Chapter 5

1. sinf; = A/2d = 0.259

Second order:

2\
sin @, = g = 2sin 6, 0y = sin~! (2sinf;) = 31.2°

03 = sin~! (3sin ;) = 50.9°

*2. Use A = 0.16 nm, and we know from the text that d = 0.282 nm for NaCl.

nA A
=1: 1 = — =—=0.284 =16.5°
n sin @ 54 ¥ 0.28 0 6.5

2
n=2: sillﬁzn—>\—é

2d—d=O.567 0 =346
Af = 34.6° — 16.5° = 18.1°

3. For n =1 we have A = 2dsinf = 2(0.314 nm) (sin 14°) = 0.152 nm

he 1240 eV - nm
p=l0 o EEOV I g6k
) 0152 nm  orlbkeV

The largest order n is the largest integer for which n\/2d < 1

2d
<2 _ 413
LY

so we can observe up through n = 4.

4. As in Davisson-Germer scattering nA = D sin ¢

¢ =sin"! (g) =sin™! (E}) = sin~! << 1240 eV - nm )> =3.0°

10° V) (0.24 nm

VB 6.626x 107 -5

- =3.68 x 107
p (3.0 kg) (6.0 m/s) x =

No, the wavelength of the water waves depends on the medium; they are strictly mechanical
waves.
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CHAPTER 5

Using the mean speed from kinetic theory (Chapter 9)

4 KT 4 [(138x10-% J/K) (308.15 K)
S L _ 4827
YT Ve m \/QWJ 28 (1.66 x 1027 kg) m/s
h

6.626 x 10734 J - s

== =295 x 1071
p 28(1.66 x 10-% kg) (482.7 m/s) % "
or roughly 3% of the size of the molecule.
(50 eV) (1.602 x 1071 J/eV) = 8.01 x 10718 J
34 7.
h 6.626 x 107°* J - s 173 % 10710

CV2mE | [2(9.100 x 10731 kg) (8.01 x 10-18 J)

This is the same as in the textbook’s example, to two places.

. When E >> Fj, then F = pc for the particle, just as for a photon. Therefore the electron’s

energy is approximately equal to the photon energy.
If E = 2F, then we cannot use F = pc. The exact expression is

\ E? -~ E§  \/3E,
p = —=
C

C

for the electron’s momentum. Then the de Broglie wavelength is

h he

_p_\/gEo

If the photon has the same wavelength its energy is

E:f:ﬁEo

a) Relativistically

VE? - E§ \/(K +me2)? — (me2)®  VKZ+2Kmc?

c c c
h he

)\ = — =
P VEK?2+2Kmc?

b) Non-relativistically, as in the text




CHAPTER 5

*10.

E? — B3

p=2t— 0 50GeV/c
c
h 1240 eV - nm

p 50 GeV

_ 248 x 107" m
fraction = 5% 0B m 0.012

\ = =248 x 107" m

11. a) For photons kinetic energy equals total energy and de Broglie wavelength is wavelength

he B 1240 eV - nm

K—=F —
A 0.15 nm

= 8.27 keV

b) The energy is low enough that we can use the non-relativistic formula:

B2 he)? 1240 eV - nm)?
L U i U240 eVorm)” - 69 0y
2mA°  2mc?AT 2(511 x 10% eV) (0.15 nm)
c)
h? he)? 1240 eV - nm)?
oo he (1240 Votm)™ 56 oy
2mA 2mec\ 2 (939 x 106 €V) (0.15 nm)
d)
I (he)® B (1240 eV - nm)?

K

- = s = 5 =9.17x107% eV
2mA® 2mce?\® 2(3727 x 106 eV) (0.15 nm)

12. a) As in Problem 6 we use the mean speed formula from kinetic theory:

4 kT 4 [(1.38x 10728 J/K) (10 K)
_ & R = 458.0
YT Ve m \/27TJ (1.675 x 1027 kg) m/s

)\_@_ 6.626 x 1073 J - s — 0.86 1m
p (1.675 x 10727 kg) (458.0 m/s)

4 kT 4 (1381072 J/K) (0.1 K)
_ [R =458
T VeV m \/2w¢ (1.675 x 1027 kg) m/s

A\ h 6.626 x 1073 J - s 3.6
=—= = 8.6 nm
p  (1.675 x 10727 kg) (45.8 m/s)
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CHAPTER 5

*13. From the accelerating potential we know K = eV = 3 keV.

