
Chapter 9

1. a)

v2
x =

∫ ∞
−∞

v2
xg(vx) dvx = C ′

∫ ∞
−∞

v2
x exp

(
−1

2
βmv2

x

)
dvx

= 2C ′
∫ ∞

0
v2
x exp

(
−1

2
βmv2

x

)
dvx = 2

(
βm

2π

)1/2 √
π

4

(
2
βm

)3/2

=
1
βm

Therefore

vxrms =
(
v2
x

)1/2
=
(

1
βm

)1/2

=
(
kT

m

)1/2

b)

g(vx) =
(
βm

2π

)1/2

exp
(
−1

2
βmv2

x

)
and from (a) we see that (βm)1/2 = v−1

xrms, so

g(vx) dvx =
1√
2π
v−1
xrms exp

(
−1

2
v2
x

v2
xrms

)
dvx

2. a) With vx = 0.01vxrms we have exp
(
−1

2
v2
x

v2
xrms

) ∼= 1.

g(vx) dvx =
1√
2π
v−1
xrms exp

(
−1

2
v2
x

v2
xrms

)
dvx =

1√
2π
v−1
xrms (1) (0.002vxrms) = 7.98× 10−4

This is the probability that a given molecule will be in this range, so in one mole the number
is

N =
(
7.98× 10−4

)
NA =

(
7.98× 10−4

) (
6.022× 1023

)
= 4.81× 1020

b) As in (a) we find N = 4.71× 1020.
c) N = 2.91× 1020

d) N = 1.79× 1015

e) In this case
g(vx) dvx =

(
7.98× 10−4

)
exp

(
−5× 103

)
which is on the order of 10−2175. Therefore we conclude no molecules travel at that speed.

3. a)

ν = ν0

(
1 +

v

c

)
= ν0

(
1 +

vx
c

)
= ν0 (1 + 0) = ν0
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b)

σ =
(
(ν − ν0)2

)1/2
=
((

ν0vx
c

)2
)1/2

= ν2
0
v2
x

c2

But we know that v2
x = kT/m, so

σ =
(
ν2

0

c2

kT

m

)1/2

=
ν0

c

√
kT

m

c) From (b) we have σ/ν0 = 1
c

√
kT/m .

H2 at T = 293 K:
σ

ν0
=

1
3.00× 108 m/s

√√√√1.381× 10−23 J/K (293 K)
2 (1.674× 10−27 kg)

= 3.66× 10−6

H at T = 5500 K:
σ

ν0
=

1
3.00× 108 m/s

√√√√1.381× 10−23 J/K (5500 K)
(1.674× 10−27 kg)

= 2.25× 10−5

This is how we could deduce the surface temperature of a star.

4. a) Letting d be the distance between the two atoms we have

Ix = 2
(
mr2

)
= 2m

(
d

2

)2

=
md2

2
=

16 (1.66× 10−27 kg) (8.5× 10−10 m)2

2
= 9.59× 10−45 kg ·m2

b)

Iz = 2
(2

5
mR2

)
=

4
5
mR2 = 0.8 (16)

(
1.66× 10−27 kg

) (
3.0× 10−15 m

)2

= 1.91× 10−55 kg ·m2

c) The rigid rotator is quantized (see Chapter 10) with an energy

E =
h̄2l (l + 1)

2I
=

(1.055× 10−34 J · s)2 (1) (2)
2 (9.59× 10−45 kg ·m2)

= 1.16× 10−24 J

d) Rearranging the energy equation in (c) we find

l(l + 1) =
2IE
h̄2 =

2 (1.20× 10−56 kg ·m2) (1.16× 10−24 J)
(1.055× 10−34 J · s)2 = 2.5× 10−12

Equipartition requires that the available energy be shared equally among accessible degrees
of freedom. We have shown that the rotation about the z-axis is not accessible. Therefore,
the rotation of the diatomic molecule proceeds as if there were only two degrees of rotational
freedom.
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5.* a) ∫ ∞
c

F (v) dv = 4πC
∫ ∞
c

v2 exp
(
−1

2
βmv2

)
dv

with T = 293 K and C = (βm/2π)3/2.
b) For example for H2 gas at T = 293 K we have

1
2
βmc2 =

(1) (2) (938× 106 eV)
2 (8.62× 10−5 eV/K) (293 K)

= 3.7× 1010

The exponential of the negative of this value is exp (−3.7× 1010) which is almost zero.

