
Chapter 5

1. sin θ1 = λ/2d = 0.259

Second order:

sin θ2 =
2λ
2d

= 2 sin θ1 θ2 = sin−1 (2 sin θ1) = 31.2◦

θ3 = sin−1 (3 sin θ1) = 50.9◦

2.* Use λ = 0.16 nm, and we know from the text that d = 0.282 nm for NaCl.

n = 1: sin θ =
nλ

2d
=

λ

2d
= 0.284 θ = 16.5◦

n = 2: sin θ =
nλ

2d
=
λ

d
= 0.567 θ = 34.6◦

∆θ = 34.6◦ − 16.5◦ = 18.1◦

3. For n = 1 we have λ = 2d sin θ = 2 (0.314 nm) (sin 14◦) = 0.152 nm

E =
hc

λ
=

1240 eV · nm
0.152 nm

= 8.16 keV

The largest order n is the largest integer for which nλ/2d < 1

n <
2d
λ

= 4.13

so we can observe up through n = 4.

4. As in Davisson-Germer scattering nλ = D sinφ

φ = sin−1

(
λ

D

)
= sin−1

(
hc

ED

)
= sin−1

(
1240 eV · nm

(105 eV) (0.24 nm)

)
= 3.0◦

5.

λ =
h

p
=

6.626× 10−34 J · s
(3.0 kg) (6.0 m/s)

= 3.68× 10−35 m

No, the wavelength of the water waves depends on the medium; they are strictly mechanical
waves.

54



CHAPTER 5

6. Using the mean speed from kinetic theory (Chapter 9)

v =
4√
2π

√
kT

m
=

4√
2π

√√√√(1.38× 10−23 J/K) (308.15 K)
28 (1.66× 10−27 kg)

= 482.7 m/s

λ =
h

p
=

6.626× 10−34 J · s
28 (1.66× 10−27 kg) (482.7 m/s)

= 2.95× 10−11 m

or roughly 3% of the size of the molecule.

7. (50 eV) (1.602× 10−19 J/eV) = 8.01× 10−18 J

λ =
h√

2mK
=

6.626× 10−34 J · s√
2 (9.109× 10−31 kg) (8.01× 10−18 J)

= 1.73× 10−10 m

This is the same as in the textbook’s example, to two places.

8. When E >> E0 then E ∼= pc for the particle, just as for a photon. Therefore the electron’s
energy is approximately equal to the photon energy.
If E = 2E0 then we cannot use E ∼= pc. The exact expression is

p =

√
E2 − E2

0

c
=
√

3E0

c

for the electron’s momentum. Then the de Broglie wavelength is

λ =
h

p
=

hc√
3E0

If the photon has the same wavelength its energy is

E =
hc

λ
=
√

3E0

9.* a) Relativistically

p =

√
E2 − E2

0

c
=

√
(K +mc2)2 − (mc2)2

c
=
√
K2 + 2Kmc2

c

λ =
h

p
=

hc√
K2 + 2Kmc2

b) Non-relativistically, as in the text

λ =
h√

2mK
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10.*

p =

√
E2 − E2

0

c
= 50GeV/c

λ =
h

p
=

1240 eV · nm
50 GeV

= 2.48× 10−17 m

fraction =
2.48× 10−17 m

2× 10−15 m
= 0.012

11. a) For photons kinetic energy equals total energy and de Broglie wavelength is wavelength

K = E =
hc

λ
=

1240 eV · nm
0.15 nm

= 8.27 keV

b) The energy is low enough that we can use the non-relativistic formula:

K =
h2

2mλ2 =
(hc)2

2mc2λ2 =
(1240 eV · nm)2

2 (511× 103 eV) (0.15 nm)2 = 66.9 eV

c)

K =
h2

2mλ2 =
(hc)2

2mc2λ2 =
(1240 eV · nm)2

2 (939× 106 eV) (0.15 nm)2 = 0.036 eV

d)

K =
h2

2mλ2 =
(hc)2

2mc2λ2 =
(1240 eV · nm)2

2 (3727× 106 eV) (0.15 nm)2 = 9.17× 10−3 eV

12. a) As in Problem 6 we use the mean speed formula from kinetic theory:

v =
4√
2π

√
kT

m
=

4√
2π

√√√√(1.38× 10−23 J/K) (10 K)
(1.675× 10−27 kg)

= 458.0 m/s

λ =
h

p
=

6.626× 10−34 J · s
(1.675× 10−27 kg) (458.0 m/s)

= 0.86 nm

b)

v =
4√
2π

√
kT

m
=

4√
2π

√√√√(1.38× 10−23 J/K) (0.1 K)
(1.675× 10−27 kg)

= 45.8 m/s

λ =
h

p
=

6.626× 10−34 J · s
(1.675× 10−27 kg) (45.8 m/s)

= 8.6 nm
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13.* From the accelerating potential we know K = eV = 3 keV.

