
Chapter 4

1. With more than one electron we are almost forced
into some kind of Bohr-like orbits. This was the
dilemma faced by physicists in the early 20th Century.

–

–

–

–

–

–

+

2. Non-relativistically K = 1
2mv

2 and

v =

√
2K
m

=

√√√√ 2 (7.7 MeV)
3727 MeV/c2 = 6.4281× 10−2c

Relativistically K = (γ − 1)mc2 so γ = 1 +K/mc2 and

γ = 1 +
7.7 MeV

3727 MeV
= 1.002066

β =

√
1− 1

γ2 = 6.4181× 10−2c

The difference is about 10−4c or about 0.16%.

3. Conserving momentum and energy:

Mαvα = Mαv
′
α +mev

′
e (1)

and
Mαv

2
α = Mαv

′ 2
α +mev

′ 2
e (2)

From (1) we see
v
′
α = vα −

me

Mα

v
′
e

which inserted into (2) gives

Mαv
2
α = Mα

[
vα −

me

Mα

v
′
e

]2
+mev

′ 2
e

v
′
e

[
1− me

Mα

]
= 2vα

But with me << Mα we have v′e ∼= 2vα.

4.

P (θ) = exp
(
−802

12

)
= 3× 10−2780

Therefore multiple scattering does not provide an adequate explanation.
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5.* a) With Z1 = 2 and Z2 = 79 we have

b =
Z1Z2e

2

8πε0K
cot

(
θ

2

)
=

(2) (79) (1.44× 10−9 eV ·m)
2 (7.7× 106 eV)

cot (0.5◦) = 1.69× 10−12 m

b) For θ = 90◦

b =
Z1Z2e

2

8πε0K
cot

(
θ

2

)
=

(2) (79) (1.44× 10−9 eV ·m)
2 (7.7× 106 eV)

cot (45◦) = 1.48× 10−14 m

6.*

f = πnt

(
Z1Z2e

2

8πε0K

)2

cot2

(
θ

2

)
For the two different angles everything is the same except the angles, so

f(1◦)
f(2◦)

=
cot2(0.5◦)
cot2 (1.0◦)

= 4.00

7. The fraction f is proportional to n and to Z2. Therefore

N(Au)
N(Al)

=
n(Au)(79)2

n(Al)(13)2

In each case n = ρ/ (NAM) where ρ is density and M is atomic mass. Thus

N(Au)
N(Al)

=

(
19.3 g/cm3

197 g

)
(79)2(

2.70 g/cm3

27.0 g

)
(13)2

= 36.2

8. From Example 4.2 we know n = 5.90× 1028 m−3. Thus

f = πnt

(
Z1Z2e

2

8πε0K

)2

cot2

(
θ

2

)

= π
(
5.90× 1028 m−3

) (
10−8 m

)((2) (79) (1.44× 10−9 eV ·m)
2 (5× 106 eV)

)2

cot(3◦) = 1.83× 10−5

9. a) With all other parameters equal the number depends only on the scattering angles, so

f(90◦)
f(50◦)

=
cot2 (45◦)
cot2 (25◦)

= 0.217

so the number scattered through angles greater than 90◦ is (10000) (0.217) = 2170.
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b) Similarly
f(70◦)
f(50◦)

=
cot2 (35◦)
cot2 (25◦)

= 0.4435

f(80◦)
f(50◦)

=
cot2 (40◦)
cot2 (25◦)

= 0.3088

The numbers for the two angles are thus 4435 and 3088 and the number scattered between
70◦ and 80◦ is 4435− 3088 = 1347.

10.* From the Rutherford scattering result, the number detected through a small angle is inversely
proportional to sin4(θ/2). Thus

n(50◦)
n(6◦)

=
sin4(3◦)

sin4 (25◦)
= 2.35× 10−4

and if they count 2000 at 6◦ the number counted at 50◦ is (2000) (2.35× 10−4) = 0.47 which
is insufficient.