6. Computations depend on the software but should yield numbers very close to zero.

7.* a)

v =
4√
2π

√
kT

m
=

4√
2π

√√√√(1.381× 10−23 J/K) (500 K)
(1.675× 10−27 kg)

= 3240 m/s

v∗ =

√
2kT
m

=

√√√√2 (1.381× 10−23 J/K) (500 K)
(1.675× 10−27 kg)

= 2870 m/s

b)

v =
4√
2π

√
kT

m
=

4√
2π

√√√√(1.381× 10−23 J/K) (2500 K)
(1.675× 10−27 kg)

= 7240 m/s

v∗ =

√
2kT
m

=

√√√√2 (1.381× 10−23 J/K) (2500 K)
(1.675× 10−27 kg)

= 6420 m/s

8.

F (v) = 4πC exp
(
−1

2
βmv2

)
v2

In the limit as v → 0, the exponential reduces to e0 = 1 and v2 approaches zero, so clearly

lim
v→0

F (v) = 0

The other limit is

lim
v→∞F (v) = 4πC lim

v→∞
v2

exp
(

1
2βmv

2
)

Applying L’Hopital’s rule,

lim
v→∞F (v) = lim

v→∞
2v

βmv exp
(

1
2βmv

2
) = lim

v→∞
2
βm

exp
(
−1

2
βmv2

)
= 0
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9. a)

v∗ =

√
2kT
m

=

√√√√2 (1.381× 10−23 J/K) (263 K)
28 (1.6605× 10−27 kg)

= 395 m/s

b)

v∗ =

√
2kT
m

=

√√√√2 (1.381× 10−23 J/K) (308 K)
28 (1.6605× 10−27 kg)

= 428 m/s

10. The equation to be satisfied is

2v2 exp
(
−1

2
βmv2

)
= v∗2 exp

(
−1

2
βmv∗2

)
=

2kT
m

e−1

where we have used the fact that v∗ =
√

2kT/m. Thus

v2 exp
(
−1

2
βmv2

)
=
kT

m
e−1 ∼= 28000

which can be solved graphically to yield v = 188 m/s and v = 639 m/s. The lower of these is
closer to v∗ = 390 m/s, which follows from the shape of the distribution curve.

11. Various software packages should all give results very close to 1.

12. Typical values are (as a fraction of the total number of molecules):

a) 2× 10−10 b) 2× 10−4 c) 0.157 d) 0.496 e) 0.347 f) 0.99987

13. a)

E =
∫ ∞

0
E F (E) dE =

8πC√
2m3/2

∫ ∞
0

E3/2 exp (−βE) dE =
8πC√
2m3/2

Γ(5/2)
β5/2

Using Γ(5/2) = 3
2Γ(3/2) = 3

√
π/4 and C = (βm/2π)3/2 we find

E =
8π√
2m3/2

(
βm

2π

)3/2 3
√
π

4β5/2 =
3

2β
=

3
2
kT

b) As we know from the text E = 1
2mv

2 and by Equation (9.17)

1
2
mv2 =

4
π
kT ∼= 1.27kT

which is a bit less than 3
2kT .
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14.* Starting with the distribution

F (E) =
8πC√
2m3/2

E1/2 exp (−βE)

and setting dF/dE = 0, we get

0 =
d

dE

[
E1/2 exp (−βE)

]
=

1
2
E−1/2 exp (−βE)− βE1/2 exp (−βE)

Thus 0 = E−1/2 + 2βE1/2 which solving for E gives the desired E∗ = kT/2.

