 2. 381µm λ = 656.5 nm for red
For n = 1 (first order) we have nλ = d sin θ so θ = sin−1(λ/d)

y = x tan θ = (2.5 m) tan
[
sin−1

(656.5 nm
2381 nm

)]
= 71.7 cm

Similarly for n = 2 we find y = 165.3 cm and for n = 3 we find y = 368.0 cm. Therefore the
separations are: between n = 1 and n = 2, ∆y = 165.3 cm −71.7 cm = 93. 6 cm; between
n = 2 and n = 3, ∆y = 368.0 cm −165.3 cm = 202. 7 cm.

12. a) To get a charge of +1 with three quarks requires two charges of +2e/3 and one of charge
−e/3.

b) To get a charge of zero we could have either two +e/3 and one −2e/3 or one +2e/3 and
two −e/3. At this point in the text there is no reason to prefer either choice (the latter turns
out to be correct).

13. a)

λmax =
2.898× 10−3 m ·K

4.2 K
= 0.69 mm

b)

λmax =
2.898× 10−3 m ·K

293 K
= 9.89 µm

c)

λmax =
2.898× 10−3 m ·K

2500 K
= 1.16µm

14. a)

T =
2.898× 10−3 m ·K

10−14 m
= 2.898× 1011 K

b)

T =
2.898× 10−3 m ·K

10−9 m
= 2.898× 106 K

c)

T =
2.898× 10−3 m ·K

670× 10−9 m
= 4325 K

d)

T =
2.898× 10−3 m ·K

1 m
= 2.898× 10−3 K
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e)

T =
2.898× 10−3 m ·K

204 m
= 1.42× 10−5 K

15.*
P1

P0
=
σT 4

1

σT 4
0

so P1 = P0
T 4

1

T 4
0

=
(1900 K

900 K

)4

P0 = 19.9 P0

The power increases by a factor of 19.9.

16. Let hc/λkT = x. For λ >> hc/kT we have x << 1. Then using a Taylor series

ex = 1 + x+
x2

2
+ ... ∼= 1 + x

because x << 1. Then ex − 1 ∼= x and

I =
2πc2h/λ5

ex − 1
∼= 2πc2h

λ5x
=

2πc2h

λ5
λkT

hc
=

2πckT
λ4

17.*
λmax =

2.898× 10−3 m ·K
3000 K

= 966 nm

which is in the near infrared.

18. The graph is a characteristic Planck law curve with a maximum at λ = 966 nm (see Problem
17).
a) Numerical integration of the I(λ, T ) function shows that approximately 8.1% of the radiated
power is between 400 nm and 700 nm. Details of the calculation are:

2πc2h
∫ 7×10−7

4×10−7
exp

(
− hc

λkT

)
λ−5 dλ =

(
3.74× 10−16

) ∫ 7×10−7

4×10−7
exp

(
− 4.796× 10−6

λ

)
λ−5 dλ

= 3. 71× 105 W/m2

That is the power per unit area emitted over visible wavelengths. Over all wavelengths we

know the power per unit area is R = σT 4 = 4.59× 106 W/m2. Therefore the fraction emitted
in the visible is

3. 7128× 105 W/m2

4.59× 106 W/m2 = 0.081

b) Using computed numerical intensity values

I(400 nm, T )
I(966 nm, T )

∼= 0.073
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I(700 nm, T )
I(966 nm, T )

∼= 0.754

19. In this limit exp (hc/λkT ) >> 1 so

I (λ, T ) ∼= 2πc2h

λ5 exp
(
− hc

λkT

)

The exponential goes to zero faster than λ5, so the intensity approaches zero in this limit.

20. a) At this temperature the power per unit area is

R = σT 4 =
(
5.68× 10−8 W ·m−2 ·K−4

)
(293 K)4 = 419 W/m2

For the basketball, a sphere of radius r = 12.5 cm, we get

P = R
(
4πr2

)
=
(
419 W/m2

)
(4π) (0.125 m)2 = 82.3 W

b) At this temperature the power per unit area is

R = σT 4 =
(
5.68× 10−8 W ·m−2 ·K−4

)
(310 K)4 = 525 W/m2

For the human body assume a rectangular solid roughly 1.7 m by 0.3 m by 0.2 m, so the net
area of the six surfaces is 2 [(1.7 m) (0.3m) + (1.7 m) (0.2 m) + (0.3 m) (0.2 m)] = 1.82 m2.
Then

P = 525 W/m2
(
1.82 m2

)
or about 1000 W. Numerical values will vary depending on estimates of the human body size.