11. In each case all the kinetic energy is changed to potential energy:

r 2r 1

K = −V = |V | = Z1Z2e
2

4πε0 (r1 + r2)

a) Z1 = 2 and Z2 = 13 for Al, Z2 = 79 for Au

Al: K =
(2)(13) (1.44× 10−9 eV ·m)

2.6× 10−15 m + 3.6× 10−15 m
= 6.04 MeV

Au: K =
(2)(79) (1.44× 10−9 eV ·m)

2.6× 10−15 m + 7.0× 10−15 m
= 23.7 MeV

b) Now Z1 = 1 and for the two different values of Z2

Al: K =
(1)(13) (1.44× 10−9 eV ·m)

1.3× 10−15 m + 3.6× 10−15 m
= 3.82 MeV

Au: K =
(1)(79) (1.44× 10−9 eV ·m)

1.3× 10−15 m + 7.0× 10−15 m
= 13.7 MeV

42



CHAPTER 4

12. a) The maximum Coulomb force is at the surface and equal to 2Z2e
2/4πε0R2. Then

∆p = F∆t =
2Z2e

2

4πε0R2

2R
v

=
4Z2e

2

4πε0Rv

For maximum deflection

θ ∼= tan θ =
∆p
p

=
1
mv

4Z2e
2

4πε0Rv
=

2Z2e
2

4πε0KR

b)

θ =
(2) (79) (1.44 eV · nm)

(8 MeV) (0.1 nm)
= 2.84× 10−4 rad = 0.016◦

13. a)

θ =
(2) (79) (1.44 eV · nm)

(10 MeV) (0.1 nm)
= 2.28× 10−4 rad = 0.013◦

b) These results are comparable in magnitude with those obtained by electron scattering
(Example 4.1).

14. a)

v =
e√

4πε0mr
=

ec√
4πε0mc2r

=
√

1.44 eV · nm√
(511000 eV) (1.2× 10−6 nm)

c = 1.53c

which is not an allowed speed.
b)

E = − e2

8πε0r
= − 1.44 eV · nm

2 (1.2× 10−6 nm)
= −600 keV

c) Clearly (a) is not allowed and (b) is too much energy.

15.* a)

v =
e√

4πε0mr
=

ec√
4πε0mc2r

=
√

1.44 eV · nm√
(938× 106 eV) (0.05 nm)

c = 1.75× 10−4c

= 5.25× 103 m/s

b)

E = − e2

8πε0r
= −1.44 eV · nm

2 (0.05 nm)
= −14.4 eV

c) The “nucleus” is too light to be fixed, and there is no way to reconcile this model with the
results of Rutherford scattering.
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16. For hydrogen:

v =
e√

4πε0mr
=

ec√
4πε0mc2r

=
√

1.44 eV · nm√
(511× 103 eV) (0.0529 nm)

c

= 7.30× 10−3 c = 2.19× 106 m/s

a =
v2

r
=

(2.19× 106 m/s)2

5.29× 10−11 m
= 9.07× 1022 m/s2

For the hydrogen-like Li++

F =
Ze2

4πε0r2 =
mv2

r
or v2 =

Ze2

4πε0rm

But we also know

r =
4πε0h̄2

Zme2 =
a0

Z

v2 =
Z2e2

4πε0a0m
=

32 (1.44 eV · nm)
(5.29× 10−11 m) (511× 103 eV/c2)

= 4.79× 10−4c2

or v = 2.19×10−2c = 6.57×106 m/s. This is a factor of 3 greater than the speed for hydrogen.

a =
v2

r
=

(6.57× 106 m/s)2

(5.29× 10−11 m) /3
= 2.45× 1024 m/s2

17. For a hydrogen-like atom E = −Z2E0/n = −Z2E0 for n = 1.

H : E = −E0 = −13.6 eV

He+: E = −4E0 = −54.4 eV

Li++: E = −9E0 = −122.5 eV

The binding energy is larger for atoms with larger Z values, due to the greater attractive force
between the nucleus and electron.

