
Chapter 6

1. The function’s output does not approach zero in the limits −∞ and +∞, so it cannot be
normalized over these limits.

2. a) Given the placement of the − sign, it moves in the +x-direction.
b) By the same reasoning as in (a), it moves in the −x-direction.
c) It is a complex number.
d) It moves in the +x-direction. Looking at a particular phase kx− ωt, x must increase as t
increases in order to keep the phase constant.

3. The derivatives are ∂Ψ/∂t = −iωΨ and ∂2Ψ/∂x2 = −k2Ψ. Plugging into the time-dependent
Schrödinger equation

i~ (−iωΨ) = − ~
2

2m
(−k2Ψ

)
+ VΨ

The term on the left reduces to ~ωΨ = EΨ and the first term on the right is

~2k2

2m
Ψ =

p2

2m
Ψ = KΨ

where K is the kinetic energy. The result is E = K +V , which is a statement of conservation
of mechanical energy.

4.*
Ψ∗Ψ = A2 exp [−i(kx− ωt) + i(kx− ωt)] = A2∫ a

0
Ψ∗Ψdx = A2

∫ a

0
dx = A2a = 1

so A = 1/
√
a and

Ψ =
1√
a

exp [i(kx− ωt)]

5.*
Ψ∗Ψ = A2r2 exp

(−2r
α

)
∫ ∞

0
Ψ∗Ψdr = A2

∫ ∞
0

r2 exp
(−2r

α

)
dr = A2

[
2

(2/α)3

]
=
A2α3

4
= 1

Therefore

A =

√
4
α3 = 2α−3/2

67



CHAPTER 6

6. In order for a particle to have a greater probability of being at given point than at an adjacent
point, it would need to have infinite speed. This is seen as p = i~ (∂Ψ/∂x) → ∞ at a
discontinuity. Another problem is that the second derivative must exist in order to satisfy the
Schrödinger equation.

7. a) The wave function does not satisfy condition 3. The derivative of the wave function is not
continuous at x = 0.
b) Based on (a) the wave function cannot be realized physically.
c) Very close to x = 0 we could modify the function so that its derivative is continuous. If we
do so just in the neighborhood of x = 0, we need not change the function elsewhere.

8.

x =
3.4 + 3.9 + 5.2 + 4.7 + 4.1 + 3.8 + 3.9 + 4.7 + 4.1 + 4.5 + 3.8 + 4.5 + 4.8 + 3.9 + 4.4

15
= 4.247

〈
x2〉 =

3.42 + 3.92 + 5.22 + 4.72 + 4.12 + 3.82 + 3.92 + 4.72 + 4.12 + 4.52 + 3.82 + 4.52 + 4.82 + 3.92 + 4.42

15〈
x2〉 = 18.254

The standard deviation is

σ =

√∑
(xi − x)2

N
=

√∑
(x2

i − 2xix+ x2)
N

=

√∑
x2
i

N
− 2x

∑
xi
N

+
∑
x2

N

Look at the three terms in the sum. The first is just 〈x2〉. The second is −2x (x) = −2x2.
The third term is ∑

x2

N
=
Nx2

N
= x2

Putting the results together

σ =
√
〈x2〉 − 2x2 + x2 =

√
〈x2〉 − x2

For the data given we have

σ =
√
〈x2〉 − x2 =

√
18.254− (4.247)2 = 0.466
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9. If V is independent of time, then we can use the time-independent Schrödinger equation.
Then by Equation (6.15)

Ψ∗Ψ = ψ∗(x)ψ(x)e−iωteiωt = ψ∗(x)ψ(x)

Then ∫
Ψ∗Ψx dx =

∫
ψ∗(x)ψ(x)x dx

which is independent of time.

10.* Using the Euler relations between exponential and trig functions

ψ = A
(
eix + e−ix

)
= 2A cos (x)

Normalization: ∫ π

−π
ψ∗ψ dx = 4A2

∫ π

−π
cos2 (x) dx = 4A2π = 1

Thus A = 1/2
√
π and the probability of being in the interval [0, π/8] is

P =
∫ π/8

0
ψ∗ψ dx =

1
π

∫ π/8

0
cos2 (x) dx =

1
π

(
x

2
+

1
4

sin(2x)
)∣∣∣∣π/8

0

=
1
16

+
1

4π
√

2
∼= 0.119

11. ∫ π

0
ψ∗ψ dx = A2

∫ π

0
sin2 (x) dx = A2π

2
= 1

so A =
√

2/π and the probability of being in the interval [0, π/4] is

P =
∫ π/4

0
ψ∗ψ dx =

2
π

∫ π/4

0
sin2 (x) dx =

2
π

(
x

2
− 1

4
sin(2x)

)∣∣∣∣π/4
0

=
2
π

(
π

8
− 1

4

)
=

1
4
− 1

2π
∼= 0.091

12.