21.

λmax =
2.898× 10−3 m ·K

310 K
= 9.35 µm

22.* Taking derivatives

∂2ψ

∂t2
=
∂2a

∂t2
sin

(
nπx

L

)
∂2ψ

∂x2 = −a n
2π2

L2 sin
(
nπx

L

)
Substituting these values into the wave equation produces

1
c2

∂2a

∂t2
sin

(
nπx

L

)
−
(
−a n

2π2

L2 sin
(
nπx

L

))
= 0

∂2a

∂t2
= −an

2π2c2

L2 = −Ω2a

where Ω = nhc/L.
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23. Let r =
√
n2
x + n2

y + n2
z be the radius of a three-dimensional number space with the ni the

three components of that space. Then let dN be the number of allowed states between r and
r + dr. This corresponds to the number of points in a spherical shell of number space, which
is

dN =
1
8

(
4πr2

)
dr

where we have used the fact that 4πr2 dr is the “volume” of the shell (area 4πr2 by thickness
dr), and the 1/8 is due to the fact that only positive numbers ni are allowed, so only 1/8 of
the space is available. Therefore

r2 = n2
x + n2

y + n2
z =

Ω2L2

π2c2 =
4L2ν2

c2

or r = 2Lν/c. Then from this dr = (2L/c) dν. Putting everything together:

dN =
1
8

(
4πr2

)
dr =

π

2
r2 dr =

π

2

(2Lν
c

)2 2L
c
dν =

4πL3ν2

c3 dν

24. From the diagram at right we see that the
average x-component of the velocity (c) of
electromagnetic radiation within the cavity is

〈cx〉 =
∫ π/2

0 (c cos θ) 2πr2 sin θ dθ∫ π/2
0 2πr2 sin θ dθ

Letting u = cos θ we have

〈cx〉 =
c
∫ 1

0 u du∫ 1
0 du

=
c

2

On average only one-half of the photons are traveling to the right. Thus the mean velocity of
photons traveling to the right is c/4. Therefore

power = (intensity) (area) =
c

4
dU (∆A)

c

r x

θ θπ

θ

2  r 2 sin   d

θd

Hole

25. For classical oscillators the Maxwell-Boltzmann distribution gives

n(E) = A exp (−E/kT ) = A exp (−βE)

where E = nhν and β = 1/kT . The mean energy is

E =
∑∞
n=0 E n(E)∑∞
n=0 n(E)

=
∑∞
n=0 nhν exp (−βnhν)∑∞

n=0 exp (−βnhν)
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Notice that

E =
∂

∂β
ln
∞∑
n=0

exp (−βnhν)

Now letting x = exp (−βhν) we see that by Taylor series
∞∑
n=0

exp (−βnhν) = 1 + x+ x2 + ... = (1− x)−1

E =
∂

∂β
ln (1− x)−1 = − ∂

∂β
ln (1− x) =

hν exp (−βhν)
1− exp (−βhν)

E =
hν

exp (hν/kT )− 1
Using the result of Problem 23 (along with a factor of 2 for two photon polarizations) we can
see that

U(ν, T ) = 2
4π
c3 ν

2 hν

exp (hν/kT )− 1
=

8πhν3/c3

exp (hν/kT )− 1
To change from U to I requires the factor c/4 (Problem 24), and changing from a frequency
distribution requires a factor c/λ2 (because with ν = c/λ we have |dν| =

