
Chapter 8

1.* The first two electrons are in the 1s subshell and have l = 0, with ms = ±1/2. The third
electron (on the 2s level) has l = 0, with either ms = 1/2 or −1/2. With four particles
there are six possible interactions: the nucleus with electrons 1,2,3, electron 1 with electron
2, electron 1 with electron 3, or electron 2 with electron 3. In each case it is possible to have
a coulomb interaction and a magnetic moment interaction.

2. H: 1s1, He: 1s2, Li: 1s22s1, Be: 1s22s2, B: 1s22s22p1, C: 1s22s22p2, N: 1s22s22p3, O: 1s22s22p4,
F: 1s22s22p5, Ne: 1s22s22p6

3. L: n = 2, so there are two (2s and 2p)
N: n = 4, so there are four (4s, 4p, 4d, and 4f)
O: n = 5, so there are five (5s, 5p, 5d, 5f , and 5g)

4. In the first excited state, go to the next higher level. In argon one of the 3p electrons is
promoted to 4s, so the configuration is 3p54s1. By the same reasoning the first excited state
of krypton is 4p55s1.

5. K: 4s1, V: 4s23d3, Se: 4s23d104p4, Zr: 5s24d2, Sm: 6s24f 6, U: 7s26d15f 3

6. a) He, Ne, Ar, Kr, Xe, Rn b) Li, Na, K, Rb, Cs, Fr
c) Be, Mg, Ca, Sr, Ba, Ra

7.* From Figure 8.4 we see that the radius of Na is about 0.19 nm. We know that for single-
electron atoms

E = − Ze2

8πε0r

Therefore

Ze = −8πε0rE

e
= −2 (0.19 nm) (−5.14 eV)

1.44 V · nm
= 1.36e

8. The first four electrons (in the 1s and 2s orbitals) have quantum numbers (1, 0, 0,±1/2) and
(2, 0, 0,±1/2). the remaining three electrons are in the 2p orbital with n = 2 and l = 1.
By Hund’s rules we expect them all to have ms = +1/2 or ms = −1/2, so the possibilities
are (2, 1, 1,+1/2), (2, 1, 0,+1/2), and (2, 1,−1,+1/2) or (2, 1, 1,−1/2), (2, 1, 0,−1/2), and
(2, 1,−1,−1/2).
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9. a) 5 electrons, B b) 11 electrons, Na c) filled 3p: Ar

10. J ranges from |L− S| to |L+ S| or 2,3,4. Then in spectroscopic notation 2S+1LJ we have
three possibilities: 3F2, 3F3, or 3F4. The ground state has the lowest J value, or 3F2. With
n = 4 the full notation is 43F2.

11. There is a single electron in the 4p subshell. Therefore S = 1
2 and 2S + 1 = 2. Because it is

in the p subshell we have L = 1. The possible J values are from |L− S| to |L+ S|, which in
this case gives J = 1/2 or J = 3/2. Therefore the possible states are 2P1/2 and 2P3/2, with
2P1/2 being the ground state. The full notation is 42P1/2.

12. This requires a closed subshell, which we have in He, Be, Ne, Mg, Ar, and Ca.

13.* In the 3d state l = 2 and s = 1/2, so j = 5/2 or 3/2. As usual ml = 0,±1,±2. The value
of mj ranges from −j to j, so its possible values are ±1/2, ±3/2, and ±5/2. As always
ms = ±1/2. The two possible term notations are 3D5/2 and 3D3/2.

14. 1S0: S = 0, L = 0, J = 0 2D5/2: S = 1/2, L = 2, J = 5/2
5F1: S = 2, L = 3, J = 1 3F4: S = 1, L = 3, J = 4

15. The quantum number mJ ranges from −J to J , or −7/2 to +7/2. Then Jz = mJ h̄ = ±h̄/2,

±3h̄/2, ±5h̄/2, ±7h̄/2.

16.* a) The quantum number mJ ranges from −J to J , or −7/2 to +7/2. Then Jz = mJ h̄ = ±h̄/2,

±3h̄/2, ±5h̄/2, ±7h̄/2.
b) The minimum angle occurs when mJ is at its maximum value, which is +7/2. Then
Jz = 7h̄/2 and

cos θ =
Jz
J

=
mJ h̄√

J (J + 1) h̄
=

7/2√
(7/2) (9/2)

=
√

7
3

so θ = 28.1◦.

17. The 1s subshell is filled, and there is one 2s electron. Therefore L = 0 (which gives the S in
the middle of the symbol). The single unpaired electron gives S = 1/2 or 2S + 1 = 2. With
L = 0 and S = 1/2 the only possible value for J is J = 1/2.
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18. Al has a ground state configuration 3s23p1. The single unpaired electron gives S = 1/2, so
2S + 1 = 2. The unpaired electron is in a p subshell, so L = 1, for which the symbol is P .
Then J = L± S which is 1/2 or 3/2, but the 1/2 state has a slightly lower energy. Therefore
the symbol is 32P1/2.