18. The total energy of the atom is −e2/ (8πε0r). Differentiating with respect to time:

dE

dt
=

e2

8πε0r2

dr

dt

Equating this result with the given equation from electromagnetic theory

e2

8πε0r2

dr

dt
= − 1

4πε0
2e2

3c3

(
d2r

dt2

)2

e2

2r2

dr

dt
= −2e2

3c3

(
d2r

dt2

)2
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In a circular orbit d2r/dt2 is just the centripetal acceleration, which is also given by

a =
F

m
=

e2

4πε0r2

Substituting:
e2

2r2

dr

dt
= −2e2

3c3

(
e2

4πε0r2

)2

dr

dt
= − 4e4

(4πε0)2 3m2c3r2

Solving by separation of variables:

dt = − (4πε0)2 3m2c3

4e4 r2 dr

t = − (4πε0)2 3m2c3

4e4

∫ 0

a0

r2 dr = (4πε0)2 m
2c3

4e4 a3
0

Inserting numerical values we find t = 1.6× 10−11 s.

19.

ν =
c

λ
= Z2Rc

(
1
n2
l

− 1
n2
u

)

ν(Kα) = Z2Rc
(

1− 1
4

)
ν(Kβ) = Z2Rc

(
1− 1

9

)
ν(Lα) = Z2Rc

(1
4
− 1

9

)
With 1− 1/4 + (1/4− 1/9) = 1− 1/9 we see

ν(Kα) + ν(Lα) = ν(Kβ)

20. As in Problem 16 v = 2.19× 106 m/s and

L = mvr =
(
9.11× 10−31 kg

) (
2.19× 106 m/s

) (
5.29× 10−11 m

)
= 1.0554× 10−34 kg ·m2/s

Notice that L = h̄.

21.

hc =
(
4.135669× 10−15 eV · s

)
(299792458 m/s) = 1239.8 eV · nm

e2

4πε0
=

(1.6021733× 10−19 C)2

4π (8.8541878× 10−12 F/m)
1 eV

1.6021733× 10−19 N ·m
109 nm

m
= 1.4400 eV · nm

mc2 =
(
510.99906 keV/c2

)
c2 = 511.00 keV
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a0 =
4πε0h̄2

me2 =
(8.8541878× 10−12 F/m) (4.135669× 10−15 eV · s)2

/π

(9.1093897× 10−31 kg) e2

= 5.2918× 10−11 m = 5.2918× 10−2 nm

E0 =
e2

8πε0a0
= − (1.6021733× 10−19 C)2

8π (8.8541878× 10−12 F/m) (5.2917725× 10−11 m)
= 2.179874× 10−18 J = 13.606 eV

22.* From Equation (4.31) vn = (1/n)(h̄/ma0)

n = 1: v1 =
1
1

1.055× 10−34 J · s
(9.11× 10−31 kg) (5.29× 10−11 m)

= 2.19× 106 m/s = 0.0073c

n = 2: v2 =
1
2

1.055× 10−34 J · s
(9.11× 10−31 kg) (5.29× 10−11 m)

= 1.09× 106 m/s = 0.0036c

n = 3: v3 =
1
3

1.055× 10−34 J · s
(9.11× 10−31 kg) (5.29× 10−11 m)

= 7.30× 105 m/s = 0.0024c

23.* The photon energy is

E =
hc

λ
=

1240 eV · nm
434 nm

= 2.86 eV

This is the energy difference between the two states in hydrogen. Because E3 = −1.51 eV the
initial state must be n = 2. We notice that this energy difference exists between n = 2 (with
E = −3.40 eV) and n = 5 (with E = −0.54 eV).

24. The photon energy is

E =
hc

λ
=

1240 eV · nm
95 nm

= 13.05 eV

This can only be a transition to n = 1 (E1 = −13.6 eV) and because of the energy difference

it comes from n = 5 with E5 = −0.54 eV.