(
c/λ2

)
dλ). Putting

these together

I(λ, T ) =
8πh/λ3

exp (hν/kT )− 1
c

λ2
c

4
=

2πc2h

λ5
1

exp (hc/λkT )− 1

26.*
energy per photon = hν =

(
6.626× 10−34 J · s

) (
107.7× 106 s−1

)
= 7.14× 10−26 J(

5.0× 104 J/s
) 1 photon

7.14× 10−26 J
= 7.00× 1029 photons/s

27. a)

energy per photon = hν =
(
6.626× 10−34 J · s

) (
1100× 103 s−1

)
= 7.29× 10−28 J

(150 J/s)
1 photon

7.29× 10−28 J
= 2.06× 1029 photons/s

b)

energy per photon = h
c

λ
=
(
6.626× 10−34 J · s

)(3.00× 108 m/s
8× 10−9 m

)
= 2.48× 10−17 J

(150 J/s)
1 photon

2.48× 10−17 J
= 6.05× 1018 photons/s

c)

(150 J/s)
1 photon
4 MeV

1 MeV
1.60× 10−13 J

= 2.34× 1014 photons/s
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28.

νt =
φ

h
=

2.9 eV
4.136× 10−15 eV · s = 7.01× 1014 Hz

eV0 =
hc

λ
− φ so V0 =

1
e

[
hc

λ
− φ

]

V0 =
1
e

[1240 eV · nm
400 nm

− 2.9 eV
]

= 0.20 eV

29.*
λt =

hc

φ
=

1240 eV · nm
4.7 eV

= 264 nm

If the wavelength is halved (to λ = 132 nm)

K =
hc

λ
− φ =

1240 eV · nm
132 nm

− 4.7 eV = 4.7 eV

30. Notice that hc/λ = 2.34 eV > φ, so photoelectrons will be produced.

(
2× 10−3 J/s

) (
10−5

)(1 photoelectron
2.34 eV

)( 1 eV
1.60× 10−19 J

)(1.60× 10−19 C
electron

)
= 8.55 nA

31.

φ =
hc

λt
=

1240 eV · nm
230 nm

= 5.39 eV

K = 2.0 eV = hν − φ

ν =
K + φ

h
=

2.0 eV + 5.39 eV
4.136× 10−15 eV · s = 1. 79× 1015 Hz

32.

E = 100
(
hc

λ

)
= 100

1240 eV · nm
580 nm

= 214 eV

33. eV01 = hc/λ1− φ and eV02 = hc/λ2− φ. Subtracting these equations and rearranging we find

h =
e (V02 − V01)

c
(

1
λ2
− 1

λ1

) =
e (2.3 V − 1.0 V)

(3.00× 108 m/s)
(

1
207 nm − 1

260 nm

) = 4.40× 10−15 eV · s

This is about 6% from the accepted value. For the work function we use the first set of data
(the second set should give the same result):

φ =
hc

λ1
− eV01 =

(4.40× 10−15 eV · s) (3.00× 108 m/s)
260× 10−9 m

− 1.0 eV = 4.1 eV
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34. For 400 nm:

E =
hc

λ
=

1240 eV · nm
400 nm

= 3.10 eV ν =
c

λ
=

3.00× 108 m/s
400 nm

= 7.50× 1014 Hz

For 700 nm:

E =
hc

λ
=

1240 eV · nm
700 nm

= 1.77 eV ν =
c

λ
=

3.00× 108 m/s
700 nm

= 4.29× 1014 Hz

35.

λmin =
1.24× 10−6 V ·m

V
=

1.24× 10−6 V ·m
30 kV

= 0.0413 nm

36.

λ =
hc

K
=

1240 eV · nm
5× 1010 eV

= 2.48× 10−17 m

A photon produced by bremsstrahlung is still an x ray, even though this falls outside the
normal range for x rays.

37.*
λ =

1240 eV · nm
2× 104 eV

= 0.0620 nm

38.

∆λ =
h

mc
(1− cos θ)

so at maximum cos θ = −1 and

∆λ
λ

=
2h
λmc

=
2hc
mc2λ

=
2 (1240 eV · nm)

(511.0 keV) (530 nm)
= 9.16× 10−6

This corresponds to ∆λ ∼= 5× 10−12 m and therefore is not easily observed.