En =
n2π2~2

2mL2 En+1 =
(n+ 1)2 π2~2

2mL2

∆En = En+1 − En =
π2~2

2mL2

[
(n+ 1)2 − n2] =

π2~2

2mL2 (2n+ 1)

Computing specific values

∆E1 =
π2~2

2mL2 (3)

∆E8 =
π2~2

2mL2 (17)

∆E800 =
π2~2

2mL2 (1601)
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13.* The wave function for the nth level is ψn(x) =
√

2/L sin(nπx/L) so the average value of the
square of the wave function is

〈
ψ2
n(x)

〉
=

∫ L
0 ψ∗ψ dx∫ L

0 dx
=

1
L

∫ L

0
ψ∗ψ dx =

2
L2

∫ L

0
sin2

(nπx
L

)
dx

=
2
L2

L

2
=

1
L

This result is independent of n and is the same as the classical probability. The classical
probability is uniform throughout the box, but this is not so in the quantum mechanical case.

14. For this non-relativistic speed we have E = 1
2mv

2 = 1
2 (mc2) β2 = 0.002555 eV. Using E =

n2h2/8mL2 we find

n2 =
8mL2E

h2 =
8mc2L2E

h2c2 =
8 (511× 103 eV) (48.5 nm)2 (0.002555 eV)

(1240 eV · nm)2 = 16.0

and therefore n = 4.

15. The ground-state wave function is ψ1 =
√

2/L sin (πx/L).

P1 =
∫ L/3

0
ψ2

1dx =
2
L

∫ L/3

0
sin2

(πx
L

)
dx =

2
L

(
x

2
− L

4π
sin
(

2πx
L

))∣∣∣∣L/3
0

= 2

(
1
6
−
√

3
8π

)
∼= 0.1955

P2 =
∫ 2L/3

L/3
ψ2

1dx =
2
L

(
x

2
− L

4π
sin
(

2πx
L

))∣∣∣∣2L/3
L/3

= 2

(
1
6

+
√

3
4π

)
∼= 0.6090

P3 =
∫ L

2L/3
ψ2

1dx =
2
L

(
x

2
− L

4π
sin
(

2πx
L

))∣∣∣∣L
2L/3

= 2

(
1
6
−
√

3
8π

)
∼= 0.1955

Notice that P1 + P2 + P3 = 1 as required.
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16. The first excited state has a wave function ψ2 =
√

2/L sin (kx) with k = 2π/L.

P1 =
∫ L/3

0
ψ2

2dx =
2
L

(
x

2
− 1

4k
sin (2kx)

)∣∣∣∣L/3
0

= 2

(
1
6

+
√

3
16π

)
∼= 0.402

Similarly

P2 = 2

(
1
6
−
√

3
8π

)
∼= 0.196

and P3 = P1
∼= 0.402. Notice that P1 + P2 + P3 = 1.

17.*

E1 =
h2

8mL2 =
h2c2

8mc2L2 =
(1240 eV · nm)2

8 (511× 103 eV) (10−5 nm)2 = 3.76 GeV

Then E2 = 4E1 = 15.05 GeV and ∆E = E2 − E1 = 11.3 GeV. As noted in the text, this is
unreasonably high, implying that electrons are not bound to the nucleus.

18. a) As in the previous problem

E1 =
h2c2

8mc2L2 =
(1240 eV · nm)2

8 (938.27× 106 eV) (1.4× 10−5 nm)2 = 1.05 MeV

b)

E1 =
h2c2

8mc2L2 =
(1240 eV · nm)2

8 (3727× 106 eV) (1.4× 10−5 nm)2 = 263 keV

19. As in previous problems the ground state energy is

E1 =
h2

8mL2 =
h2c2

8mc2L2 =
(1240 eV · nm)2

8 (511× 103 eV) (0.5 nm)2 = 1.5045 eV

The other energy levels are En = n2E1:

E2 = 4E1 = 6.02 eV E3 = 9E1 = 13.54 eV E4 = 16E1 = 24.07 eV

The allowed jumps are

E4 − E3 = 10.5 eV E4 − E2 = 18.1 eV E4 − E1 = 22.6 eV
E3 − E2 = 7.5 eV E3 − E1 = 12.0 eV E2 − E1 = 4.52 eV
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20. Lacking an explicit equation for finite square well energies, we will approximate using the
infinite square well formula. In order to contain three energy levels the depth of the well
should be at least

E =
n2h2

8mL2 =
9h2

8mL2

Evaluating numerically with the given mass

E =
9h2

8mL2 =
9h2c2

8mc2L2 =
9 (1240 eV · nm)2

8 (2× 109 eV) (3× 10−6 nm)2 = 96.1 MeV

21. a) The wavelengths are longer for the finite well, because the wave functions can leak outside
the box.
b) Generally shorter wavelengths correspond to higher energies, so we expect energies to the
lower for the finite well.
c) Generally the number of bound states is limited by the depth of the well. We expect no
bound states for E > V0.

22.* From the boundary condition ψ1(x = 0) = ψ2(x = 0) we have Ae0 = Ce0 +De0 or A = C+D.
From the condition ψ′1(x = 0) = ψ′2(x = 0) we have αA = ikC − ikD. Solving for A and
combining with the first boundary condition gives

C +D =
ik

α
C − ik

α
D

or after rearranging
C

D
=
ik + α

ik − α
23. As in the previous problem matching the wavefunction at the boundary gives

CeikL +DeikL = Be−αL

and matching the first derivative gives

ikCeikL − ikDe−ikL = −αBe−αL

Eliminating B from these two equations gives

CeikL +DeikL =
1
α

(
ikDe−ikL − ikCeikL)

Thus
C

D
=
ik − 1
ik + 1

e2ikL

α
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24.

E =
π2~2

2mL2

(
n2

1 + n2
2 + n2

3

)
= E0

(
n2

1 + n2
2 + n2

3

)
where

E0 =
π2~2

2mL2

Then the second, third, fourth, and fifth levels are

E2 =
(
22 + 12 + 12)E0 = 6E0 (degenerate)

E3 =
(
22 + 22 + 12)E0 = 9E0 (degenerate)

E4 =
(
32 + 12 + 12)E0 = 11E0 (degenerate)

E5 =
(
22 + 22 + 22)E0 = 12E0 (not degenerate)

25. In general we have
ψ(x) = A sin

(n1πx

L

)
sin
(n2πy

L

)
sin
(n3πz

L

)
For ψ2(x) we can have (n1, n2, n3) = (1, 1, 2) or (1, 2, 1) or (2, 1, 1)
For ψ3(x) we can have (n1, n2, n3) = (1, 2, 2) or (2, 2, 1) or (2, 1, 2)
For ψ4(x) we can have (n1, n2, n3) = (1, 1, 3) or (1, 3, 1) or (3, 1, 1)
For ψ5(x) we can have (n1, n2, n3) = (2, 2, 2)

26.* We must normalize by doing the triple integral of ψ∗ψ :∫∫∫
ψ∗ψ dxdydz = 1

with ψ(x, y, z) given in the text. We can evaluate the iterated triple integral

A2
∫ L

0
sin2

(πx
L

)
dx

∫ L

0
sin2

(πy
L

)
dy

∫ L

0
sin2

(πz
L

)
dz = A2

(
L

2

)3

= 1

Solving for A we find

A =
(

2
L

)3/2

27. Taking the derivatives we find

O2ψ = − (k2
1 + k2

2 + k2
3

)
ψ

so the Schrödinger equation becomes

− ~
2

2m
O2ψ =

~2

2m
(
k2

1 + k2
2 + k2

3

)
ψ = Eψ

From the boundary conditions ki = niπ/Li so

E =
~2π2

2m

(
n2

1

L2
1

+
n2

2

L2
2

+
n2

3

L2
3

)
The three quantum numbers come directly from the three boundary conditions.
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28. ψ0(x) has these features: it is symmetric about x = 0; it has a maximum at x = 0 because
the wavefunction must tend toward zero for x → ±∞; there is no node in the ground state;
the wavefunction decreases exponentially where V > E.

29.*
∆En = En+1 − En =

(
n+ 1 +

1
2

)
~ω −

(
n+

1
2

)
~ω = ~ω for all n

This is true for all n, and there is no restriction on the number of levels.

