Chapter 9

1. a)
S x5 r [0 2 1 2
2 = / V29(Va) dvxZC/ Uy €XP (‘25m”w) dvg
0o 1 Bm 12 N’ 8/2 1
o / 2 — 2 — . _- _ = —
= 200 /0 v exp( Qﬁmvx) dvy = 2 ( 27T> 1 \Bm Bm
Therefore 1/2 1/2
1 T
Ugrms = (?ﬂ)l/? - Lk
Bm m
b)

1/2
g(vy) = (g?:) exp (—;ﬁmv§>

and from (a) we see that (6m)"* = vl | so

rrms?’

I 1 02
g(vm) dv, = \/%erms exp _51)2 dv,

1%

1.

2. a) With v, = 0.01v,,ms we have exp ( 22 i >

xrlns

1 1 U 1
g(vg) dv, = \/_v_rin exp ( ) dv, = vt (1) (0.002040ms) = 7.98 x 1074
27_‘_ X S 2 2 /Qﬂ' X S

This is the probability that a given molecule will be in this range, so in one mole the number
1s

N = (7.98 x107") Na = (7.98 x 107*) (6.022 x 10%) = 4.81 x 10*°
b) As in (a) we find N = 4.71 x 10%.
c) N =291 x 10%
d) N =1.79 x 10!
e) In this case

g(vg) dv, = (7.98 X 10’4) exp (—5 X 103)

072175

which is on the order of 1 . Therefore we conclude no molecules travel at that speed.

3. a)
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12 v 2\ P 2
= (=)= () -

But we know that v2 = kT /m, so

<yng>l/2 vo [KT
o=|—-— = —y\/—

2 m

¢) From (b) we have o /vy = 1,/kT/m.

o 1 1.381 x 10-28 J/K (293 K) »
H,at T =203 K: 2 = — 3.66 x 1
28 S = 50X 108 m/s\l 2 (1.674 x 102 kg) 30610
—23
H at T = 5500 K: — ! J 1.381 x 107 J/K (5500 K) _ 2.25 x 1077

vo  3.00 x 108 m/s (1.674 x 1027 kg)

This is how we could deduce the surface temperature of a star.

. a) Letting d be the distance between the two atoms we have

2 2

d\> @2 16(1.66 x 1027 ke) (8.5 x 10~10 m)?
I, = Q(mrz):2m () m ( X &) a m)

= 9.59 x 107% kg - m?

_ 2 o\ _ 4 o _o7 ~15 )2
I, = 2 (5mR ) = cmR* = 0.8(16) (1.66 x 107" kg) (3.0 x 107" m)

= 1.91 x 107 kg - m?
c¢) The rigid rotator is quantized (see Chapter 10) with an energy

2 —34 7.4\2
:hl(l+1):(1.055><10 J-s) <1)(2):1.16><10_24J

E
21 2(9.59 x 10~% kg - m?)

d) Rearranging the energy equation in (c) we find

C2IE 2(1.20 x 1075 kg - m?) (1.16 x 1024 J)

S — ! =25x 107"
h (1.055 x 10734 J - 5)

I(1+1)

Equipartition requires that the available energy be shared equally among accessible degrees
of freedom. We have shown that the rotation about the z-axis is not accessible. Therefore,
the rotation of the diatomic molecule proceeds as if there were only two degrees of rotational

freedom.
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a)
o) o) 1
/ F(v)dv = 47TC’/ v? exp (—QﬁmUQ) dv
with T'= 293 K and C' = (8m/27)*>.
b) For example for Hy gas at T'= 293 K we have

(1) (2) (938 x 106 V)
2(8.62 x 1075 eV/K) (293 K)

1
§ﬁ7nc2 = = 3.7 x 10"

The exponential of the negative of this value is exp (—3.7 x 10'%) which is almost zero.

Computations depend on the software but should yield numbers very close to zero.

a)
4 kT 4 | (1381x 1072 J/K) (500 K)
_ K _ — 3240
YT Ve m \/sz (1.675 x 1027 kg) m/s
kT | 2(1.381 x 10-2 J/K) (500 K)
* — = — 2
R J (1.675 x 1027 kg) 870 m/s
b)
4 kT 4 (1381 x 1072 J/K) (2500 K)
_ KT _ — 7240
YT Ve m \/QWJ (1.675 x 1027 kg) m/s
okT | 2(1.381 x 10-2 J/K) (2500 K)
! m J (1.675 x 1027 kg) ms

F(v) = 4nCexp <—;ﬁmv2> v?