15.* The ratio of the numbers on the two levels is

n2(E)
n1(E)

=
8 exp (−βE2)
2 exp (−βE1)

= 4 exp (−β (E2 − E1)) = 10−6

exp (−β (E2 − E1)) = 2.5× 10−7

Taking logarithms:

−β (E2 − E1) = −E2 − E1

kT
= ln

(
2.5× 10−7

)
= −15.20

For atomic hydrogen E2 − E1 = 3
4E0 = 10.20 eV. Finally

T = − E2 − E1

k (−15.20)
= − 10.20 eV

(8.617× 10−5 eV/K) (−15.20)
= 7790 K

16. a) With E = p2/2m and the mean energy E = 3
2kT we get

λ =
h

p
=

h√
2mK

=
h√

3mkT

b) We have λ� d. Using λ from part (a) and d = (V/N)1/3 we get

h√
3mkT

�
(
V

N

)1/3

If we cube both sides and rearrange,

N

V

h3

(3mkT )3/2 � 1

c) For any ideal gas
N

V
=

6.022× 1023

22.4× 10−3 m3 = 2.69× 1025 m−3
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For argon gas (a monatomic gas) at room temperature

N

V

h3

(3mkT )3/2 =
(
2.69× 1025 m−3

) (6.626× 10−34 J · s)3

(3 (40) (1.66× 10−27 kg) (1.38× 10−23 J/K) (293 K))3/2

∼= 3× 10−7

so Maxwell-Boltzmann statistics are fine. However, for electrons in silver N/V = 8.47× 1028

m−3 and

N

V

h3

(3mkT )3/2 =
(
8.47× 1028 m−3

) (6.626× 10−34 J · s)3

(3 (9.11× 10−31 kg) (1.38× 10−23 J/K) (293 K))3/2

∼= 2× 104

and in this case Maxwell-Boltzmann statistics fail.

17.

F (v) dv = 4πCv2 exp
(
−1

2
βmv2

)
dv = F (E) dE

With E = 1
2mv

2 we differentiate to get dE = mv dv or dv = dE/mv = dE/
√

2mE. Then

F (E) dE = 4πC
2E
m

exp (−βE)
dE√
2mE

= 8πC
E1/2
√

2m3/2
exp (−βE) dE

=
8πC√
2m3/2

E1/2 exp (−βE) dE

18. a) We will assume that the magnetic moment is due to spin alone. In general n(E) =
g(E)FMB. There is no reason to prefer one spin state or the other, so the two g(E) are the
same. Thus the ratio of the numbers in the two spin states is governed by the Maxwell-
Boltzmann distribution:

n(E2)
n(E1)

=
FMB(E2)
FMB(E1)

=
exp (−βE2)
exp (−βE1)

= exp (β (E1 − E2))

The energy of a magnetic moment ~µ in a magnetic field ~B is E = −~µ · ~B. We know from
Chapter 8 that this works out to be

E =
e

m
~S · ~B =

e

m
SzB = ± eh̄

2m
B = ±µBB

Then E1 = −µBB is the energy of an electron aligned with the field, and E2 = +µBB is the
energy of the spin opposed to the field. Therefore

n(E2)
n(E1)

= exp (β (E1 − E2)) = exp
(−µBB − µBB

kT

)
= exp

(−2µBB
kT

)
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b) At T = 77 K

n(E2)
n(E1)

= exp
(−2µBB

kT

)
= exp

(−2 (9.274× 10−24 J/T) (8 T)
(1.381× 10−23 J/K) (77 K)

)
= 0.870

At T = 273 K

n(E2)
n(E1)

= exp
(−2µBB

kT

)
= exp

(−2 (9.274× 10−24 J/T) (8 T)
(1.381× 10−23 J/K) (273 K)

)
= 0.961

At T = 800 K

n(E2)
n(E1)

= exp
(−2µBB

kT

)
= exp

(−2 (9.274× 10−24 J/T) (8 T)
(1.381× 10−23 J/K) (800 K)

)
= 0.987

As the temperature is increased, the alignment of the spin with the magnetic field is less
probable.

19. Setting FFD = 0.5 when E = EF , we have

0.5 =
1

B1 exp (βEF ) + 1

Solving for B1, we find B1 exp (βEF ) + 1 = 2, so B1 exp (βEF ) = 1 and B1 = exp (−βEF ).
Therefore in general

FFD =
1

B1 exp (βE) + 1
=

1
exp (−βEF ) exp (βE) + 1

=
1

exp (β (E − EF )) + 1

20.* At first one may think it should be 0.5, but this is not quite true, due to the asymmetric shape
of the distribution. Starting with Equation (9.43) for g(E) and using the fact that FFD ∼= 1
in this range, we have