30. Normalization

1 =
∫ ∞
−∞

ψ∗ψ dx = A2
∫ ∞
−∞

x2e−αx
2
dx = 2A2

∫ ∞
0

x2e−αx
2
dx = 2A2 1

4α

√
π

α

Solving for A we find A =
√

2π−1/4α3/4

〈x〉 = A2
∫ ∞
−∞

x3e−αx
2
dx = 0

because the integrand is odd over symmetric limits.〈
x2〉 = A2

∫ ∞
−∞

x4e−αx
2
dx =

3
4
A2π1/2α−5/2 =

3
2α

∆x =
√
〈x2〉 − 〈x〉2 =

√
3

2α

31.

E =
(
n+

1
2

)
~ω =

(
n+

1
2

)
hν =

(
4.136× 10−15 eV · s) (1013 s−1)(n+

1
2

)
=

(
4.136× 10−2 eV

)(
n+

1
2

)
For the harmonic oscillator ω2 = k/m so

k = ω2m = 4π2ν2m = 4π2 (1013 s−1)2 (3.32× 10−26 kg
)

= 131 N/m

32. Taking the second derivative of ψ for the Schrödinger equation:

dψ

dx
= 5Aαxe−αx

2/2 − 2α2Ax3e−αx
2/2

d2ψ

dx2 =
(
5Aα− 5Aα2x2 − 6Aα2x2 + 2Aα3x4) e−αx2/2

The Schrödinger equation says that

d2ψ

dx2 =
(
α2x2 − β)ψ =

(
α2x2 − β)A (2αx2 − 1

)
e−αx

2/2

=
(
2α2x4 + x2 (−2αβ − α2)+ β

)
Ae−αx

2/2
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Matching our two values of d2ψ/dx2 we see that the Schrödinger equation can only be satisfied
if β = 5α. Then

2mE
~2 = 5

√
mk

~2

or E = 5
2~ω. This is the expected result, because the wave function contains a second-order

polynomial (in x), and with n = 2 we expect E =
(
n+ 1

2

)
~ω = 5

2~ω.

33. By symmetry 〈p〉 = 0. Setting the ground state energy equal to 〈p2〉 /2m we find

〈p2〉
2m

=
1
2
~ω

〈
p2〉 = ~ωm

Note, however, that a detailed calculation gives 〈p2〉 = 1
2~ωm. The factor of one-half is

evidently the difference between the kinetic energy and the total energy, which if taken into
account does give the correct result.

34.* Taking the derivatives for the Schrödinger equation

dψ

dx
= Ae−αx

2/2 − Aαx2e−αx
2/2

d2ψ

dx2 = −3Aαxe−αx
2/2 + Aα2x3e−αx

2/2 =
(
α2x2 − 3α

)
ψ

Thus
d2ψ

dx2 =
(
α2x2 − β)ψ =

(
α2x2 − 3α

)
ψ

Thus we see that α = 3β or
2mE
~2 = 3

√
mk

~2

E =
3
2
~
√
k

m
=

3
2
~ω

35. The classical frequency is (see Chapter 10) ω =
√
k/µ =

√
k (m1 +m2) /m1m2 =

√
2k/m

since the masses are equal in this case. The energies of the ground state (E0) and the first
three excited states are given by En =

(
n+ 1

2

)
~ω so the possible transitions (from E3 to E2,

E3 to E1, etc. are ∆E = ~ω, 2~ω, and 3~ω, or

~ω = ~
√

2k
m

=
(
6.582× 10−16 eV · s)√2 (1.1× 103 N/m)

1.673× 10−27 kg
= 0.755 eV

λ =
hc

E
=

1240 eV · nm
0.755 eV

= 1640 nm

2~ω = 2
(
6.582× 10−16 eV · s)√2 (1.1× 103 N/m)

1.673× 10−27 kg
= 1.51 eV

λ =
hc

E
=

1240 eV · nm
1.51 eV

= 822 nm
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3~ω = 3
(
6.582× 10−16 eV · s)√2 (1.1× 103 N/m)

1.673× 10−27 kg
= 2.26 eV

λ =
hc

E
=

1240 eV · nm
2.26 eV

= 549 nm

36. The kinetic energy is (see Chapter 9)

K =
3
2
kT =

3
2
(
8.617× 10−5 eV/K

)
(12000 K) = 1.551 eV

Assume a square-top potential of height

V0 =
q1q2

4πε0r
=

6e2

4πε0r
=

6 (1.440 eV · nm)