E=K+E,=514kV

JE2 — E2 514 keV)? — (511 keV)?
§_ Bl kev) —( V) 54 kev/e

p fr
c c
h h 1240 eV -
)\:—:—C:—e nm:224pm
p pc 554 x10% eV
14. We use the relativistic formula derived in Problem 9:
= ﬁ B he
p VK21 2Kme?

a)A=0.194nm b)A=613x102nm c) A=1.94 x 1072 nm
A)A=6.02x103nm e A=164x102nm ) A =277 x10"* nm

15. a)
h 6.626 x 1073 J -
A=—= =2.60 x 107"
p 32(1.661 x 1027 kg) (480 m/s) 8 m
b)
34 7.
b 660x10M s

p (1.5 x 10-15 kg) (106 m/s)

16. Using the relativistic formula from Problem 9

/\_ﬁ_ he 1240 eV - nm

P VETF2EmE (102 oV) 1+ 2(1012 oV) (938 x 10° cV)

=124x107%® m

17.
d = Dsin(¢/2) = (0.23 nm) sin 16° = 0.063 nm

A= Dsin¢ = (0.23 nm) sin 32° = 0.122 nm

h  hc 1240 eV -nm
=—=—=——— =102k
P=X " (0.122 nm) ¢ 02 keV/e

E = \/p?c + E3 = /(102 keV)? + (511 keV)? = 511.102 keV
K=FE—E=102¢eV
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CHAPTER 5

18. At 48 eV -
1.22 .
A= 12200 VIR
V48 'V
d 0.177 nm
— o—1 o — :o—1 T — '40
¢ = sin ()\) sin <0.215 nm) 55
At 64 eV -
1.226 -V
A= — —0.153 nm
V64V
d 0.153 nm
= g -1 — = si -1 —_— - 4 .40
¢ =sin (A) . <0.215 nm> °
19. First we compute the wavelength of the electrons:
h hc 1240 eV - nm

A= =274 x 107 nm

P JE2—E /(513 keV)? — (511 keV)?

From Figure 5.6(a) we see that 20; = tan™! (2.1 cm/35 cm) = 3.434° or §; = 1.717°. Now
since A = 2d sin f we have

A 2.74 x 1072 nm
"7 9sinf,  2sin (L717°) o
1 —1 o
0y = §tan (2.3 cm/35 cm) = 1.880
A 2.74 x 1072
ds ==X M 0412 0m

" 2sinf, 2sin (1.880°)

1
03 = 5tam—l (3.2 cm/35 cm) = 2.612°

A 2.74 x 1072 nm
— = = 0.301
57 2sinf;  2sin(2.612°) o
*20.
h he 1240 eV - nm

= 0.181 nm

S V2mK  VomEK | [2(939 x 106 eV) (0.025 eV)

A 0.181 nm
D w1 il _ o
A= Dsing ¢ = sin < ) = sin (04511 ) =23.7
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CHAPTER 5

a) v=v/A=0.571 Hz

b) From the initial conditions given, we should use a cosine function.

U = Acos <(2;\T> (x — vt)) = (3.0 cm) cos <<7207Tm) (10 cm — (4 cm/s) (13 s))) = 3.0 cm

a) v=uv/A=1Hz b)T=1/v=1s
c)k=2r/A=n/2cm™'  d)w=2r/T =27 rad/s

a)
U =¥, + Uy = 0.003 [sin(6.02 — 300t) + sin(7.0z — 250t]

We can use a trig identity sin A + sin B = 2sin (A;B) coS (AEB)

U = 0.006 sin(6.5x — 275t) cos(—0.5x — 25¢)
or because cosine is an even function

U = 0.006 sin(6.5z — 275t) cos(0.5z + 25t)

b)
wi; +ws 550 rad/s
Uph ]{71 + kg 13 m-! m/s
” _Aw_50rad/s:50m/s

97 Ak 1m!
c¢) As in Equation (5.22) Az = 27/Ak = 2r m and the separation between zeroes is half of
this or m meters.

d) AkAz = (1 m™') (2r m) = 27

P p2r  p p v f

The particle and its “signal” are associated with the group velocity, not the phase velocity.

As in Example 5.4 ug = cA\" — cn\". Setting uy, = vy, = A", we find cA" = A" — cnA"™.
This can be satisfied only if n = 0, so v, is independent of A. This is consistent with the
idea that when a medium is non-dispersive, the phase and group velocities are equal and the
speed independent of wavelength.
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CHAPTER 5

26. Protons:

K+ E, _ 946.27 MeV 1

= = 1.00853 =/l = —
g 1.008532

= = 0.130
Ey 938.27 MeV

o~

ugr = e = 0.130c Uph, = ; ="7.7c

Electrons:

K+E, 8511 MeV 1
i E, 0.511 MeV b V' 16.662

Ugr = fe = 0.9982¢ vy, = ; — 1.002¢

27.