39. The maximum change in the photon’s energy is obtained in backscattering (θ = 180◦), so
1− cos θ = 2 and ∆λ = 2h/mc = 4.853× 10−12 m. The photon’s original wavelength was

λ =
hc

E
=

1240 eV · nm
40000 eV

= 0.0310 nm = 3.10× 10−11 m

and the new wavelength is λ′ = λ+∆λ = 3.586×10−11 m. The electron’s recoil energy equals
the change in the photon’s energy, or
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K =
hc

λ
− hc

λ′
=

1240 eV · nm
3.10× 10−2 nm

− 1240 eV · nm
3.586× 10−2 nm

= 5420 eV = 5.42 keV

40. Use the Compton scattering formula but with the proton’s mass:

∆λ =
h

mc
(1− cos θ) =

h

mc
=

hc

mc2 =
1240 eV · nm
938.27 MeV

= 1.32 fm

41.

λc =
h

mc
=

hc

mc2 =
1240 eV · nm
938.27 MeV

= 1.32 fm

The photon energy is

E =
hc

λc
= 938 MeV

In principle this could be observed, but the energy requirements are high.

42.*
∆λ
λ

= 0.004 =
λc
λ

(1− cos θ) so λ = 250λc (1− cos θ)

a)
λ = 250

(
2.43× 10−12 m

)
(1− cos 30◦) = 8.14× 10−11 m

b)
λ = 250

(
2.43× 10−12 m

)
(1− cos 90◦) = 6.08× 10−10 m

c)
λ = 250

(
2.43× 10−12 m

)
(1− cos 170◦) = 1.21× 10−9 m

43. By conservation of energy we know the electron’s recoil energy equals the energy lost by the
photon:

K =
hc

λ
− hc

λ′
=
hc (λ′ − λ)

λ′λ
=
hc∆λ
λ′λ

Using λ′ = λ+ ∆λ

K =
hc∆λ

λ (λ+ ∆λ)
=

hν ∆λ
λ+ ∆λ

=
hν ∆λ

λ (1 + ∆λ/λ)

Conservation of px:

pe cosφ+
h

λ′
cos θ =

h

λ

pe cosφ =
h

λ
− h

λ′
cos θ (1)
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Conservation of py:

pe sinφ− h

λ′
sin θ = 0

pe sinφ =
h

λ′
sin θ (2)

Dividing equation (2) by equation (1)

tanφ =
h
λ′ sin θ

h
λ
− h

λ′ cos θ

Using λ′ = λ+ h
mc

(1− cos θ)

tanφ =
h sin θ

λ+ h
mc

(1−cos θ)
h
λ
− h cos θ

λ+ h
mc

(1−cos θ)

Multiplying above and below by λ
[
λ+ h

mc
(1− cos θ)

]
,

tanφ =
λh sin θ

λh+ h2

mc
(1− cos θ)− λh cos θ

=
λ sin θ(

λ+ h
mc

)
(1− cos θ)

Trig identity: (sin θ) / (1− cos θ) = cot(θ/2)

tanφ =
λ

λ+ h
mc

cot
(
θ

2

)
=

1
1 + h

mcλ

cot
(
θ

2

)
=

1
1 + hν

mc2

cot
(
θ

2

)

Inverting

cotφ =
[
1 +

hν

mc2

]
tan

(
θ

2

)

44.

λ′ = λ+ λc (1− cos θ) =
hc

E
+ λc (1− cos θ)

λ′ =
1240 eV · nm
700× 103 eV

+
(
2.43× 10−3 nm

)
(1− cos 110◦) = 5.03 pm

E ′ =
hc

λ′
=

1240 eV · nm
5.03× 10−3 nm

= 2.47× 105 eV = 247 keV

By conservation of energy

Ke = E−E ′ = 700 keV −247 keV = 453 keV (agrees with K formula in the previous problem)

From Problem 43

cotφ =
[
1 +

hν

mc2

]
tan

(
θ

2

)
=
[
1 +

700 keV
511 keV

]
tan

(110◦

2

)
= 3.3845

φ = 16.5◦
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45.* For θ = 90◦ we know λ′ = λ+ λc = 2.00243 nm

∆λ
λ

=
λc
λ

=
2.43× 10−3 nm

2 nm
= 1.22× 10−3 = 0.122%

46.*
E = 2mc2 = 2 (938.3 MeV) = 1877 MeV

This energy could come from a particle accelerator.