25. In general the ground state energy is Z2E0.

a)
E = 12E0 = 13.6 eV

The reduced mass does not change this result to three significant digits.
b)

E = 22E0 = 54.4 eV

c)
E = 42E0 = 218 eV
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26. a) It is only the first four lines of the Balmer series, with wavelengths 656.5 nm, 486.3 nm,
434.2 nm, and 410.2 nm.
b) To get the energy levels in helium, perform the same analysis as in the text but with e2

replaced by Ze2 = 2e2. This results in an extra factor of Z2 = 4 in the energy, so the revised
Rydberg-Ritz equation is

1
λ

=
4E0

hc

(
1
n2
l

− 1
n2
u

)
=
(
4.377× 107 m−1

)( 1
n2
l

− 1
n2
u

)

We need the wavelength to be between 400 and 700 nm. The combinations of nl and nu that
work are tabulated below:

nl nu λ (nm) comments
3 4 470
4 6 658
4 7 543
4 8 487 etc. with nl = 4 to nu = 13
4 13 404 but nl = 4 and nu > 13 gives λ < 400 nm
5 12 691
5 13 670 etc. with nl = 5 all the way to...
5 ∞ 571 a series limit

27. From Problem 22 the speed in the n = 3 state is v = 7.30× 105 m/s. The radius of the orbit
is n2a0 = 9a0. Then from kinematics

number of revolutions =
vt

2πr
=

(7.30× 105 m/s) (10−8 s)
2π (9) (5.29× 10−11 m)

= 2.44× 106

28.* The energy of each photon is hc/λ = 12.4 eV. Looking at the energy difference between levels

in hydrogen we see that E2 − E1 = 10.2 eV, E3 − E1 = 12.1 eV, and E4 − E1 = 12.8 eV.
There is enough energy to excite only to the second or third level. In theory it is possible for
a second photon to come along and take the atom from one of these excited states to a higher
one, but this is unlikely, because the n = 2 and n = 3 states are short-lived.

29.* We must use the reduced mass for the muon:

µ =
mM

m+M
=

(106 MeV/c2) (938 MeV/c2)
106 MeV/c2 + 938 MeV/c2 = 95.2 MeV/c2

a)

a0 =
4πε0h̄

2

µe2 =
(6.58× 10−16 eV · s)2

(1.44× 10−9 eV ·m) (95.2× 106 eV/c2)
(3.00× 108 m/s)2

c2 = 2. 84× 10−13 m

b)

E =
e2

8πε0a0
=

(1.44× 10−9 eV ·m)
2 (2. 84× 10−13 m)

= 2535 eV
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c) First series:

λ =
hc

E
=

1240 eV · nm
2535 eV

= 0.49 nm

Second series:
λ =

4hc
E

=
4 (1240 eV · nm)

2535 eV
= 1.96 nm

Third series:

λ =
9hc
E

=
9 (1240 eV · nm)

2535 eV
= 4.40 nm

30. µ = mm/(m+m) = m/2 where m is the mass of each particle. Then

r =
4πε0h̄

2

µe2 = 2a0

E = − e2

8πε0r
= − e2

8πε0 (2a0)
= −E0

2
= −6.8 eV

31. a) As shown in Problem 30, the radius of the orbit is 2a0.
b) With E0 = 6.8 eV (see Problem 30) we have

∆E = E2 − E1 = −E0

22 −
(
−E0

11

)
=

3E0

4
= 5.1 eV

Then
λ =

hc

∆E
=

1240 eV · nm
5.1 eV

= 243 nm

32. a)
r2 − r1 = 4a0 − a0 = 3a0 = 1.59× 10−10 m

b)
r6 − r5 = 36a0 − 25a0 = 11a0 = 5.83× 10−10 m

c)
r11 − r10 = 121a0 − 100a0 = 21a0 = 1.11× 10−9 m

Note that in each case rm − rn = (m+ n)a0.