(1.2× 10−6 nm) (12)1/3 = 3.145 MeV

where we have used the fact that the radius of a nucleus is approximately 1.2A1/3 fm (see
Chapter 12). For the width of the potential barrier use twice the radius or

L = 2
(
1.2× 10−6 nm

)
(12)1/3 = 5.49× 10−6 nm

Then

κ =

√
2mc2 (V0 − E)

~c
=

(2 (938.27× 106 eV) (3.145× 106 eV − 1.551 eV))1/2

197.3 eV · nm
= 3.89×105 nm−1

κL =
(
3.89× 105 nm−1) (5.49× 10−6 nm

)
= 2.135

T =

(
1 +

(3.145× 106 eV)2 sinh2 (2.135)
4 (1.551 eV) (3.145× 106 eV − 1.551 eV)

)−1

= 1.14× 10−7

37. a)
p =

√
2m (E − V0)

λ =
h

p
=

h√
2m (E − V0)

K = E − V0

b)
p =

√
2m (E + V0)

λ =
h

p
=

h√
2m (E + V0)

K = E + V0

38.* In each case κL� 1 so we can use

T = 16
E

V0

(
1− E

V0

)
e−2κL
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where

κ =

√
2mc2 (V0 − E)

~c
=

(2 (3727× 106 eV) (10× 106 eV))1/2

197.3 eV · nm
= 1.38× 1015 nm−1

a) With L = 1.3× 10−14 m

Ta = 16
5 MeV
15 MeV

(
1− 5 MeV

15 MeV

)
e−2(1.38×1015 m−1)(1.3×10−14 m) = 9.3× 10−16

b) With V0 = 30 MeV

κ =

√
2mc2 (V0 − E)

~c
=

(2 (3727× 106 eV) (25× 106 eV))1/2

197.3 eV · nm
= 2.19× 1015 m−1

Tb = 16
5 MeV
30 MeV

(
1− 5 MeV

30 MeV

)
e−2(2.19×1015 m−1)(1.3×10−14 m) = 4.2× 10−25

c) With V0 = 15 MeV we return to the original value of κ, but now L = 2.6× 10−14 m and

Tc = 16
5 MeV
15 MeV

(
1− 5 MeV

15 MeV

)
e−2(1.38×1015 m−1)(2.6×10−14 m) = 2.4× 10−31

By comparison Ta > Tb > Tc.

39. When E > V the wavefunction is oscillating, with a longer wavelength as E − V decreases.
Then when E < V the wavefunction decays.

Ψ(x)

v

Oscillation

Decay

x

40. In general for E > V0

R = 1− T = 1−
[
1 +

V 2
0 sin2 (k2L)

4E (E − V0)

]−1

If E � V0 then 4E (E − V0) ∼= 4E2. From the binomial theorem (1 + x)−1 ∼= 1− x for small
x and

R ∼= 1−
[
1− V 2

0 sin2 (k2L)
4E2

]
=
V 2

0 sin2 (k2L)
4E2

R ∼=
(
V0 sin (k2L)

2E

)2
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41.

T =
[
1 +

V 2
0 sin2 (k2L)

4E (E − V0)

]−1

a) To get T = 1 we require sin(k2L) = 0. Except for the trivial solution L = 0, this occurs
whenever k2L = nπ with n an integer. Letting n = 1 we find

L =
π

k2
=

π~√
2m (E − V0)

=
1
2

hc√
2mc2 (E − V0)

=
1
2

1240 eV · nm√
2 (511× 103 eV) (7.2 eV)

= 0.229 nm

Any integer multiple of this value will work.
b) For maximum reflection sin2 (k2L) = 1 or L = nπ/2k2 for any odd integer n. From the
result of (a) we see that the first maximum is with L equal to half the value of L for the first
minimum, or L = 0.114 nm.

42.

κ =

√
2mc2 (V0 − E)

~c
=

(2 (511× 103 eV) (1.5 eV))1/2

197.4 eV · nm
= 6.27 nm−1

With a probability of 10−4 we know κL� 1 and we can use

T = 16
E

V0

(
1− E

V0

)
e−2κL = 16

1
2.5

(
1− 1

2.5

)
e−2κL = 3.84e−2κL = 10−4

Solving for L:

L =
ln (3.84× 104)

2 (6.27× 109 m−1)
= 8.42× 10−10 m.