E = K + E0 = 514 keV

p =

√
E2 − E2

0

c
=

√
(514 keV)2 − (511 keV)2

c
= 55.4 keV/c

λ =
h

p
=
hc

pc
=

1240 eV · nm
55.4× 103 eV

= 22.4 pm

14. We use the relativistic formula derived in Problem 9:

λ =
h

p
=

hc√
K2 + 2Kmc2

a) λ = 0.194 nm b) λ = 6.13× 10−2 nm c) λ = 1.94× 10−2 nm
d) λ = 6.02× 10−3 nm e) λ = 1.64× 10−3 nm f) λ = 2.77× 10−4 nm

15. a)

λ =
h

p
=

6.626× 10−34 J · s
32 (1.661× 10−27 kg) (480 m/s)

= 2.60× 10−11 m

b)

λ =
h

p
=

6.626× 10−34 J · s
(1.5× 10−15 kg) (10−6 m/s)

= 4.42× 10−13 m

16. Using the relativistic formula from Problem 9

λ =
h

p
=

hc√
K2 + 2Kmc2

=
1240 eV · nm√

(1012 eV)2 + 2 (1012 eV) (938× 106 eV)
= 1.24× 10−18 m

17.

d = D sin(φ/2) = (0.23 nm) sin 16◦ = 0.063 nm

λ = D sinφ = (0.23 nm) sin 32◦ = 0.122 nm

p =
h

λ
=
hc

λc
=

1240 eV · nm
(0.122 nm) c

= 10.2 keV/c

E =
√
p2c2 + E2

0 =
√

(10.2 keV)2 + (511 keV)2 = 511.102 keV

K = E − E0 = 102 eV
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18. At 48 eV

λ =
1.226 nm · V 1/2
√

48 V
= 0.177 nm

φ = sin−1

(
d

λ

)
= sin−1

(0.177 nm
0.215 nm

)
= 55.4◦

At 64 eV

λ =
1.226 nm · V 1/2
√

64 V
= 0.153 nm

φ = sin−1

(
d

λ

)
= sin−1

(0.153 nm
0.215 nm

)
= 45.4◦

19. First we compute the wavelength of the electrons:

λ =
h

p
=

hc√
E2 − E2

0

=
1240 eV · nm√

(513 keV)2 − (511 keV)2
= 2.74× 10−2 nm

From Figure 5.6(a) we see that 2θ1 = tan−1 (2.1 cm/35 cm) = 3.434◦ or θ1 = 1.717◦. Now
since λ = 2d sin θ we have

d1 =
λ

2 sin θ1
=

2.74× 10−2 nm
2 sin (1.717◦)

= 0.457 nm

θ2 =
1
2

tan−1 (2.3 cm/35 cm) = 1.880◦

d2 =
λ

2 sin θ2
=

2.74× 10−2 nm
2 sin (1.880◦)

= 0.412 nm

θ3 =
1
2

tan−1 (3.2 cm/35 cm) = 2.612◦

d3 =
λ

2 sin θ3
=

2.74× 10−2 nm
2 sin (2.612◦)

= 0.301 nm

20.*
λ =

h√
2mK

=
hc√

2mc2K
=

1240 eV · nm√
2 (939× 106 eV) (0.025 eV)

= 0.181 nm

λ = D sinφ φ = sin−1

(
λ

D

)
= sin−1

(0.181 nm
0.45 nm

)
= 23.7◦
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21. a) ν = v/λ = 0.571 Hz
b) From the initial conditions given, we should use a cosine function.

