
Chapter 7

1.* Starting with Equation (7.7), let the electron move in a circle of radius a in the xy-plane, so
sin θ = 1. With both r and θ constant, R and f are also constant. Let R = f = 1. Then
g = ψ and the derivatives of R and f are zero. With this Equation (7.7) reduces to

−2µ
h̄2 a

2 (E − V ) =
1
ψ

d2ψ

dφ2

In uniform circular motion with an inverse-square force, we know from the planetary model
that E = V/2, and

E − V =
V

2
− V = −V

2
= |E|

Thus

−2µ
h̄2 a

2 |E| = 1
ψ

d2ψ

dφ2

1
a2

d2ψ

dφ2 +
2µ
h̄2 a

2 |E| = 0

2. This is a simple harmonic oscillator equation. Assume a standard trial solution ψ = A exp (iBφ).
With this trial solution d2ψ/dφ2 = −B2ψ. Plugging this into the equation from the previous
problem

1
a2

(
−B2

)
ψ +

2µ
h̄2 a

2 |E| = 0

Solving for B,

B =

√
2µ |E| a
h̄

To find A, normalize ∫ 2π

0
ψ∗ψ dφ = 1 = A2

∫ 2π

0
dφ = 2πA2

so A =
√

1/2π. Note that B must be an integer (let B = n) so that ψ will be single-valued
[ψ(0) = ψ(2π)]. With B = n we have

n2 =
2µ
h̄2 |E| a2 |E| = n2h̄2

2µa2

For circular motion |E| = L2/2I where rotational inertia I = µa2 for a particle of mass µ.
Thus

L2 = 2I |E| = 2µa2n
2h̄2

2µa2 = n2h̄2

or L = nh̄, which is the Bohr condition.
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3. Assuming a trial solution g = Aeikφ (which is easily verified by direct substitution), and using
the boundary condition g(0) = g(2π), we find

Ae0 = Ae2πik

which is only true for integers k.

4. Using the transformations it can be shown that for any vector ~A

~∇ψ = r̂
∂ψ

∂r
+ θ̂

1
r

∂ψ

∂θ
+ φ̂

1
r sin θ

∂ψ

∂φ

~∇ · ~A =
1
r2

∂

∂r

(
r2Ar

)
+

1
r sin θ

∂

∂θ
(sin θ Aθ) +

1
r sin θ

∂Aφ
∂φ

Because ∇2ψ = ~∇ · ~∇ψ we can combine our results to find

∇2ψ =
1
r2

∂

∂r

(
r2∂ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂φ2

and from this a simple rearrangement gives the desired result.

5.* Letting the constants in the front of R be called A we have

R = A
(

2− r

a0

)
e−r/2a0

dR

dr
= A

(
− 2
a0

+
r

2a2
0

)
e−r/2a0

d2R

dr2 = A

(
3

2a2
0
− 1

4a3
0

)
e−r/2a0

Substituting these into Equation (7.14) we have(
− 1

4a3
0
− 2µE
a0h̄

2

)
r +

(
5

2a2
0

+
4µE
h̄2 −

2µe2

4πε0a0h̄
2

)
+
(
− 4
a0

+
4µe2

4πε0h̄2

)
1
r

= 0

To satisfy the equation, each of the expressions in parentheses must equal zero. From the 1/r
term we find

a0 =
4πε0h̄2

µe2

which is correct. From the r term we get

E = − h̄2

8µa2
0

= −E0

4

which is consistent with the Bohr result. The other expression in parentheses also leads
directly to E = −E0/4, so the solution is verified.
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6. As in the previous problem
R = Are−r/2a0

dR

dr
= A

(
1− r

2a0

)
e−r/2a0

r2dR

dr
= A

(
r2 − r3

2a0

)
e−r/2a0

d

dr

(
r2dR

dr

)
= A

(
2r − 2r2

a0
+

r3

4a2
0

)
e−r/2a0

Substituting these into Equation (7.14) we have (with l = 1)(
1

4a2
0

+
2µE
h̄2

)
r +

(
− 1

2a0
+

2µe2

4πε0h̄2

)
+ (2− 2)

1
r

= 0

The 1/r term vanishes, and the middle expression (without r) reduces to

a0 =
4πε0h̄2

µe2

which is correct. From the r term we get

E = − h̄2

8µa2
0

= −E0

4

which is consistent with the Bohr result.