. ko+Ak/2
U(z,0) = /A(k) cos(kx) dk = AO/ cos(kx) dk
ko—Ak/2
k’o+Ak/2
= ?0 (sin (ko + Ak/2) z — sin (kg — Ak/2) z)

sin(kx)
x

ko—Ak/2
2A A
= —Zgin <§x> sin (ko)

T

See the diagrams below. At the half-width of |W(z,0)|?, we have sin? (Akz/2) = 1/2, so
Akx/2 =m/4 and © = 7/ (2Ak). Then Az = 2x = 7 /Ak, and AkAz = 7.

|$(x, 0)f?

sin (kox)

WAL,
Yy

Envelope

*28. Relativistically

dE _ d ¢ 4 2\1/2 pc’ pc?
= — = — E - —_— =
YTy T d e+ £5) Jrre+ BB

Classically
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CHAPTER 5

29. For a double slit, the amplitude of E is doubled, and hence the intensity (proportional to E?)
is higher by a factor of four for the double slit.

30.
1240 eV -
g ‘>\ :}?,/p: hc _ 240 ¢V - nm 999 m
sinf - sind /g2 E2sing /(512 keV)? — (511 keV)? sin 1°
*31.
i = tan — o _ 375 0
8 m

A = dsinf = df = (2000 nm) (3.75 x 10~*) = 0.75 nm
ﬁ_@_ 1240 eV - nm
A e (0.75nm) ¢
K = E— Ey=\/p2 + B3 — By = \/(1.653 keV)? + (511 keV)? — 511 keV = 2.67 eV

Such low energies will present problems, because low-energy electrons are more easily deflected
by stray electric fields.

p= = 1.653 keV/c

32. Normalization:

L L
/ A?sin? (mc) dr =1= A%*= or
0 L 2

h
I
| po

33. As before A = 2L/n so p, = nh/2L. At high energies we must use relativity, so

3.2
E:\/p2c2+E§:E01/pE702+1
0

B, [1+nr2/1E2 "
By |14 h22/4L2E?

By [1+9n22/412E2]"?
By | 1+ h2c2/4L2E}

By [1+4n2c2/12E2)"?
E, |1+ h2c2/4L2E}

These are quite different from the non-relativistic results, as one might expect. They do
reduce to the non-relativistic results in the low-energy limit.

61



CHAPTER 5

34.

Vr = dAsin (W;) Wy = Asin (223:) 1y = Asin (32‘%’)

where A = /2/L

35. For the n = 1 energy level

h? h2c? 1240 eV - nm)?
- e (1240 eV - nm) S =511 MeV

E—
8md*  8mc2d*  §(939.57 x 106 eV) (2 x 10~6 nm)

By the uncertainty principle ApAx = //2 at minimum. Non-relativistically (with Az = d)

(Ap)* B’
Enin = = = 1.30 MeV
2m 8md? ¢
*36. The uncertainty ratio is the same for any mass.
ApA AvAz > h Av > f

= — O =

por mvx_Q ' U_ZmAx 2mL
1 h? h? h

E —_ — 2 = — — _—
2" T SmL? o UV am2r T omL

Av  h/2mL 1

v h/2mL  2r

37. For circular motion L = rp and so AL = rAp. Along the circle x = rf and Az = rAf. Thus

ApAx = AL (r Af) = ALAO > h
r

=2
For complete uncertainty Af = 27 and
AL 2 _ R
2 47
38. AEAt > h/2 so
—34 7.
AE> N LOSA X0 s gy i10m g

= 2At (2% 10% y) (3.16 x 107 s/y)
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CHAPTER 5

39. If we use AwAt = 1/2 we find

1 |
Aw = = 2.5 x 10° rad
YT oA T 202 is) x 107 rad/s

40. ApAz = mAvAzx > h/2 so at minimum uncertainty

h 1.054 % 1073 J -5
Av = = =1.76 x 107
YT omAr  2(3x 1015 kg) (106 m) % m/s

AFE > =
— 2At 2x 10713 g
b) Using the photon relation £ = hc/A and taking a derivative
he E?
dE = ——d\ = ——d)\
A2 hc

Then letting AX = d\ and AF = dFE we have

3.29 x 1073 eV

3 = 0.18 nm
(4.7 eV)

AE
AN = hcﬁ = (1240 eV - nm)