19.*
∆E =

hc

λ1
− hc

λ2
= (1240 eV · nm)

( 1
766.41 nm

− 1
769.90 nm

)
= 7.334× 10−3 eV

As in Example 8.6 the internal magnetic field is

B =
m∆E
eh̄

=
(9.109× 10−31 kg) (7.334× 10−3 eV)

(1.602× 10−19 C) (6.582× 10−16 eV · s) = 63.4 T

20. By the selection rules ∆L = ±1, ∆S = 0, ∆J = 0,±1, no transitions are allowed between the
pictured levels. The selection rule ∆S = 0 prohibits singlet → triplet transitions.

1S 0

1D 2

3P 2

3P 1

3P 0

21. The 2s to 1s transition is forbidden by the ∆L = ±1 selection rule. The two lines result from
the transitions from the two 2p levels to the 1s level.

22.* As in Example 8.6

∆E =
eh̄B

m
=

(1.602× 10−19 C) (6.582× 10−16 eV · s) (1.7 T)
9.109× 10−31 kg

= 1. 97× 10−4 eV

23. The ground state in He is a singlet, so an excited state may be a singlet or triplet, and the
behavior of Ca (4s2) and Sr (5s2) must be the same. Al has a 3s23p1 configuration. The single
unpaired electron gives S = 1/2 and 2S + 1 = 2, which is a doublet.
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24.* The minimum angle corresponds to the maximum value of Jz and hence the maximum value
of mj, which is mj = j. Then

cos θ =
Jz
J

=
mjh̄√

j (j + 1) h̄
=

j√
j (j + 1)

Solving for j we find

j =
1

1
cos2 θ

− 1
= 2.50 = 5/2

25.

I =
dq

dt
=

Ze

2πr/v
=
Zev

2πr

From the Biot-Savart Law
B =

µ0I

2r
=
µ0Zev

4πr2

The angular momentum is L = mvr, so v = L/mr and

B =
µ0ZeL

4πmr3 =
ZeL

4πε0mc2r3

where we have used the fact that µ0 = 1/c2ε0. The directions of the vectors follow from the
right-hand rule.

26. Using the fact that g = 2 we have

~µs = g
e~S

2m
=
e~S

m

~µs · ~B =
Ze2

4πε0m2c2r3
~S · ~L

27. a) In order to use the result of the previous problem, we need to know the directions of ~S and
~L. The electron has S = ±1/2, so

∥∥∥~S∥∥∥ =
√

3/4 h̄ and the angle ~S makes with the +z-axis is

θ = cos−1

±1/2√
3/4

 = 54.7◦ or 125.3◦

With L = 1 we have
∥∥∥~L∥∥∥ =

√
2h̄ and the vector ~L can have three possible orientations,

corresponding to ml = 0,±1. If we choose ml = 0, then for either spin state the angle
between ~L and ~S is 35.3◦ and

~S · ~L =

√
3
4
h̄
√

2 h̄ cos (35.3◦) = h̄2
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Then using r = 5a0 for a 2p electron (see Chapter 7 Problem 36), we have

V =
e2h̄2

4πε0m2c2r3 =
(1.44 eV · nm) (1240 eV · nm)2

4π2 (511× 103 eV)2 (5× 0.0529 nm)3 = 1.2× 10−5 eV

The difference between spin-up and spin-down states is twice this amount, or 2.4× 10−5 eV,
which is just over half the measured value.
b) The two possibilities are j = 1/2 and j = 3/2. The difference between these two is

∆V =
Z4α4

2n3 mc
2

 2

2
(

1
2

)
+ 1
− 2

2
(

3
2

)
+ 1



=

(
1

137

)4

2 (2)3

(
5.11× 105 eV

) 2

2
(

1
2

)
+ 1
− 2

2
(

3
2

)
+ 1

 = 4.53× 10−5 eV

which is more accurate.

28. In Example 8.8 it was shown that the normal Zeeman effect is expected when the total spin
S = 0. This is true for all levels. If S is not zero, then the anomalous effect is expected.
Therefore, two effects are not expected in the same atom.

29.