In the limit as v — 0, the exponential reduces to ¢’ = 1 and v? approaches zero, so clearly

lim F'(v) =0

v—0

The other limit is )

v
lim F(v) =4nC lim —F—
V00 (v) v exp (%57711)2)
Applying L’Hopital’s rule,
2v 2 1
lim F(v) = lim = lim — exp (—ﬂmzﬂ) =0
vo0 ®) v Bmu exp (%ﬁmlﬂ) v=oo fm 2
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a)
2T 2(1.381 x 1023 J/K) (263 K
vt = _ |2(.381 x /K) (63K) a5
m 28 (1.6605 x 10—%7 kg)
b)
2T 2(1.381 x 102 J/K K
o k _ (1.381 x 1023 J/K) (308 ):428m/s
m 28 (1.6605 x 10—%7 kg)
The equation to be satisfied is

1 1 2T
20?2 exp <—ﬁmv2> = v*2exp (—ﬁmv*Q) =" ¢!
2 2 m

where we have used the fact that v* = /2kT/m. Thus

1 kT
v% exp (—ﬂmUQ) = —¢ 1 2228000
2 m

which can be solved graphically to yield v = 188 m/s and v = 639 m/s. The lower of these is
closer to v* = 390 m/s, which follows from the shape of the distribution curve.

Various software packages should all give results very close to 1.

Typical values are (as a fraction of the total number of molecules):

a)2x 10710 b)2x107* ) 0.157  d) 0496  e) 0.347 ) 0.99987

a)
rC

- \/§m3/2
Using T'(5/2) = 21'(3/2) = 3y/7/4 and C = (m/2r)*”* we find

E:/OOEF(E)dE /OOE?’/QeXp(—ﬂE) g — 70 _T6/2)
0 0

- V2m3/2 55/2

_ 8r (pm\?3y7 3 3
EF=—| 7 — = — = —kT
V2m3/2 \ 2w 43°7 2B 2
b) As we know from the text £ = $mv? and by Equation (9.17)
1 4
—mv® = —kT = 1.27kT
2 T

which is a bit less than %kT.
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*14. Starting with the distribution

and setting dF'/dE = 0, we get

d 1
0= = [EV exp (=BE)| = JE 2 exp (—BE) — BE'? exp (- E)

Thus 0 = E~/2 4 23E"/? which solving for E gives the desired E* = kT'/2.

*15. The ratio of the numbers on the two levels is

na(E) _ 8exp (—fE,)
ni(E) 2exp(—0FE)

exp (= (Ey — Ey)) =25 x 1077

=dexp (=3 (Ey — Ep)) =107°

Taking logarithms:

Ey — By
kT

—B(Ey— Fy) = — =1In (2.5 X 10*7) = —15.20

For atomic hydrogen Ey — Fy = %ED = 10.20 eV. Finally

E2 — E1 10.20 eV
T _ _ — 7790 K
k(—15.20)  (8.617 x 105 eV/K) (—15.20)

16. a) With E = p?/2m and the mean energy F = 3kT we get

ﬁ B h B h
P V2mK  /3mkT

A:

b) We have A < d. Using A from part (a) and d = (V/N)"* we get

h Ve
vzt < (%)
3mkT N

If we cube both sides and rearrange,
N h3
v

(3mkT)*? <!

c) For any ideal gas

N 6.022 x 102
— = =2.69 x 10® m™3
V 224 %103 m? x0T m
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For argon gas (a monatomic gas) at room temperature

N (6.626 x 1073+ J - s)

—_— = .09 X m3
(269 10% )

V (3mkT)*? (3(40) (1.66 x 1027 kg) (1.38 x 10-23 J/K) (293 K))*/?

~ 3x1077

so Maxwell-Boltzmann statistics are fine. However, for electrons in silver N/V = 8.47 x 10%®
m~3 and
N h3

— = (847x10® m™®
V (3mkT)*? ( )

(6.626 x 1073+ J - s)°
(3(9.11 x 10731 kg) (1.38 x 10-23 J/K) (293 K))*/?

~ 9% 10

and in this case Maxwell-Boltzmann statistics fail.