47. a) To find the minimum energy consider the zero-momentum frame. Let Ee be the energy of
the electron in that frame, and E0 is the rest energy of the electron. From conservation of
energy and momentum:

momentum:
hν

c
= pe =

√
E2
e − E2

0

c
or hν =

√
E2
e − E2

0

energy: hν + Ee = 3E0 or hν = 3E0 − Ee
Squaring and subtracting these two equations gives

0 = −10E2
0 + 6EeE0 or Ee =

5
3
E0

This tells us that for the transformation form the lab frame to the zero-momentum frame,
γ = 5/3 and v = 0.8c. Then from the momentum equation we have in the zero-momentum
frame

hν =

√
25E2

0

9
− E2

0 =
4
3
E0

In the lab the photon’s energy is obtained using a Doppler shift:

hν lab = hν

√
1 + β

1− β =
4
3
E0

√
1 + 0.8
1− 0.8

= 4E0 = 2.04 MeV

b) The proton’s rest energy is Mc2. Now as in (a) we let the proton’s energy in the lab frame
be Ep and conservation of momentum and energy give

momentum: hν =
√
E2
p − (Mc2)2

energy: hν + Ep = 2E0 +Mc2

Squaring and subtracting, we find

Ep =
(Mc2)2 + 2E2

0 + 2E0Mc2

2E0 +Mc2

This is very close to Ep = Mc2 Therefore the zero-momentum and lab frames are equivalent,
and we conclude hν lab

∼= 2E0 = 1.02 MeV.
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48. The maximum energy transfer occurs when θ = 180◦ so that ∆λ = (h/mc)(1−cos θ) = 2h/mc.
By conservation of energy the kinetic energy of the electron is

K = E − E ′ = hc

λ
− hc

λ′
=
hc

λ
− hc

λ+ ∆λ

Multiplying through by λ(λ+ ∆λ) we find

λ(λ+ ∆λ)K = hc(λ+ ∆λ)− hcλ = hc∆λ

λ2K + λ∆λK − hc∆λ = 0

This is a quadratic equation that with numerical values can be solved for λ to find λ =
1.20× 10−11 m. Then

E =
hc

λ
=

1.24 keV · nm
1.20× 10−2 nm

= 104 keV

49. To find the asteroid mass m note that the earth (matter) would supply an equal mass m to
the process, so

2mc2 =
GM2

E

2RE

m =
GM2

E

4REc2 =
(6.67× 10−11 m3 · kg−1 · s−2) (5.98× 1024 kg)2

4 (6378× 103 m) (3.00× 108 m/s)2 = 1.04× 1015 kg

Then

r =
[

3m
4πρ

]1/3

=
(

3 (1.04× 1015 kg)
4π (5000 kg/m3)

)1/3

= 3.68 km

which is pretty small. Evaluating the energy:

E =
GM2

E

2Re

=
(6.67× 10−11 m3 · kg−1 · s−2) (5.98× 1024 kg)2

2 (6378× 103 m)
= 1.87× 1032 J

E

nuclear arsenals
=

1.87× 1032 J
2000 (4.2× 1015 J)

= 2× 1013

There is a lot of energy in the annihilation process!

50.* For maximum recoil energy the scattering angle is θ = 180◦ and φ = 0. Then as usual
∆λ = 2h/mc. Using the result of Problem 43

K =
∆λ/λ

1 + ∆λ/λ
hν =

2h/mcλ
1 + 2h/mcλ

hν =
2hν/mc2

1 + 2hν/mc2 hν

For the given value of K = 100 keV we can solve this equation:

K

(
1 +

2hν
mc2

)
=

2 (hν)2

mc2( 2
mc2

)
(hν)2 −

( 2K
mc2

)
(hν)−K = 0

This constitutes a quadratic equation in hν which can be solved numerically to yield hν = 217
keV.
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CHAPTER 3

51. See graph below.
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52. a) For θ = 180◦ we have λ′ − λ = 2h/mc. Therefore

E ′ =
hc

λ′
=

hc

λ+ 2h
mc

b) With λ = hc/E we find

E ′ =
hc

hc
E

+ 2h
mc

=
1

1
E

+ 2
mc2

=
( 1

1× 105 eV
+

2
511000 eV

)−1

= 71.9 keV
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