~µ = −µB
h̄

(
~L+ 2~S

)
~J = ~L+ ~S

~µav = −µB
h̄

(
~L+ 2~S

)
·
(
~L+ ~S

)
J2

~J

Now (
~L+ 2~S

)
·
(
~L+ ~S

)
= L2 + 2S2 + 3~L · ~S

and using ~J = ~L+ ~S we have
~J · ~J = L2 + S2 + 2~L · ~S

so
~L · ~S =

J2 − L2 − S2

2
and (

~L+ 2~S
)
·
(
~L+ ~S

)
=

3J2 + S2 − L2

2

~µav = −µB
h̄

3J2 + S2 − L2

2J2
~J

With ~B defined to be in the +z-direction,

V = −~µav · ~B =
µBB

h̄

3J2 + S2 − L2

2J2 Jz
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As usual Jz = mJ h̄, so

V = µBBmJ
3J2 + S2 − L2

2J2

Now the vector magnitudes are J2 = j(j + 1)h̄2, S2 = s(s + 1)h̄2, and L2 = l(l + 1)h̄2 so we
get V = µbBmJg where

g =
3j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
= 1 +

j(j + 1) + s(s+ 1)− l(l + 1)
2j(j + 1)

30.

∆E =
hc

λ1
− hc

λ2
=

1240 eV · nm
422.7 eV

− 1240 eV · nm
422.713 eV

= 9.02× 10−5 eV

Also ∆E = µBB∆ml = eh̄/2m with ∆ml = 1. Thus

eh̄

m
=

2∆E
B

=
2 (9.02× 10−5 eV)

1.5 T
1.602× 10−19 J

eV
= 1.927× 10−23 J/T

The accepted value is

eh̄

m
= 2µB = 2

(
9.274× 10−24 J/T

)
= 1.855× 10−23 J/T

which is about 3% lower than the experimental value.
Using the experimental data with the known value of h̄,

e

m
=

1.927× 10−23 J/T
1.055× 10−34 J · s = 1.83× 1011 C/kg

31.* a) L = 0, S = J = 1/2

g = 1 +
(1/2) (3/2) + (1/2) (3/2)

2 (1/2) (3/2)
= 1 + 1 = 2

b) L = 1, S = 1/2, and J = 3/2

g = 1 +
(3/2) (5/2) + (1/2) (3/2)− 1(2)

2 (3/2) (5/2)
= 1 +

1
3

=
4
3

c) L = 2, S = 1/2, and J = 5/2

g = 1 +
(5/2) (7/2) + (1/2) (3/2)− 2(3)

2 (5/2) (7/2)
= 1 +

1
5

=
6
5
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32. Computing the g factors:
2G9/2: L = 4, S = 1/2, and J = 9/2

g = 1 +
(9/2) (11/2) + (1/2) (3/2)− 4(5)

2 (9/2) (11/2)
= 1 +

1
9

=
10
9

2H11/2: L = 5, S = 1/2, and J = 11/2

g = 1 +
(11/2) (13/2) + (1/2) (3/2)− 5(6)

2 (11/2) (13/2)
= 1 +

1
11

=
12
11

MJ

11/2
9/2
7/2
5/2
3/2
1/2
–1/2
–3/2
–5/2
–7/2
–9/2
–11/2

9/2
7/2
5/2
3/2
1/2
–1/2
–3/2
–5/2
–7/2
–9/2

2H 11/2

2G 9/2
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33. 3P1: L = 1, S = 1, and J = 1

g = 1 +
(1) (2) + (1) (2)− 1(2)

2 (1) (2)
= 1 +

1
2

=
3
2

3D2: L = 2, S = 1, and J = 2

g = 1 +
(2) (3) + (1) (2)− 2(3)

2 (2) (3)
= 1 +

1
6

=
7
6

M J

–1

0

1

–2

–1

0

1

2

3D 2

3P 1

34. From Equation (8.22) we have an energy splitting of V = µBBgmJ .
For the 2S1/2 state g = 2, so V = 2µBBmJ . Now mJ can vary from −J to +J , so mJ = ±1/2
and we find V = ±µBB.
For the 2P1/2 state g = 2/3, so V = 2

3µBBmJ . Now mJ can vary from −J to +J , so
mJ = ±1/2 and we find V = ±1

3µBB.
Thus the maximum difference is from +1

3µBB to −µBB or from +1
3µBB to −µBB. In each

case the magnitude of the energy difference is 4
3µBB for a total difference of 8

3µBB. Calling this
difference ∆E, it will show up as the usual wavelength difference ∆λ with ∆E =

(
hc/λ2

)
∆λ.

Thus

∆λ =
λ2∆E
hc

=
λ2

hc

8
3
µBB =

8
3

(5.8976× 10−7 m)2 (9.274× 10−24 J/T) (0.5 T)
(6.626× 10−34 J · s) (2.997× 108 m/s)

= 2.17×10−11 m

35. As in the previous problem we have g = 4/3 for the 2P3/2 state and V = 4
3µBBmJ . The states

are split by ∆mJ = 1 and so the energy difference between two adjacent states is ∆E = 4
3µBB.

Then

∆E =
4
3
µBB =

4
3

(
9.274× 10−24 J/T

)
(0.5 T) = 6.18× 10−14 J = 3.86× 10−5 eV

102