F(v) dv = 47Cv* exp (—;ﬁmiﬂ) dv = F(E)dFE

With E = Imov? we differentiate to get dE = mv dv or dv = dE/mv = dE/v2mE. Then

2F dE EY/?
F(E)dE = 47TCE exp (—0F) JonE = 87TC\/§m3/2 exp (
8t

2
= WE1/2 exp (—ﬂE) dE

—BE) dE

a) We will assume that the magnetic moment is due to spin alone. In general n(E) =
g(E)Fyp. There is no reason to prefer one spin state or the other, so the two g(FE) are the
same. Thus the ratio of the numbers in the two spin states is governed by the Maxwell-
Boltzmann distribution:

n(Ey)  Fuyp(E2)  exp(—BEs)
n(E))  Fus(E))  exp(—BE) exp (6 (Er — E))

The energy of a magnetic moment fi in a magnetic field Bis E = ok B. We know from
Chapter 8 that this works out to be

— — h
E=S8. B=°SB=+""B=+u,B
m m 2m

Then E; = —upB is the energy of an electron aligned with the field, and Ey = +ugB is the
energy of the spin opposed to the field. Therefore

—upB — upB —2upB
=exp (B (E1 — E)) = exp (MBk,TMB> - P (ﬁ)
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b) At T =77 K
n(Es)  (=2upBY\ [ ~2(9274x 102 J/T)(8T)\ _
n(EB)) exp< kT > a ( (1.381 x 102 J/K) (77 K) > = 0.870
At T =273 K
n(Es) _ —2upB\ ~2(9.274 x 102 J/T) 8 T)\
n<E1) B < kT > B ( (1_381 % 10-23 J/K) (273 K) ) = 0.961
At T = 800 K
n(EBz) _ (—2upBY _ —2(9.274 x 1072 J/T) 8 T)\
n(Ey) ( kT ) B ( (1.381 x 10-23 J/K) (800 K) > = 0.987

As the temperature is increased, the alignment of the spin with the magnetic field is less
probable.

Setting Frp = 0.5 when F¥ = Ef, we have

1

0.5 =
Byexp (BEr) + 1

Solving for By, we find Byexp (BEr) +1 = 2, so Biexp (fEr) = 1 and By = exp (—(EF).
Therefore in general

1 1 1
" Biexp (BE)+ 1 exp(—BEr) exp (BE) + 1 exp (B (E — Ey)) + 1

FFD

At first one may think it should be 0.5, but this is not quite true, due to the asymmetric shape
of the distribution. Starting with Equation (9.43) for g(£) and using the fact that Fpp = 1
in this range, we have

3

. F 7 _
N(E<E)= /0 g(E)(1)dE = §NE;3/2/0 EV2dE = NE;¥?E*

But recalling that E = 2 Ep, we sce that

- 3 3/2
N (E < E) - N <5> — 0.465N

a) From dimensional analysis

1 mol 022 x 10%
1.O5><104kg/m3( o )(60 x 10

= 5.86 x 10 m™3
0.10787 kg ) A

mol
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b) For electrons an extra factor of 2 is required due to the Pauli principle:

N 24
50 2/3 2/3
T (Fv) (™) (6.626x 107 J-s)" 5.28 x 10* K
T 2mmk 27(9.109 x 1073 kg) (138 x 10-B J/K)
c)
N \?%/3 .9 5.86x 1028 m—3)2/3 —34 2
) 5:86x10% m %)% (6 66 5 10734 J - g
T= () #_ (et ) sasx10°K

2mmbk 27 (9.109 x 103! kg) (1.38 x 10-23 J/K)

22. At T =0, Fpp =1 and so n(E) = g(E) (1) = g(E). The number of electrons in this range is
given by

E 3 _ E B E
/F g(E)dE = §NEF3/2/ " E\V24E = NEP? B2
0

90ER 0.90Er 0.90Ep

- N (1.003/2 - 0.903/2) >~ (0.146N

We see that about 14.6% of the electrons are in this range, which is about what one would
expect from the shape of the distribution.

*#23. a) As in Problem 21, N/V = 5.86 x 10%® m™3. Then

h2 /3 NN\Y? (6626 x 10734 J . 5)° /3 2/3
Er = —(>¢) = : 2 (5.86 x 10% m~3 )
P = 8m <7r V) 8(9.109 x 105! kg) (n (5.86 x 10 m™)

= 881 x 107 J =5.50eV

2Br  [2(8.81 x 10-19 J) ]
= \/m - \/9.109 0T g 0 10 m/s

24. a) Note: the term o (kT)* /Ep is a small fraction of one eV and can be ignored. Then

_ 3 3
E=_Ep=_(551eV)=331eV

b) With E = 2kT we have

_2E 2(3.31 eV)

= = =256 x 10' K
3k 3(8.617 x 105 eV /K) 8

T

c¢) As discussed in the text, thermal energies are small compared with the Fermi energy, except
at high temperatures.
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25.