33.

hydrogen:
1
λ

= RH

(
1
4
− 1
n2
u

)

helium:
1
λ

= Z2RHe

(
1
42 −

1
n2
u

)
= RHe

(
1
4
− 4
n2
u

)
We see that the lines match very well when nu is even for helium but not when it is odd. Also,
all the “matched” lines differ slightly because of the different Rydberg constant (which is due to
the different reduced masses). The differ by a factor of RHe/RH = 0.99986/0.99946 ∼= 1.0004.
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34. In general

R =
1

1 +m/M
R∞

where R∞ = 1.0973731534× 107 m−1 and m = 0.0005485799 u.
Using 4He (M = 4.0026 u), R = 0.999863R∞ = 1.097223× 107 m−1 (off by 0.14%)
Using 39K (M = 38.963708 u), R = 0.9999859R∞ = 1.097358× 107 m−1 (off by 0.0014%)
Using 238U (M = 238.05078 u), R = 0.9999977R∞ = 1.097371× 107 m−1 (off by 0.00023%)

35. The derivation of the Rydberg equation is the same as in the text. Because He+ is hydrogen-
like it works with R = Z2RHe and RHe = 1.097223× 107 m−1 as in Problem 34. Then

R = 4
(
1.097223× 107 m−1

)
= 4.38889× 107 m−1

36.* For Lα we have

λ =
c

ν
=

36
5R (Z − 7.4)2

Z = 43: λ =
36

5R (43− 7.4)2 = 0.52 nm

Z = 61: λ =
36

5R (61− 7.4)2 = 0.23 nm

Z = 75: λ =
36

5R (75− 7.4)2 = 0.14 nm

37. For Pt Z = 78 and for Au Z = 79. For the Kα lines

λ =
4

3R (Z − 1)2

Pt: λ =
4

3R(77)2 = 20.49 pm Au: λ =
4

3R(78)2 = 19.97 pm

Therefore ∆λ = 0.52 pm which is less than the specified resolution, so it will not work.

38.

ν(Kβ) =
c

λ(Kβ)
= cR(Z − 1)2

( 1
12 −

1
32

)
=

8cR
9

(Z − 1)2

This is higher than the Ka frequency by a factor of (8/9)/(3/4) = 32/27, which seems to be
in agreement with Figure 4.19.
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39.* Helium:

λ(Kα) =
4

3R (Z − 1)2 = 122 nm λ(Kβ) =
9

8R(Z − 1)2 = 103 nm

Lithium:

λ(Kα) =
4

3R (Z − 1)2 = 30.4 nm λ(Kβ) =
9

8R(Z − 1)2 = 25.6 nm

40. λ is inversely proportional to (Z − 1)2 for the K series and to (Z − 7.4)2 for the L series.
a)

λ(U)
λ(C)

=
(6− 1)2

(92− 1)2 = 0.0030

b)
λ(W)
λ(Ca)

=
(20− 7.4)2

(74− 7.4)2 = 0.036

41. Non-relativistically 40 eV = 1
2mv

2
1 so

v1 =

√√√√ 2 (40 eV)
511 keV/c2 = 0.0125c = 3.75× 106 m/s

From elementary physics

v
′
2 =

2m1

m1 +m2
v1 =

2 (0.0005486 u)
0.0005486 u + 202.97 u

(
3.75× 106 m/s

)
= 20.3 m/s

where we have used the most abundant mercury isotope. Then

K
′
2 =

1
2
m2v

′
2 =

1
2

(202.97 u)
(
931.49 MeV/u · c2

)( c2

9× 1016 m2/s2

)
(20.3 m/s)2 = 4.33×10−4 eV

42. Without the negative potential an electron with any energy, no matter how small, could drift
into the collector plate. As a result the electron could give up its kinetic energy to a Hg
atom and still contribute to the plate current. The Franck-Hertz curve would not show the
distinguishing periodic drops, but rather would rise monotonically.

43. Using ∆E = hc/λ we find

h =
λ∆E
c

=
(254 nm) (4.88 eV)

3.00× 108 m/s
= 4.13× 10−15 eV · s
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44. 3.6 eV, 4.6 eV, 2(3.6 eV) = 7.2 eV, 3.6 eV + 4.6 eV = 8.2 eV, etc. with other combinations
giving 10.8 eV, 11.8 eV, 12.6 eV, 14.4 eV, 15.4 eV, 16.2 eV, 16.4 eV, 17.2 eV, 18.0 eV.