Ψ = A cos
((2π

λ

)
(x− vt)

)
= (3.0 cm) cos

(( 2π
7 cm

)
(10 cm− (4 cm/s) (13 s))

)
= 3.0 cm

22. a) ν = v/λ = 1 Hz b) T = 1/ν = 1 s
c) k = 2π/λ = π/2 cm−1 d) ω = 2π/T = 2π rad/s

23. a)
Ψ = Ψ1 + Ψ2 = 0.003 [sin(6.0x− 300t) + sin(7.0x− 250t]

We can use a trig identity sinA+ sinB = 2 sin
(
A+B

2

)
cos

(
A−B

2

)
Ψ = 0.006 sin(6.5x− 275t) cos(−0.5x− 25t)

or because cosine is an even function

Ψ = 0.006 sin(6.5x− 275t) cos(0.5x+ 25t)

b)

vph =
ω1 + ω2

k1 + k2
=

550 rad/s
13 m−1 = 42.3 m/s

vg =
∆ω
∆k

=
50 rad/s
1 m−1 = 50 m/s

c) As in Equation (5.22) ∆x = 2π/∆k = 2π m and the separation between zeroes is half of
this or π meters.
d) ∆k∆x = (1 m−1) (2π m) = 2π

24.

ugr =
dω

dk
=
dE

dp
=

d

dp

(
p2c2 + E2

0

)1/2
=

pc2√
p2c2 + E2

0

=
pc2

E
= βc

vph = λν =
h

p

ω

2π
=
E

p
=
pc2/v

p
=
c2

v
=
c

β

The particle and its “signal” are associated with the group velocity, not the phase velocity.

25.* As in Example 5.4 ugr = cλn − cnλn. Setting ugr = vph = cλn, we find cλn = cλn − cnλn.
This can be satisfied only if n = 0, so vph is independent of λ. This is consistent with the
idea that when a medium is non-dispersive, the phase and group velocities are equal and the
speed independent of wavelength.
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26. Protons:

γ =
K + E0

E0
=

946.27 MeV
938.27 MeV

= 1.00853 β =

√
1− 1

1.008532 = 0.130

ugr = βc = 0.130c vph =
c

β
= 7.7c

Electrons:

γ =
K + E0

E0
=

8.511 MeV
0.511 MeV

= 16.66 β =

√
1− 1

16.662 = 0.9982

ugr = βc = 0.9982c vph =
c

β
= 1.002c

27.

Ψ(x, 0) =
∫
Ã(k) cos(kx) dk = A0

∫ k0+∆k/2

k0−∆k/2
cos(kx) dk

= A0
sin(kx)
x

∣∣∣∣∣
k0+∆k/2

k0−∆k/2

=
A0

x
(sin (k0 + ∆k/2)x− sin (k0 −∆k/2)x)

= −2A0

x
sin

(
∆kx

2

)
sin (k0x)

See the diagrams below. At the half-width of |Ψ(x, 0)|2, we have sin2 (∆kx/2) = 1/2, so
∆kx/2 = π/4 and x = π/ (2∆k). Then ∆x = 2x = π/∆k, and ∆k∆x = π.

|Ψ(x, 0)|2

Envelope
sin (kox)

x x

28.* Relativistically

u =
dE

dp
=

d

dp

(
p2c2 + E2

0

)1/2
=

pc2√
p2c2 + E2

0

=
pc2

E

Classically

u =
dE

dp
=

d

dp

(
p2

2m

)
=

p

m
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29. For a double slit, the amplitude of E is doubled, and hence the intensity (proportional to E2)
is higher by a factor of four for the double slit.

30.

d =
λ

sin θ
=

h/p

sin θ
=

hc√
E2 − E2

0 sin θ
=

1240 eV · nm√
(512 keV)2 − (511 keV)2 sin 1◦

= 2.22 nm

31.*

sin θ ∼= tan θ =
0.3 mm
0.8 m

= 3.75× 10−4

λ = d sin θ ∼= dθ = (2000 nm)
(
3.75× 10−4

)
= 0.75 nm

p =
h

λ
=
hc

λc
=

1240 eV · nm
(0.75 nm) c

= 1.653 keV/c

K = E − E0 =
√
p2c2 + E2

0 − E0 =
√

(1.653 keV)2 + (511 keV)2 − 511 keV = 2.67 eV

Such low energies will present problems, because low-energy electrons are more easily deflected
by stray electric fields.