1 mol 6.022 x 10%
8.92 x 10° kg/m3< tho >< .

=8.45 x 10® m™®
0.063546 kg ) e

mol

The difference is 0.2%. Within rounding errors there is one conduction electron per atom.

26. a)
1 mol 6.022 x 10?3
2. 10° kg/m® = 6. 10% m™?
70 x 10° kg/m (0.02698 kg) ( ol ) 6.03 x 10° m
b)
2 2/3
[ (3 N )
8m \mV
SO

<=

o7 (ngF>3/2 o (8(9.109 x 10731 kg) (11.63 V) (1.602 x 10719 J/eV)>3/2
EERE ~ 3 (6.626 x 1031 J - 5)?
= 1.81 x10* m™3

c¢) Dividing he conduction electron density by the number density we get almost exactly 3,
from which we conclude that the valence number is three.

*27. In general B = %mu%, so up = /2Er/m.
a)

—19
. \/2EF \/ (3.93 €V) (1.602 x 10-1° J/eV) 118 x 10° m /s

9109>< 1031 kg

(.47 V) (1.602 x 1019 J/eV) ‘
_ ,/ —183x 1
e \/ 9.109 x 101 kg 83 x 10" m/s

28.

E—Ep
kT

E—-Er
ET

E—-F 1
kTFHOSOFFDﬁi

E > Er: — 0080 Frp — 0

E < Ep:

— —00 80 Frp —1

E:EFI
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In general n(E) = g(E)Fpp. Using Equation (9.43) for g(E) and the result of Problem 19 for
Frp, we can substitute to find

3N __ EY/?
_'p 3/2

n(E) = 5 Br exp (B (E — Ep)) + 1

Graphs will resemble those in Figure 9.10 (b). The 7" = 0 line matches the dashed line shown,
and at T = 293 K we get the solid line. At the higher temperature (1800 K) the graph
deviates a bit more from the dashed line.

Numerical integration should yield accurate results.

_a/9 0o E1/2 N
150 /0 exp ((E —7)/(0.02525)) + B =1

Setting up the numerical integration in Maple we have with kT = 0.02525 eV,

15072 [ B dE =~ 0.203
5(7) /6 exp(E—17)/(0.02525)) +1

So we see that about one-fifth of the electrons are within 1 eV of the Fermi energy, which
makes sense given the shape of the distribution.

We can use the relationship (9.42)

h? (3N>2/3

E oY
F L3

~8m

We use the neutron mass and from dimensional analysis

N 4. 10 kg 1 (neut
N 450 x 10 3g (neutron) 641 x 10% -3
L3 37 (104 m)® 1.675 x 1027 kg

Then
h2 /3NN\?  (6.626 x 1073 J.5)* /3 2/3
Ee = (227 2 2 (6.41 x 10" —3) — 945 % 1071 J
= 8m (WL3> 2 (1.675 x 1027 kg) <7r (64110 m™) 8
— 590 MeV

The close packing of the neutrons makes the Fermi energy large compared with Fermi energies
in normal matter.
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*34. a) To find N/V integrate n(FE)dE over the whole range of energies:

N o0 8w [ E?
== [ amyae =1 dE
V /0 n(E) h3c3 Jo  exp(E/KT) —1

From integral tables we have the following:

/OOO e dx =m™"T'(n)((n)

emr —1
For us m = 1/kT, I'(3) = 2! = 2, and from numerical tables {(3) = 1.20. Thus

N BT ) (2) (1.20) =

B ( STk3T3
V o OR3 R3S

T (2:40)

b) With T' = 400 K:

N k373 (1.381 x 1072 J/K) (400 K) ’ .

— = —=——(240) = 87(2.4 =1.30 x 10" m~?
7 = e (240) = 8m(240) ((6.626 % 10734 J - 5) (2.998 x 10° m/s) 30> 107 m
At T = 5500 K:

N 87k3T® (1.381 x 102 J/K) (5500 K)

(2.40) = 87(2.40) ( )> =337 x10® m™3

Vo b3 (6.626 x 1034 J - 5) (2.998 x 108 m/s

35. Evaluating by computer we find

0o g,1/2
/ Y w2315
0o ev—1

36.
ey
°7 da 2a? 2a?
o bk _ VT (_3) s 3V s
! da 4 2 8
_odlz 1 5\ 3
[5 —%——2<—2a )—a
37.
e
E=K+V=_—+mgz
2m
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Absorbing the (assumed constant) first exponential factor into the normalization constant C,,
f(z)dz = C,exp (—PBmgz) dz