Now using the proton mass

κ =

√
2mc2 (V0 − E)

~c
=

(2 (938.27× 106 eV) (1.5 eV))1/2

197.4 eV · nm
= 268.8 nm−1

T = 3.84e−2κL = 3.84e−2(268.8×109 m−1)(8.42×10−10 m) = 9.9× 10−197

The proton’s probability is much lower!

43.* As in the text we find

E =
~2π2

2m

(
n2

1

L2
1

+
n2

2

L2
2

+
n2

3

L2
3

)
and substituting the given values of L we find

E =
~2π2

2mL2

(
n2

1 + 2n2
2 +

n2
3

4

)
Letting E0 = ~2π2/2mL2 we have

E1 = E0

(
1 + 2 +

1
4

)
=

13
4
E0
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E2 = E0

(
1 + 2 +

22

4

)
= 4E0

E3 = E0

(
1 + 2 +

32

4

)
=

21
4
E0

E4 = E0

(
22 + 2 +

1
4

)
=

25
4
E0

E5 = E0

(
1 + 2 +

42

4

)
= E0

(
22 + 2 +

22

4

)
= 7E0

Of those listed, only E5 is degenerate.

44. Recognizing this as the infinite square well wave function we see that k = 3π/α and

E =
p2

2m
=
~2k2

2m
=

9~2π2

2mα2

45.* a) In general inside the box we have a superposition of sine and cosine functions, but the
boundary condition ψ(0) = 0 allows only the sine function to survive, and thus ψ = A sin(kx).
With V = 0 inside the well E = p2/2m = ~2k2/2m or k =

√
2mE/~. Outside the well

the decaying exponential is required as in the tunneling example in the text, with E =
~2k2/2m+ V0 which reduces to κ = ik =

√
2m (V0 − E)/~.

b) Equating the wavefunctions and first derivatives at x = L:

A sin(kL) = Be−κL

kA cos(kL) = −κBe−κL

Dividing these two equations
tan(kL)

k
= −1

κ

κ tan(kL) = −k

46. From the previous problem κ tan(kL) = −k or κL tan(kL) = −kL. Let α = kL and β = κL
so that

β tanα = −α (1)

Now from their definitions

α2 + β2 = k2L2 + κ2L2 =
2mEL2

~2 +
2m (V0 − E)L2

~2 =
2mV0L

2

~2 = 1 (2)

Solving Equations (1) and (2) numerically we find α = 0.20 and β = −0.98. Then E is given
by

E =
~2k2

2m
= ~2 (α/L)2

2m
=

0.04 ~2

2mL2

47. Referring to the solution to the previous problem, we see that only a finite number of solutions
to Equation (1) exist up to any particular (finite) value of V0. Therefore for any finite V0 only
a finite number of combinations of α and β will satisfy both equations, and the number of
bound states is finite.
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48. Using the nomenclature of Problem 46

κL =

√
2m (V0 − E)L

~
=

√
2 (939× 106 eV) (2.2× 106 eV) (3.5× 10−6 nm)

197.4 eV · nm
= 1.14

where we have used the mass of one nucleon, because one nucleon is “bound” by the other.
Now κL = β = −α/ tanα so α ∼= 2.07 = kL. Then

E =
~2k2

2m
= ~2 (α/L)2

2m
= ~2 (2.07/L)2

2m
=

2.072 (197.4 eV · nm)2

2 (939× 106 eV) (3.5× 10−6 nm)2 = 7.26 MeV

This means that V0 = 2.2 MeV +E = 9.46 MeV. The next solution of the equation β =
−α/ tanα is at α ∼= 4.94, a value that will put E > V0. Therefore there are no excited states.

49. a) This was done in Problem 32.
b)

〈x〉 =
∫ ∞
−∞

xψ∗ψ dx = 0

because the integrand is odd over symmetric limits. To find 〈x2〉 we first need to normalize:

A2
∫ ∞
−∞

(
1− 2αx2)2

e−αx
2
dx = 2A2

∫ ∞
0

(
1− 2αx2)2

e−αx
2
dx

= 2A2
∫ ∞

0

(
1− 4αx2 + 4α2x4)2

e−αx
2
dx = 1

= 2A2

√
π

α

(
1
2
− 1 +

3
2

)
= 1

Thus A2 = 1
2

√
α
π

and〈
x2〉 =

∫ ∞
−∞

x2 ψ∗ψ dx = 2A2
∫ ∞

0
x2 (1− 4αx2 + 4α2x4)2

e−αx
2
dx =

1
α

(
1
4
− 3

2
+

15
4

)
=

5
2α

50. Using the known values of ψ1 and ψ2 we see

ψ =
1
2
ψ1 +

√
3

2
ψ2 =

1
2

√
2
L

sin
(πx
L

)
+
√

3
2

√
2
L

sin
(

2πx
L

)
ψ =

√
1

2L
sin
(πx
L

)
+

√
3

2L
sin
(

2πx
L

)
For normalization∫ L

0
ψ∗ψdx =

∫ L

0

(
1

2L
sin2

(πx
L

)
+

3
2L

sin2
(

2πx
L

)
+
√

3
2L

sin
(πx
L

)
sin
(

2πx
L

))
dx

The third term vanishes because of the orthogonality of the trig functions, leaving∫ L

0
ψ∗ψdx =

∫ L

0

(
1

2L
sin2

(πx
L

)
+

3
2L

sin2
(

2πx
L

))
dx

=
1

2L

∫ L

0
sin2

(πx
L

)
dx+

3
2L

∫ L

0
sin2

(
2πx
L

)
dx

=
1

2L

(
L

2

)
+

3
2L

(
L

2

)
= 1 as required
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51. Using the Taylor approximation for the exponential ex ∼= 1 + x for small x, we have

V (r) = D
(
1− e−a(r−re))2 ∼= D (1− (1− a(r − re)))2 = D (a(r − re))2 = Da2 (r − re)2

52. We will solve for numerical values of the factors in front of the quantum numbers:

~ω = ~a

√
2D
µ

= ~a

√
2D (m1 +m2)

m1m2

=
(
6.582× 10−16 eV · s) (7.8× 109 m−1)
×
√

2 (4.42 eV) (39.10 u + 35.45 u)
(39.10 u) (35.45 u)

1 u
931.5× 106 eV/c2

(
2.998× 108 m/s

c

)
= 0.03477 eV

~2ω2

4D
=

(0.03477 eV)2

4 (4.42 eV)
= 6. 838× 10−5 eV

Evaluating for specific energy levels:

E0 =
(

0 +
1
2

)
(0.03477 eV)−

(
0 +

1
2

)2 (
6. 838× 10−5 eV

)
= 0.017 eV

E1 =
(

1 +
1
2

)
(0.03477 eV)−

(
1 +

1
2

)2 (
6. 838× 10−5 eV

)
= 0.052 eV

E2 =
(

2 +
1
2

)
(0.03477 eV)−

(
2 +

1
2

)2 (
6. 838× 10−5 eV

)
= 0.086 eV

E3 =
(

3 +
1
2

)
(0.03477 eV)−

(
3 +

1
2

)2 (
6. 838× 10−5 eV

)
= 0.121 eV

Note that for these low quantum numbers the second-order correction is small.

53.* The solution is identical to the presentation in the text for the three-dimensional box but
without the z dimension. Briefly, assuming a trial function for the form

ψ(x, y) = A sin(k1x) sin(k2y)

Assuming that one corner is at the origin, applying the boundary conditions leads to

k1 =
nxπ

L
k2 =

nyπ

L

and substituting into the Schrödinger equation leads to

E =
π2~2

2mL2

(
n2
x + n2

y

)
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To normalize do the iterated double integral∫ L

0

∫ L

0
ψ∗ψdxdy = A2

∫ L

0

∫ L

0
sin2

(nxπx
L

)
sin2

(nyπy
L

)
dxdy

= A2
(
L

2

)(
L

2

)
= 1

so A = 2/L. Now to find the energy levels use the energy equation with different values of
the quantum numbers. Letting E0 = π2~2/2mL2 we have

E1 = E0
(
12 + 12) = 2E0 n1 = 1, n2 = 1

E2 = E0
(
22 + 12) = 5E0 n1 = 2, n2 = 1 or vice versa

E3 = E0
(
22 + 22) = 8E0 n1 = 2, n2 = 2

E4 = E0
(
32 + 12) = 10E0 n1 = 3, n2 = 1 or vice versa

E5 = E0
(
32 + 22) = 13E0 n1 = 3, n2 = 2 or vice versa

E6 = E0
(
42 + 12) = 17E0 n1 = 4, n2 = 1 or vice versa
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