32. Normalization:

∫ L

0
A2 sin2

(
πx

L

)
dx = 1 = A2L

2
or A =

√
2
L

33. As before λ = 2L/n so pn = nh/2L. At high energies we must use relativity, so

E =
√
p2c2 + E2

0 = E0

√
p2c2

E2
0

+ 1

E2

E1
=
[

1 + h2c2/L2E2
0

1 + h2c2/4L2E2
0

]1/2

E3

E1
=
[

1 + 9h2c2/4L2E2
0

1 + h2c2/4L2E2
0

]1/2

E4

E1
=
[

1 + 4h2c2/L2E2
0

1 + h2c2/4L2E2
0

]1/2

These are quite different from the non-relativistic results, as one might expect. They do
reduce to the non-relativistic results in the low-energy limit.
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34.

ψ1 = A sin
(
πx

L

)
ψ2 = A sin

(2πx
L

)
ψ3 = A sin

(3πx
L

)

where A =
√

2/L

35. For the n = 1 energy level

E =
h2

8md2 =
h2c2

8mc2d2 =
(1240 eV · nm)2

8 (939.57× 106 eV) (2× 10−6 nm)2 = 51.1 MeV

By the uncertainty principle ∆p∆x = h̄/2 at minimum. Non-relativistically (with ∆x = d)

Emin =
(∆p)2

2m
=

h̄2

8md2 = 1.30 MeV

36.* The uncertainty ratio is the same for any mass.

∆p∆x = m∆v∆x ≥ h̄

2
or ∆v ≥ h̄

2m∆x
=

h̄

2mL

E =
1
2
mv2 =

h2

8mL2 or v =

√
h2

4m2L2 =
h

2mL
∆v
v

=
h̄/2mL
h/2mL

=
1

2π

37. For circular motion L = rp and so ∆L = r∆p. Along the circle x = rθ and ∆x = r∆θ. Thus

∆p∆x =
∆L
r

(r∆θ) = ∆L∆θ ≥ h̄

2

For complete uncertainty ∆θ = 2π and

∆L =
h̄/2
2π

=
h̄

4π

38. ∆E∆t ≥ h̄/2 so

∆E ≥ h̄

2∆t
=

1.054× 10−34 J · s
(2× 1036 y) (3.16× 107 s/y)

= 1.67× 10−78 J
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39. If we use ∆ω∆t = 1/2 we find

∆ω =
1

2∆t
=

1
2 (2 µs)

= 2.5× 105 rad/s

40. ∆p∆x = m∆v∆x ≥ h̄/2 so at minimum uncertainty

∆v =
h̄

2m∆x
=

1.054× 10−34 J · s
2 (3× 10−15 kg) (10−6 m)

= 1. 76× 10−14 m/s

41.* a) ∆E∆t ≥ h̄/2 so

∆E ≥ h̄

2∆t
=

6.582× 10−16 eV · s
2× 10−13 s

= 3.29× 10−3 eV

b) Using the photon relation E = hc/λ and taking a derivative

dE = −hc
λ2dλ = −E

2

hc
dλ

Then letting ∆λ = dλ and ∆E = dE we have

|∆λ| = hc
∆E
E2 = (1240 eV · nm)

3.29× 10−3 eV
(4.7 eV)2 = 0.18 nm

42.* The wavelength of the electrons should be 0.14 nm or less. For this wavelength

p =
h

λ
=
hc

λc
=

1240 eV · nm
(0.14 nm) c

= 8.86 keV/c

K = E − E0 =
√
p2c2 + E2

0 − E0 =
√

(8.86 keV)2 + (511 keV)2 − 511 keV = 77 eV

43. For the angle θR we find θR ∼= tan θR = 4000 nm/20 cm = 2× 10−5. The wavelength is

λ =
dθR
1.22

=
(0.05 m) (2× 10−5)

1.22
= 820 nm

a)

E =
hc

λ
=

1240 eV · nm
820 nm

= 1.51 eV

b) For non-relativistic electrons

K =
p2

2m
=

h2

2mλ2 =
h2c2

2mc2λ2 =
(1240 eV · nm)2

2 (511× 103 eV) (820 nm)2 = 2.24× 10−6 eV
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Check with the uncertainty principle:

∆p ≥ h̄

2∆x
=

1.055× 10−34 J · s
2 (4000 nm)

= 1.32× 10−29 kg ·m/s

The actual momentum is

p =
h

λ
=

6.626× 10−34 J · s
820 nm

= 8.08× 10−28 kg ·m/s

This is allowed because p > ∆p.

44.