7.

R =
e−r/2a0

√
3 (2a0)3/2

r

a0
R∗R =

e−r/a0

3 (2a0)3

(
r

a0

)2

To normalize integrate over all space∫ ∞
0

r2R∗Rdr =
1

24a5
0

∫ ∞
0

r4e−r/a0 dr =
1

24a5
0

4!
(1/a0)5 = 1

so the wave function R21 was normalized.

8.* Do the triple integral over all space∫∫∫
ψ∗ψ dV =

1
πa3

0

∫ 2π

0

∫ π

0

∫ ∞
0

r2 sin θ e−2r/a0 dr dθ dφ

The φ integral yields 2π, and the θ integral yields 2. This leaves∫∫∫
ψ∗ψ dV =

4π
πa3

0

∫ ∞
0

r2 e−2r/a0 dr =
4
a3

0

2
(2/a0)3 = 1

as required.
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9. It is required that l < 6 and |ml| ≤ l.

l = 5: ml = 0,±1,±2,±3,±4,±5 l = 4: ml = 0,±1,±2,±3,±4

l = 3: ml = 0,±1,±2,±3 l = 2: ml = 0,±1,±2 l = 1: ml = 0,±1 l = 0: ml = 0

10.* n = 3 and l = 1, so ml = 0 or ±1. Thus Lz = 0 or ±h̄

L =
√
l (l + 1))h̄ =

√
2 h̄

Ly and Lx are unrestricted except for the constraint L2
x + L2

y = L2 − L2
z.

11.

ψ310 = R31Y10 =
1
81

√
2
π
a
−3/2
0

(
6− r

a0

)(
r

a0

)
e−r/3a0 cos θ

ψ31±1 = R31Y1±1 =
1

81
√
π
a
−3/2
0

(
6− r

a0

)(
r

a0

)
e−r/3a0 sin θ e±iπ

12. The sum is of the form
x∑

y=−x
y2

which by symmetry is equivalent to

2
x∑
y=1

y2

Let us first consider (as a lemma) the sum

x∑
y=1

[
(1 + y)3 − y3

]
=

x∑
y=1

[
3y2 + 3y + 1

]
=

(
23 − 13

)
+
(
33 − 23

)
+ ... = (x+ 1)3 − 13 = x3 + 3x2 + 3x

Now let us write

3
x∑
y=1

y2 =
x∑
y=1

[
(1 + y)3 − y3

]
− 3

x∑
y=1

y =
x∑
y=1

1

The first of these sums is given by our lemma above. The others are
x∑
y=1

y =
1
2
x (x+ 1)

x∑
y=1

1 = x

Combining these results

3
x∑
y=1

y2 = x3 + 3x2 + 3x− 3
2
x (x+ 1)− x =

1
2
x (2x+ 1) (x+ 1)
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Therefore
x∑
y=1

y2 =
1
6
x (2x+ 1) (x+ 1)

and
x∑

y=−x
y2 =

1
3
x (2x+ 1) (x+ 1)

Then 〈
L2
〉

= 3
〈
L2
z

〉
=

3
2l + 1

l∑
ml=−l

m2
l h̄

2 = l (l + 1) h̄2

13. As in Example 7.2 the degeneracy is n2 = 36.

14. There are five possible orientations,
corresponding to the five different
values of ml = 0,±1,±2.

For the ml = −1 component we have (with l = 2)

L =
√
l (l + 1) h̄ =

√
6 h̄ Lz = mlh̄ = −h̄

L2
x + L2

y = L2 − L2
z = 6h̄2 − h̄2 = 5h̄2

y

0

1

–1

–2

2

15.*
cos θ =

Lz
L

=
ml√

l (l + 1)

For this extreme case we could have l = ml so

cos (3◦) =
l√

l (l + 1)
cos2 (3◦) =

l2

l (l + 1)
=

l2

l2 + l

Rearranging we find

l =
(

1
cos2 (3◦)

− 1
)−1

= 364.1

and we have to round up in order to get within 3◦, so l = 365.
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16. There is one possible ml value for l = 0, three values of ml for l = 1, five values of ml for
l = 2, and so on, so that the degeneracy of the nth level is