N
(
E < E

)
=
∫ E

0
g(E)(1) dE =

3
2
NE

−3/2
F

∫ E

0
E1/2dE = NE

−3/2
F E

3/2

But recalling that E = 3
5EF , we see that

N
(
E < E

)
= N

(3
5

)3/2

= 0.465N

21. a) From dimensional analysis

1.05× 104 kg/m3

(
1 mol

0.10787 kg

)(
6.022× 1023

mol

)
= 5.86× 1028 m−3
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b) For electrons an extra factor of 2 is required due to the Pauli principle:

N

V
=

2A
h3 (2πmkT )3/2

so

T =

(
N

2AV

)2/3
h2

2πmk
=

(
5.86×1028 m−3

2(1)

)2/3
(6.626× 10−34 J · s)2

2π (9.109× 10−31 kg) (1.38× 10−23 J/K)
= 5.28× 104 K

c)

T =

(
N

2AV

)2/3
h2

2πmk
=

(
5.86×1028 m−3

2(0.001)

)2/3
(6.626× 10−34 J · s)2

2π (9.109× 10−31 kg) (1.38× 10−23 J/K)
= 5.28× 106 K

22. At T = 0, FFD = 1 and so n(E) = g(E) (1) = g(E). The number of electrons in this range is
given by ∫ EF

0.90EF
g(E) dE =

3
2
NE

−3/2
F

∫ EF

0.90EF
E1/2 dE = NE

−3/2
F E3/2

∣∣∣EF
0.90EF

= N
(
1.003/2 − 0.903/2

) ∼= 0.146N

We see that about 14.6% of the electrons are in this range, which is about what one would
expect from the shape of the distribution.

23.* a) As in Problem 21, N/V = 5.86× 1028 m−3. Then

EF =
h2

8m

( 3
π

N

V

)2/3

=
(6.626× 10−34 J · s)2

8 (9.109× 10−31 kg)

( 3
π

(
5.86× 1028 m−3

))2/3

= 8.81× 10−19 J = 5.50 eV

b)

uF =

√
2EF
m

=

√
2 (8.81× 10−19 J)
9.109× 10−31 kg

= 1.39× 106 m/s

24. a) Note: the term α (kT )2 /EF is a small fraction of one eV and can be ignored. Then

E =
3
5
EF =

3
5

(5.51 eV) = 3.31 eV

b) With E = 3
2kT we have

T =
2E
3k

=
2 (3.31 eV)

3 (8.617× 10−5 eV/K)
= 2.56× 104 K

c) As discussed in the text, thermal energies are small compared with the Fermi energy, except
at high temperatures.
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25.

8.92× 103 kg/m3

(
1 mol

0.063546 kg

)(
6.022× 1023

mol

)
= 8.45× 1028 m−3

The difference is 0.2%. Within rounding errors there is one conduction electron per atom.

26. a)

2.70× 103 kg/m3

(
1 mol

0.02698 kg

)(
6.022× 1023

mol

)
= 6.03× 1028 m−3

b)

EF =
h2

8m

( 3
π

N

V

)2/3

so

N

V
=

π

3

(8mEF
h2

)3/2

=
π

3

(
8 (9.109× 10−31 kg) (11.63 eV) (1.602× 10−19 J/eV)

(6.626× 10−34 J · s)2

)3/2

= 1.81× 1029 m−3

c) Dividing he conduction electron density by the number density we get almost exactly 3,
from which we conclude that the valence number is three.

27.* In general EF = 1
2mu

2
F , so uF =

√
2EF/m.

a)

uF =

√
2EF
m

=

√
2 (3.93 eV) (1.602× 10−19 J/eV)

9.109× 10−31 kg
= 1.18× 106 m/s

b)

uF =

√
2EF
m

=

√
2 (9.47 eV) (1.602× 10−19 J/eV)

9.109× 10−31 kg
= 1.83× 106 m/s

28.

E > EF :
E − EF
kT

→∞ so FFD → 0

E < EF :
E − EF
kT

→ −∞ so FFD → 1

E = EF :
E − EF
kT

→ 0 so FFD →
1
2
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29. In general n(E) = g(E)FFD. Using Equation (9.43) for g(E) and the result of Problem 19 for
FFD, we can substitute to find

n(E) =
3N
2
E
−3/2
F

E1/2

exp (β (E − EF )) + 1

30. Graphs will resemble those in Figure 9.10 (b). The T = 0 line matches the dashed line shown,
and at T = 293 K we get the solid line. At the higher temperature (1800 K) the graph
deviates a bit more from the dashed line.