λ =
h

p
=

h√
2mK

=
1240 eV · nm√

2 (3727 MeV) (5.5 MeV)
= 6.12 fm

The minimum kinetic energy according to the uncertainty principle is

K =
(∆p)2

2m
=

h̄2

8m (∆x)2 =
(1240 eV · nm)2 /4π2

8 (3727 MeV) (16 fm)2 = 5.10 keV

Since the kinetic energy exceeds the minimum, it is allowed.

45.* The proof is done in Example 6.9. With ω =
√
k/m we have a minimum energy

E =
h̄ω

2
=
h̄

2

√
k

m
=

1.055× 10−34 J · s
2

√
8 N/m

0.002 kg
= 3.34× 10−33 J

46. At time t = 0 the velocity is uncertain by at least ∆v0 = ∆p/m = h̄/2m∆x. After a time
t = m (∆x)2 /h̄ we have

∆x′ = (∆v0) t =
h̄

2m∆x
m (∆x)2

h̄
=

∆x
2

or half the distance of travel.

47. Both the spatial distribution ψ(x) and the wavenumber distribution φ(k) should have the
same Gaussian form:

ψ(x) ∼= exp
[
− x2

(2∆x)2

]
φ(k) ∼= exp

[
− k2

(2∆k)2

]

For conjugate variables (x, k) it is possible to obtain one distribution by taking a Fourier
transform of the other.

64



CHAPTER 5

Letting A be a normalization constant for φ(k) we have

ψ(x) =
A√
2π

∫ ∞
−∞

dk exp
[
− k2

(2∆k)2

]
exp (ikx)

The integral is done by completing the square:

ψ(x) =
A√
2π

∫ ∞
−∞

dk exp
[
− k2

4∆k2 + ikx− x2∆k2 + x2∆k2

]

=
A√
2π

exp
(
−x2∆k2

) ∫ ∞
−∞

dk exp
[(
− 1

4∆k2

) (
k − 2ix∆k2

)2
]

Letting u = (k − 2ix∆k2) /2∆k we have

ψ(x) = A

√
2
π

∆k exp
(
−x2∆k2

) ∫ ∞
−∞

exp
(
−u2

)
du

The integral has a value
√
π so

ψ(x) =
√

2A∆k exp
(
−x2∆k2

)
Now comparing with the Gaussian form

ψ(x) ∼= exp
[
− x2

(2∆x)2

]

we see that
(∆k)2 =

1
(2∆x)2 or ∆k∆x =

1
2

48. ∆E∆t ≥ h̄/2
∆E ≥ h̄

2∆t
=

6.582× 10−16 eV · s
2× 10−16 s

= 3.29 eV

49.*
∆t =

d

c
=

1.2× 10−15 m
3.0× 108 m/s

= 4.0× 10−24 s

∆E ≥ h̄

2∆t
=

6.582× 10−16 eV · s
2 (4.0× 10−24 s)

= 82 MeV

This “lower bound” estimate of the rest energy is within a factor of two of the rest energy.
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50. a) In general nλ = 2d sin θ so

sin θ =
nλ

2d
= n

0.5 nm
2 (0.8 nm)

= 0.3125n

It is required that sin θ ≤ 1 so the allowed values of n are 1, 2, 3. Plugging in we find θ = 18.2◦

for n = 1, θ = 38.7◦ for n = 2, and θ = 69.6◦ for n = 3.
b) For electrons

p =
h

λ
=
hc

λc
=

1240 eV · nm
(0.5 nm) c

= 2480 eV/c

K = E − E0 =
√
p2c2 + E2

0 − E0 =
√

(2.480 keV)2 + (511 keV)2 − 511 keV = 6.0 eV

51. The uncertainty of the strike zone width is ∆x < 0.38 m. There is a second uncertainty, in
the x-component of the ball’s velocity, given by

∆px = m∆vx ≥
h̄

2 ∆x

Due to the uncertainty in velocity the ball’s x position will be uncertain by the time it reaches
home plate in an amount

∆vxt =
h̄t

2m∆x
≤ 0.38 m

where we have added the inequality because this is the condition for a strike. Since this
inequality must be satisfied simultaneously with the first one ∆x < 0.38 m, we multiply the
two inequalities together to find

h̄t

2m
≤ (0.38 m)2 = 0.144 m2

Rearranging we find

h̄ ≤ 2m (0.144 m2)
t

=
2 (0.145 kg) (0.144 m2)

(18 m) / (35 m/s)
= 0.081 J · s
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