1 + 3 + 5 + ... = n2

17. With l = 1 we have ml = 0,±1 and Lz = mlh̄ = 0,±h̄.

18. The maximum difference is between the ml = −2 and ml = +2 levels, so ∆ml = 4. Then

∆V = µB (∆ml)B =
(
5.788× 10−5 eV/T

)
(4) (2.5 T) = 5.79× 10−4 eV

19.* Differentiating E = hc/λ we find

dE = −hc
λ2dλ or |∆E| = hc

λ2 |∆λ|

In the Zeeman effect between adjacent ml states |∆E| = µBB so µBB =
(
hc/λ2

0

)
|∆λ| or

∆λ =
λ2

0µBB

hc

20. See the solution to Problem 14 for the sketch. To compute the angles with l = 2

cos θ =
Lz
L

=
ml√

l (l + 1)
=
ml√

6

There are five different values of θ, corresponding to the different ml values 0,±1,±2:

θ = cos−1

(
2√
6

)
= 35.3◦ θ = cos−1

(
1√
6

)
= 65.9◦ θ = cos−1 (0) = 90◦

θ = cos−1

(−1√
6

)
= 114.1◦ θ = cos−1

(−2√
6

)
= 144.7◦

21. With l = 3 we have (as in the previous problem)

cos θ =
Lz
L

=
ml√

l (l + 1)
=

ml√
12

For the minimum angle ml = l = 3 and

θ = cos−1

(
3√
12

)
= cos−1

(√
3

2

)
= 30◦
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22.* From Problem 19

∆λ =
λ2

0µBB

hc
so the magnetic field is

B =
hc∆λ
λ2

0µB
=

(1240 eV · nm) (0.04 nm)
(656.5 nm)2 (5.788× 10−5 eV/T)

= 1.99 T

23. There are seven different states, corresponding to ml = 0,±1,±2,±3. In the absence of a
magnetic field

E = −E0

n2 = −13.606 eV
25

= −0.544 eV

The Zeeman splitting is given by

∆E = µBBml =
(
5.788× 10−5 eV/T

)
(3 T)ml =

(
1.7364× 10−4 eV

)
ml

For ml = 0 we have ∆E = 0. For the other ml states

ml = ±1: ∆E =
(
1.7364× 10−4 eV

)
(±1) = ±1.74× 10−4 eV

ml = ±2: ∆E =
(
1.7364× 10−4 eV

)
(±2) = ±3.47× 10−4 eV

ml = ±3: ∆E =
(
1.7364× 10−4 eV

)
(±3) = ±5.21× 10−4 eV

24. From the text the magnitude of the spin magnetic moment is

µs =
2µB

∥∥∥~S∥∥∥
h̄

=
2µB
h̄

√
3h̄
2

=
√

3µB

The the z-component of the magnetic moment is (see Figure 7.9)

µz = µs cos θ = µs
1/2√
3/2

=
µs√

3
= µB

The potential energy is V = −~µ · ~B = −µzBz and so the vertical component of force is
Fz = −dV/dz = µz (dBz/dz). From mechanics the acceleration is

az =
Fz
m

=
µz
m

dBz

dz

and with constant acceleration the vertical deflection of each beam is z = 1
2azt

2. With the
time equal to the horizontal distance divided by incoming speed, or t = x/vx, we have

z =
1
2
azt

2 =
1
2

(
µz
m

dBz

dz

)(
x

vx

)2
=

1
2

(
9.27× 10−24 J/T

1.8× 10−25 kg

)
(2000 T/m)

(
0.071 m
925 m/s

)2

= 3.034× 10−4 m

The separation between the two silver beams is twice this amount, or 6.07× 10−4 m.
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25. The kinetic energy of the atoms is

K =
3
2
kT =

3
2

(
1.38× 10−23 J/K

)
(1273 K) = 2.64× 10−20 J

From Problem 24 we see that the separation of the beams is (remember µz = µB)

s = 2z =
(
µB
m

dBz

dz

)(
x

vx

)2

Rearranging we see that

x2dBz

dz
=
smv2

µB
=

2sK
µB

=
2 (0.01 m) (2.64× 10−20 J)

9.27× 10−24 J/T
= 57.0 T ·m

The magnet should be designed so that the product of its length squared and its vertical
magnetic field gradient be 57 T·m.