31. Numerical integration should yield accurate results.

1.5 (7)−3/2
∫ ∞

0

E1/2

exp ((E − 7) / (0.02525)) + 1
dE ∼= 1

32. Setting up the numerical integration in Maple we have with kT = 0.02525 eV,

1.5 (7)−3/2
∫ 7

6

E1/2

exp ((E − 7) / (0.02525)) + 1
dE ∼= 0.203

So we see that about one-fifth of the electrons are within 1 eV of the Fermi energy, which
makes sense given the shape of the distribution.

33. We can use the relationship (9.42)

EF =
h2

8m

( 3N
πL3

)2/3

We use the neutron mass and from dimensional analysis

N

L3 =
4.50× 1030 kg

4
3π (104 m)3

1 (neutron)
1.675× 10−27 kg

= 6.41× 1044 m−3

Then

EF =
h2

8m

( 3N
πL3

)2/3

=
(6.626× 10−34 J · s)2

2 (1.675× 10−27 kg)

( 3
π

(
6.41× 1044 m−3

))2/3

= 9.45× 10−11 J

= 590 MeV

The close packing of the neutrons makes the Fermi energy large compared with Fermi energies
in normal matter.
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34.* a) To find N/V integrate n(E) dE over the whole range of energies:

N

V
=
∫ ∞

0
n(E) dE =

8π
h3c3

∫ ∞
0

E2

exp(E/kT )− 1
dE

From integral tables we have the following:∫ ∞
0

xn−1

emx − 1
dx = m−nΓ(n)ζ(n)

For us m = 1/kT , Γ(3) = 2! = 2, and from numerical tables ζ(3) ∼= 1.20. Thus

N

V
=

8π
h3c3 (kT )3 (2) (1.20) =

8πk3T 3

h3c3 (2.40)

b) With T = 400 K:

N

V
=

8πk3T 3

h3c3 (2.40) = 8π(2.40)
(

(1.381× 10−23 J/K) (400 K)
(6.626× 10−34 J · s) (2.998× 108 m/s)

)3

= 1.30× 1015 m−3

At T = 5500 K:

N

V
=

8πk3T 3

h3c3 (2.40) = 8π(2.40)
(

(1.381× 10−23 J/K) (5500 K)
(6.626× 10−34 J · s) (2.998× 108 m/s)

)3

= 3.37× 1018 m−3

35. Evaluating by computer we find ∫ ∞
0

u1/2

eu − 1
du ∼= 2.315

36.

I3 = −dI1

da
= −

(
− 1

2a2

)
=

1
2a2

I4 = −dI2

da
= −
√
π

4

(
−3

2

)
a−5/2 =

3
√
π

8
a−5/2

I5 = −dI3

da
= −1

2

(
−2a−3

)
= a−3

37.

E = K + V =
p2

2m
+mgz

exp(−βE) = exp
(
−β

(
p2

2m
+mgz

))
= exp

(
−βp

2

2m

)
exp (−βmgz)
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Absorbing the (assumed constant) first exponential factor into the normalization constant Cz,

f(z) dz = Cz exp (−βmgz) dz

To find Cz we normalize:∫ ∞
0

f(z) dz = Cz

∫ ∞
0

exp (−βmgz) dz = Cz (βmg)

Thus
Cz =

1
βmg

=
kT

mg

38. For air we will use an average m = 29 u = 4.82× 10−26 kg and T = 273 K. In general

ρ(h)
ρ(0)

=
exp (−βmgh)
exp (−βmg0)

= exp (−βmgh)

For Denver:

ρ(h) = exp
(
−(4.82× 10−26 kg) (9.80 m/s2) (1610 m)

(1.381× 10−23 J/K) (273 K)

)
ρ(0) = 0.817ρ(0)

For Mt. Rainier:

ρ(h) = exp
(
−(4.82× 10−26 kg) (9.80 m/s2) (4390 m)

(1.381× 10−23 J/K) (273 K)

)
ρ(0) = 0.577ρ(0)

39. In equilibrium a fluid layer of density ρ, mass M , thickness h, and surface area A has a force
F2 = P2A acting downward on its upper surface and a force F1 = P1A acting upward on its
lower surface. The difference between these forces equals the weight of the fluid layer.