The wavelength of the electrons should be 0.14 nm or less. For this wavelength

*42.
h  he 1240 eV - nm
=—=—=——— =28.86keV
P=X "¢ (0.14 nm) ¢ eV/e
K=F—FEy=\\/p*c*+ E} — FEy = \/(8.86 ke\/)2 + (511 keV)? — 511 keV =77 eV
43. For the angle 0 we find 0z = tanfr = 4000 nm/20 cm = 2 x 107°. The wavelength is
-5
)= dOr _ (0.05 m) (2 x 107?) _ 890 um
1.22 1.22
a)
he 1240 eV - nm
F=—=—-"—=1.51
A 820 nm ol eV

b) For non-relativistic electrons

2 h? h2c? 1240 eV - nm)*
b L (1240 Vmm)™ ) 106 oy

K = — pr—
2m  2mA® 2mc2A\* 2(511 x 103 eV) (820 nm)
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CHAPTER 5

Check with the uncertainty principle:

B 1055 x 1073 J .
Ap > = =1.32x107% kg -
P=9ns 2 (4000 nm) % g m/s

The actual momentum is

h 6626 x 107 J -

p:X 820 nm

=8.08 x 107* kg - m/s

This is allowed because p > Ap.

)\_ﬁ h 1240 €V - nm

_ — = 6.12 fm
P V2mK |\ [2(3727 MeV) (5.5 MeV)

The minimum kinetic energy according to the uncertainty principle is

(Ap)? R (1240 eV -nm)? /47>

K= = 2 = 2
2m 8m (Az)”  8(3727 MeV) (16 fm)

= 5.10 keV

Since the kinetic energy exceeds the minimum, it is allowed.
The proof is done in Example 6.9. With w = \/k/m we have a minimum energy

1. 10734 J - N
pohw Rk 1055 X107 s [EN/m g0 g
2 2\m 2 0.002 kg

At time t = 0 the velocity is uncertain by at least Avg = Ap/m = h/2mAx. After a time
t =m (Az)® /h we have

ho om(Az)? A

Az’ = (Avo)t = 2mAzx h 2

or half the distance of travel.

Both the spatial distribution t(z) and the wavenumber distribution ¢(k) should have the
same Gaussian form:

[L’2

P(x) = exp [—Wl (k) = exp [—(221)21

For conjugate variables (z, k) it is possible to obtain one distribution by taking a Fourier
transform of the other.
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CHAPTER 5

Letting A be a normalization constant for ¢(k) we have
A e k? ,
P(z) = T /_Oo dk exp [—W] exp (ikx)

The integral is done by completing the square:

A B
W(x) = Ner [m dk exp [—M +ikx — 22 Ak + xQAk‘Q}

_ \/1;1_ exp (—a?Ak?) / * dk exp K—@) (k- QixAkz)Q}
T —00

Letting u = (k — 2izAk?) /2Ak we have

P(z) = A\/z Ak exp (—xQAkzz) /

—00

o0

exp (—u2> du
The integral has a value /7 so

Y(x) = V2AAK exp (—szkQ)

Now comparing with the Gaussian form

¥e) e [_ (22;2]

we see that ] .
(Ak)* = 5 or AkAx = -
(2Ax) 2

48. AEAL > h/2
h  6.582 x 1076 eV .5

AE> W —3.29 eV

= oAt 2 % 10-16 g ¢

%49, ] .
1.2 x 10~ m
Ar=2 22X W M g% 1072
¢ 3.0x10° m/s <107
TR

AR > h _6.582><10 eV S:82Me\/

T2At 2(4.0 x 10724 )

This “lower bound” estimate of the rest energy is within a factor of two of the rest energy.
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50. a) In general nA = 2dsin# so

ol.

nA 0.5 nm
ing— 10— 2 (3995
YT %4 T "2(0.8 nm) "

It is required that sin @ < 1 so the allowed values of n are 1,2, 3. Plugging in we find § = 18.2°
forn =1, 0 = 38.7° for n = 2, and 6 = 69.6° for n = 3.

b) For electrons

h  hc B 1240 eV - nm

P=N "0~ (0.5 nm) ¢

K = E— Ey=\/p2c + B3 — Ey = \/(2.480 keV)? + (511 keV)2 — 511 keV = 6.0 eV

= 2480 eV /c

The uncertainty of the strike zone width is Ax < 0.38 m. There is a second uncertainty, in
the z-component of the ball’s velocity, given by

Ap, = mAv, > ——
b — 2Ax

Due to the uncertainty in velocity the ball’s x position will be uncertain by the time it reaches
home plate in an amount

ht
=—— <0.
Av,t 5 Ay <0.38 m

where we have added the inequality because this is the condition for a strike. Since this
inequality must be satisfied simultaneously with the first one Az < 0.38 m, we multiply the
two inequalities together to find

ht

5, < (038 m)* = 0.144 m?

Rearranging we find

p < 2m (0144 w?) _ 2(0.145 kg) (0.144 w?)

= ; IO
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