26.* As shown in Figure 7.9 the electron spin vector cannot point in the direction of ~B, because
its magnitude is S =

√
s(s+ 1) =

√
3/4 h̄ and its z-component is Sz = msh̄ = h̄/2. If the

z-component of a vector is less than the vector’s magnitude, the vector does not lie along the
z-axis.

27. For the 5f state n = 5 and l = 3. The possible ml values are 0,±1,±2, and ±3 with
ms = ±1/2 for each possible ml value. The degeneracy of the 5f state is then (with 2 spin
states per ml) equal to 2(7) = 14.

28. The spin degeneracy is 2 and the n2 is shown in Problem 16.

29. The selection rule ∆ml = 0,±1 gives three lines in each case.

30. a) ∆l = 0 is forbidden
b) allowed but with ∆n = 0 there is no energy difference unless an external magnetic field is
present
c) ∆l = −2 is forbidden
d) allowed with absorbed photon of energy

∆E = E0

( 1
22 −

1
42

)
= 2.55 eV

90



CHAPTER 7

31.*
P (r) = r2 |R(r)|2 = A2e−r/a0

(
2− r

a0

)2
r2 = A2

(
4r2 − 4r3

a0
+
r4

a2
0

)
e−r/a0

To find the extrema set dP/dr = 0:

0 = − 1
a0

(
4r2 − 4r3

a0
+
r4

a2
0

)
e−r/a0 +

(
8r − 12r2

a0
+

4r3

a2
0

)
e−r/a0

0 = −r
3

a3
0

+
8r2

a2
0
− 16r

a0
+ 8

Letting x = r/a0 the above equation can be factored into (x− 2) (x2 − 6x+ 4) = 0. From
the first factor we get x = 0 (or r = 2a0), which from the graph we can see is a minimum. the
second parenthesis gives a quadratic equation with solutions x = 3±

√
5, so r =

(
3±
√

5
)
a0.

These are both maxima.

32. In the previous problem we found that the two maxima are at r =
(
3±
√

5
)
a0. From the

graph it is clear that the peak at r =
(
3 +
√

5
)
a0 is higher. This can be verified by putting

in the two values of r and computing P (r). The most probable location is therefore at
r =

(
3 +
√

5
)
a0
∼= 5.24a0, which is significantly further from the nucleus than the 2p peak at

r = 4a0.

33. From the solution to Problem 31 we see that P (r) = 0 at r = 2a0. Note that P (0) = 0 also.

34.

P (r) = r2 |R(r)|2 =
4
a3

0
r2e−2r/a0

With r � a0 throughout this interval we can say e−2r/a0 ∼= 1. Therefore the probability of
being inside a radius 10−15 m is∫ 10−15

0
P (r) dr =

4
a3

0

∫ 10−15

0
r2 dr =

4r4

3a3
0

∣∣∣∣∣
10−15

0

= 9.0× 10−15

35.

P (r) = r2 |R(r)|2 =
4
a3

0
r2e−2r/a0

To find the desired probability, integrate P (r) over the appropriate limits:∫ 1.05a0

0.95a0

P (r) dr =
4
a3

0

∫ 1.05a0

0.95a0

r2e−2r/a0 dr

Letting x = r/a0 ∫ 1.05a0

0.95a0

P (r) dr = 4
∫ 1.05

0.95
x2e−2x dx = 0.054

where the definite integral is evaluated by computer or worked out with tables.
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36. In general
〈r〉 =

∫ ∞
0

r P (r) dr =
∫ ∞

0
r3 |R(r)|2 dr

For the 2s state

〈r〉 =
1

8a3
0

∫ ∞
0

r3

(
4− 4r

a0
+
r2

a2
0

)
e−r/a0dr

Using integral tables ∫ ∞
0

rne−r/a0dr = n! (a0)n+1

〈r〉 =
1

8a3
0

(
4 (3!) a4

0 −
4
a0

(4!)
(
a5

0

)
+

1
a2

0
(5!) a6

0

)
=
a0

8
(24− 96 + 120) = 6a0

For the 2p state

〈r〉 =
1

24a3
0

∫ ∞
0

r3
(
r

a0

)2
e−r/a0dr =

1
24a5

0

∫ ∞
0

r5e−r/a0dr

=
1

24a5
0

(5!)
(
a6

0

)
=

120a0

24
= 5a0

37. 2s:
P (r) = r2 |R(r)|2 =

1
8a3

0
r2
(

2− r

a0

)2
e−r/a0

As in Problem 34 for r � a0 we can say e−r/a0 ∼= 1, so the probability is given by the integral∫ 10−15