F2 − F1 = (P1 − P2)A = Mg = ρgAh

Let dP ∼= ∆P = P2 − P1 and h = ∆z ∼= dz, we have dP = −ρg dz. With N particles of mass
m, the mass density is ρ = Nm/V . Putting these together:

dP = −ρg dz = −Nmg
V

dz

From the ideal gas law, N/V = P/kT , so

dP = −mgP
kT

dz

Applying separation of variables we can solve this differential equation for P as a function of
z:

dP

P
= −mg

kT
dz lnP = −mgz

kT
+ constant = −βmgz + constant
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P = (constant) exp (−βmgz) = P0 exp (−βmgz)

40. a)
dN

dt
= −nv

4
A = −NvA

4V
Solving this differential equation:

dN

N
= −vA

4V
dt lnN = −vA

4V
t+ constant

N = (constant) exp
(
−vA

4V
t
)

= N0 exp
(
−vA

4V
t
)

Setting N/N0 = 1/2 at t = t1/2, we find

1
2

= exp
(
−vA

4V
t1/2

)

t1/2 =
4V
vA

ln 2

b)

V =
πD3

6
=
π (0.4 m)3

6
= 0.0335 m3

A =
πd2

4
=
π (0.001 m)2

4
= 7.85× 10−7 m2

v =
4√
2π

√
kT

m
=

4√
2π

√√√√(1.381× 10−23 J/K) (293 K)
29 (1.66× 10−27 kg)

= 462.6 m/s

t1/2 =
4V
vA

ln 2 =
4 (0.0335 m3)

(462.6 m/s) (7.85× 10−7 m2)
ln 2 = 256 s

41.* The number of molecules with speed v that hit the wall per unit time is proportional to v and
F (v), so that the distribution W (v) of the escaping molecules is by proportion

W (v) ∼ vF (v) ∼ v3 exp
(
−1

2
βmv2

)
Let the normalization constant for W (v) be C ′, so

C ′
∫ ∞

0
v3 exp

(
−1

2
βmv2

)
dv = 1 = C ′

(1
2

)(
βm

2

)−2

or C ′ = β2m2/2. The mean kinetic energy of the escaping molecules is

E =
1
2
mv2 =

1
2
mC ′

∫ ∞
0

v5 exp
(
−1

2
βmv2

)
dv =

1
2
m

(
β2m2

2

)(
βm

2

)−3

=
2
β

= 2kT
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42. From Example 9.5
N

V
=
A

h3 (2πmkT )3/2

a) Letting m be the electron mass and inserting a factor of 2 for the Pauli principle,

N

V
=

2A
h3 (2πmkT )3/2

=
2(1)

(6.626× 10−34 J · s)3

(
2π
(
9.109× 10−31 kg

) (
1.381× 10−23 J/K

)
(293 K)

)3/2

= 2. 42× 1025 m−3

This is quite a bit less than the density of conduction electrons in a metal (such as copper),
which indicates that Fermi-Dirac statistics should be used.
b)

N

V
=

2A
h3 (2πmkT )3/2

=
2(1)

(6.626× 10−34 J · s)3

(
2π
(
1.6749× 10−27 kg

) (
1.381× 10−23 J/K

)
(293 K)

)3/2

= 1.91× 1030 m−3

c) For He gas the Pauli principle does not apply, so

N

V
=

A

h3 (2πmkT )3/2

=
1

(6.626× 10−34 J · s)3

(
2π(4)

(
1.66× 10−27 kg

) (
1.381× 10−23 J/K

)
(293 K)

)3/2

= 7.54× 1030 m−3

43.* For the harmonic oscillator the position and velocity are

x = x0 cos(ωt) v =
dx

dt
= −ωx0 sin(ωt)

V =
1
2
kx2 =

1
2
kx2

0 cos2(ωt)

K =
1
2
mv2 =

1
2
mω2x2

0 sin2(ωt) =
1
2
kx2

0 sin2(ωt)

where we have used the fact that ω2m = k. Over one cycle the average of the square of the
sine or cosine function is one-half. Also the total energy is E = 1

2kx
2
0. Thus

K = V =
1
2
kx2

0

(1
2

)
=
E

2
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