To find C, we normalize:

/oo f(z)dz = C, /OO exp (—fmgz) dz = C, (Bmg)
0 0

Thus
1 _ KT

C,=— =
pfmg  mg

For air we will use an average m = 29 u = 4.82 x 1072 kg and T' = 273 K. In general

p(h) _ exp(—Pmgh)
p(0)  exp (—Bmg0)

= exp (—Bmgh)

For Denver:

- (4.82 x 1072 kg) (9.80 m/s?) (1610 m) B
plh) = exp (‘ (1.381 x 1023 J/K) (273 K) ) pl0) = 0.817p(0)

For Mt. Rainier:

(4.82 x 10720 kg) (9.80 m/s?) (4390 m)
(1.381 x 10~ J/K) (273 K)

o(h) = exp (— ) $(0) = 0.577(0)

In equilibrium a fluid layer of density p, mass M, thickness h, and surface area A has a force
Fy = P, A acting downward on its upper surface and a force F; = Py A acting upward on its
lower surface. The difference between these forces equals the weight of the fluid layer.

FQ—Flz(Pl—Pg)A:Mg:pgAh
Let dP =2 AP =P, — P, and h = Az = dz, we have dP = —pgdz. With N particles of mass
m, the mass density is p = Nm/V. Putting these together:

N
dP = —pgdz = —% dz

From the ideal gas law, N/V = P/kT, so

mgP

P =
a kT

dz

Applying separation of variables we can solve this differential equation for P as a function of

dP
P —% dz InP = —% + constant = —(mgz + constant
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P = (constant) exp (—8mgz) = Pyexp (—fmgz)

40. a)
aN _ no, _ NvA
a4 4V
Solving this differential equation:
dN vA TA
W__th lnN——Wt—i— constant

- oA
N = (constant) exp <_ZV t) = Ny exp <_ZV t)

Setting N/Ny = 1/2 at t = t1/5, we find

1 vA
5 = exp <— t1/2>

2 1V
AV
t1/2 = @714 1n2
b)
D3 0.4 m)®
po ™00 m0Am)T o ase
6 6
2 001 m)?
_md w000 m)” o o2
1 A
4 kT 4 (1381 x 1072 J/K) (293 K)
N L — 462.6
YT Ve m \/QWJ 29 (1.66 x 1027 kg) m/s
AV 4(0.0335 m?)
V2T GA T T (4626 m/s) (7.85 x 107 m?) i

*41. The number of molecules with speed v that hit the wall per unit time is proportional to v and
F(v), so that the distribution W (v) of the escaping molecules is by proportion

1
W (v) ~ vF(v) ~ v exp (—Qﬁmv2)
Let the normalization constant for W (v) be C’, so

o /000 v* exp <—;ﬂmv2) d=1=0 (;) (ﬁZL) 72

or C' = 3*m?/2. The mean kinetic energy of the escaping molecules is

— 01— 1 o0 1 1 2m? 29
E= 57711)2 = §m(]’/ v° exp (—26mv2> dv = g™ (ﬁ m ) (ﬁm) == =92kT
0

2 2 3
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42. From Example 9.5

N A

a) Letting m be the electron mass and inserting a factor of 2 for the Pauli principle,

N 2A
2(1)

= B0 T T (27 (9.109 x 107" kg) (1.381 x 1072 J/K) (293 K))3

= 2.42x10%® m3

/2

This is quite a bit less than the density of conduction electrons in a metal (such as copper),
which indicates that Fermi-Dirac statistics should be used.

b)

= = (2rmkT)*?

h3
2(1
- o 1(0)34 o (27 (1.6749 x 1077 kg) (1381 x 1072 J/K) (203 K))"”
. X - *S

= 191 x10°° m~3

N 24
Vv

c¢) For He gas the Pauli principle does not apply, so

A
= = (2mmkT)*?
L - — 3/2

= 754 x10%° m3

<=

*43. For the harmonic oscillator the position and velocity are

d
x = xo cos(wt) v = d—f = —wxg sin(wt)
V= Sha? = Dhat cos?
= ka® = Skaj cos (wt)
Lo 1 959 L oo
K = SMv” = Smwzg sin (wt) = ikxo sin”(wt)

where we have used the fact that w?>m = k. Over one cycle the average of the square of the
sine or cosine function is one-half. Also the total energy is E = $kzf. Thus

— 1 1 E
Vv 2]61’0 5 5
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