45. Magnesium:

λ(Kα) =
4

3R (Z − 1)2 = 1.00 nm λ(Lα) =
36

5R (Z − 7.4)2 = 31.0 nm

Iron:

λ(Kα) =
4

3R (Z − 1)2 = 0.194 nm λ(Lα) =
36

5R (Z − 7.4)2 = 1.90 nm

46.* Kα is a transition from n = 2 to n = 1 and Kβ is from n = 3 to n = 1. We know those
wavelengths in the Lyman series are 121.6 nm and 102.6 nm, respectively. The redshift factor
(λ/λ0) is (with β = 1/6) √

1 + β

1− β =

√√√√1 + 1/6
1− 1/6

= 1.183

Then the redshifted wavelengths are higher by 18.3% in each case. The observed wavelengths
are:

Kα: λ = (1.183) (121.6 nm) = 143.9 nm

Kβ: λ = (1.183) (102.6 nm) = 121.4 nm

47.*

f = πnt

(
Z1Z2e

2

8πε0K

)2

cot2

(
θ

2

)
a)

f(1◦) = π
(
5.90× 1028 m−3

) (
4× 10−7 m

)((2) (79) (1.44× 10−9 eV ·m)
2 (8× 106 eV)

)2

cot2 (0.5◦) = 0.197

f(2◦) = π
(
5.90× 1028 m−3

) (
4× 10−7 m

)((2) (79) (1.44× 10−9 eV ·m)
2 (8× 106 eV)

)2

cot2 (1◦) = 0.0492

The fraction scattered between 1◦ and 2◦ is 0.197− 0.0492 = 0. 148.
b)

f(1◦)
f(10◦)

=
cot2 (0.5◦)
cot2 (5◦)

= 100.5

f(1◦)
f(90◦)

=
cot2 (0.5◦)
cot2 (45◦)

= 1.31× 104
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48. From classical mechanics we know
that

−→
L is conserved for central forces.

L =
∣∣∣−→L ∣∣∣ = |−→r ×−→p | = rp0 sin β

But r sin β = b so L = p0b = mv0b.

P

b
r

β

49. If the positions of the electron and proton are respectively (along a line) re and rp, then
putting the center of mass at R = 0 we have

R = 0 =
mere +mprp
me +mp

or rp = −me

m
re

r = re − rp = re −
(
−me

m
re

)
= re

(
1 +

me

mp

)

re =
mp

mp +me

r

Substituting this into the expression

v2 =
n2h̄2

m2
er

2
e

we find

v2 =
n2h̄2

m2
e

(
mp

mp+me
r
)2 =

n2h̄2

µ2r2

with
µ =

memp

me +mp

50. a)

ν =
me4

4ε2
0h

3 =
(9.11× 10−31 kg) (1.60× 10−19 C)4

4 (8.85× 10−12 F/m)2 (6.626× 10−34 J · s)3 = 6.55× 1015 Hz

b) As determined in previous problems v = 2.19× 106 m/s and r = a0 = 5.29× 10−11 m.

ν =
v

2πr
=

2.19× 106 m/s
2π (5.29× 10−11 m)

= 6.59× 1015 Hz

c) We know

E = − e2

8πε0a0
and K =

e2

8πε0a0
= |E|

d) Since K = nhνorb/2 = hνorb/2 for n = 1 we have

νorb =
2K
h

=
2(13.6 eV)

4.136× 10−15 eV · s = 6.58× 1015 Hz

which agrees with (a) and (b) to within rounding errors.
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51.* We start with K = nhνorb/2. From classical mechanics we have for a circular orbit ν = v/2πr,
or r = v/2πν:

L = mvr = mv
(
v

2πν

)
=
(
mv2

2

)( 1
πν

)
Using K = 1

2mv
2,

L =
K

πν
=
nhν

2πν
=
nh

2π
= nh̄
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