0
P (r) dr ∼= 1

8a3
0

∫ 10−15

0
r2
(

2− r

a0

)2
dr =

1
8a3

0

∫ 10−15

0

(
4r2 − 4r3

a0
+
r4

a2
0

)
dr

=
1

8a3
0

(
4
3
r3 − r4

a0
+

r5

5a2
0

)∣∣∣∣∣
10−15

0

= 1.1× 10−15

Similarly for the 2p state:

P (r) = r2 |R(r)|2 =
1

24a5
0
r4e−r/a0

∫ 10−15

0
P (r) dr ∼= 1

24a5
0

∫ 10−15

0
r4 dr =

r5

120a5
0

∣∣∣∣∣
10−15

0

= 2.01× 10−26

38.*
R =

e2

4πε0mc2 =
1.44× 10−9 eV ·m

511× 103 eV
= 2.82× 10−15 m

From the angular momentum equation

v =
3h̄

4mR
=

3h̄c
4mc2R

c =
3 (197.33 eV · nm)

4 (511× 103 eV) (2.82× 10−6 nm)
c = 103c

A speed of 103c is prohibited by the rules of relativity.
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39. The electron radius would be λc/2 = 1.21× 10−12 m. As in the previous problem

v =
3h̄

4mR
=

3h̄c
4mc2R

c =
3 (197.33 eV · nm)

4 (511× 103 eV) (1.21× 10−3 nm)
c = 0.24c

This result is allowed by relativity. However, in order to get this allowed result, we had to
assume an unreasonably large size for the electron (one thousand times larger in radius than
a proton!).

40. a) The only change in Equation (7.3) is in the potential energy, with

V = − Ze2

4πε0r

1
r2

∂

∂r

(
r2∂ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂φ2 +
2µ
h̄2

(
E +

Ze2

4πε0r

)
ψ = 0

b) Because V occurs only in the radial part, there is no change in the separation of variables.
c) Yes, from Equation (7.10) is it clear that the radial wavefunctions will change.
d) No, there is no change in the θ or φ dependence.

41. Carrying Z through the calculations done in the text [Equations (7.13) through (7.15)] we
find

ψ100 =
1√
π

(
Z

a0

)3/2

e−Zr/a0

42. Use the wave function
R31 = Ar

(
1− r

6a0

)
e−r/3a0

where A is constant. Then

P (r) = r2 |R(r)|2 = A2

(
r2 − r3

3a0
+

r4

36a2
0

)
e−2r/3a0

To find the extrema set dP/dr = 0. Doing so and factoring out A2re−2r/3a0 gives

2− 5r
3a0

+
r2

3a2
0
− r3

54a3
0

= 0

Letting x = r/a0 and multiplying both sides by 54 we get

x3 − 18x2 + 90x− 108 = 0 = (x− 6)
(
x2 − 12x+ 18

)
a) The minimum is at x = 6, or r = 6a0, and we find P (6a0) = 0. Clearly P (0) = 0 also.
b) The two maxima come from the quadratic equation in parentheses, with x = 6 ± 3

√
2 or

r =
(
6± 3

√
2
)
a0.

c)
Y1±1 = (constant) sin θ e±iφ

Then Y ∗Y is proportional to sin2 θ, and the probability is zero at θ = 0 and θ = 180◦.
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43.* The ground state energy can be obtained using the standard Rydberg formula with the reduced
mass µ of the muonic atom

E0 =
e2

8πε0a0
=

µe4

2 (4πε0)2 h̄2

Computing the reduced mass:

µ =
mpmµ

mp +mµ

=
1
c2

(938.27 MeV) (105.66 MeV)
938.27 MeV + 105.66 MeV

= 94.966 MeV/c2

Thus

E0 =
µe4

2 (4πε0)2 h̄2 =
µc2e4

2 (4πε0)2 h̄2c2
=

(94.966× 106 eV) (1.44 eV · nm)2

2 (197.33 eV · nm)2 = 2.53 keV
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