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* 8.

Chapter 11
K B
log R+ —— ]()gR =A+ f

This can be rearranged to find

(log R)? - (A -+ E) (logR)+ K =0

This is a quadratic equation that can be solved numerically at any given temperature.
a) T=77T K:log R =2.372s0 R =236
b) T =20 K: IogR:Q?SGsoR:GlOQ

¢)T=1K:log R=7.7389s0 R =548 x 10"
K B

Inserting each of the R and T values, we have three equations in three unknowns (A.B. K),
which can be solved to yield A =2.09, B =1.96. K = 1.10.

Positive charges drift to the right. so the right side of the strip is at a higher potential and
the voltmeter reads positive.

a) Starting from Equation (11.6) and with A = yz, we have

IB (0.10 A) (0.036 T) ) _
- = : —1.78
"N iz (L60Zx 1070 C) (84 x 107 V) (15 x10-Tm) o0

b) Graphing B vs. Vi we find a slope of approximately 4.56 T/V. Algebraically, we see that

B= —I:VH. Thus the slope, m is equal to 2%. So

ml (4.56 T/V)(0.10 A) v
= —_—= ! -1 0
"= e (1.602 x 10-19 C) (1.5 x 101 m) 1.90 x 107 m

. E=V/L=QdT/dz so

1% 126 x 1078 V
= = =1.26 x 1076 V/K
Q L% (0.10 m) (F4£) /

. From the table 2.43 mV corresponds to 47.2°C.

Over most of the table 0.05 mV corresponds to a temperature change of 1°C. Therefore for
0.01°C there corresponds a voltage difference of (0.01) (0.05 mV) =35 x 1077 V.

a) Al is in Group III; Ge is in Group IV; so relative to Ge. it is p-type.

b) Se has two more outer electrons than Si, so it is n-type. Se is in Group VI; Ge is in Group
Iv.
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9. The relation between energy and photon wavelength is F = % The photon must provide

enough energy to excite the electron across the gap, so A = —

1240eV AE
a) A= YA ° . nm _ 1850 nm

1240eV - nm
b) A= W = 1130 nmn

10. The relation between energy and photon wavelength is £ = th A photon with wavelength

574 nm corresponds to E = %ﬂ =2.16eV

11. The angle between the solar
rays and a vector normal to —_— y
the surface A is A. Therefore _

d = ®gcos A

a) On the equinox A = 33° so & = ®gcos(33°) = .839%,

On the winter solstice A = 33° 4+ 23° = 56° and ¢ = $g cos (56°) = .559%
On the summer solstice A = 33° — 23° = 10° and ¢ = ®gcos (10°) = .985®,
b) On the equinox A = 50° so ® = &g cos (50°) = .643%,

On the winter solstice A = 50° 4+ 23° = 73° and ¢ = $gcos (73°) = 2920
On the summer solstice A = 50° — 23° = 27° and ¢ = & cos (27°) = .8919,
¢) On the equinox A = 60° so & = $qcos (60°) = .5009,

On the winter solstice A = 60° 4+ 23° = 83° and ¢ = $¢ cos (83°) = .122%,
On the summer solstice A = 60° — 23° = 37° and & = ®qcos (37°) = .799%,

These results indicate why there is generally a larger temperature gradient (as a function of
latitude) in winter than summer.

12. We require 10° W = 0.3 (200 W/m?) 4, so rearranging
eq

10° W

= = 1.67 x 107 m?
0.3 (200 W/m?)

which corresponds to a square array 4.1 km on a side.

* 13. In general I = I (exp(eV/kT) — 1) and in Example 11.4

1
b= opevEm) =1~ 18-10kA
a)
0.250 eV
= . A = - = 1.
I=(18.16 x 107°A) <exp ((8-61“ T0-5 oV/K) (250 K)) 1) 1.99 A
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* 14.

15.

16.

b)

0.250 eV
= . ) —6 = - = 02 = 2
I'=(18.16 x 107°A) (exp((&m?xm_a oV /K) (300 K)> 1) 88 A = 288mA

c)

0.250 eV
= -6 —_ = ) =
I=(18.16 x 107°A) (exp<(8.617x 10-5 oV/K) (500 K)) 1) 0.006 A = 6.00mA

Since the tube is single-walled. we can find the surface area density, o in SI units. Each atom
has mass 12 u, with u = 1.6605 x 10727 kg.

o= (2.3 x 1019 atoms/mz) (12u) (1.6605 x 1072 kg/u) = 4.58 x 1077 kg/m*

a) To determine the density of the material, we need the mass per unit volume. The mass
will equal the mass density. ¢ from above, times the area A of the cylindrical wall. If the
tube’s length is L with radius R, then m = 27 RLo. Therefore the density will be

2
omR 9 2(4.58 x 107" kg/m*
,,=E=T_L°’=_= ( >=1300kg/m3
V  #RZL R 0.7x10"%m

b) The material is less dense than steel and has a greater tensile strength.

We know the density of the single-walled nanotube from the previous problem. Consider a
tube that is 1 nanometer long. The tube will contain one buckyball. The total mass will be
the mass of the tube plus the mass of the buckyball which is

m = pV + (60)(12u) (1.6605 x 10”2 kg/u) = p (rR?L) + 1.20 x 10~ kg

We find the pV term equal to 2.0 x 1024 kg, so the total mass equals 3.2 x 10724 kg. Therefore
the density of the nanotube peopod is

_m _ 32x107Mkg 3.2 x 10" kg
eV TR2L 7(0.7 x 10-9m)? (1 x 10~° m)

= 2080 kg/m>

a) Using E = E, for the conduction band we have E — Er = E; — E;/2 = E;/2. Then
exp [(E = Er) [kT] = exp [E4/2kT)

With E, =~ 1 eV for a semiconductor (and larger for an insulator), and kT ~ 41—0 eV at room
temperature, we can see that £, > 2kT and the exponential term will be much greater than
1, so we can neglect the +1 term in the Fermi-Dirac factor. This leaves

1

N —exp[—E, /2

6 eV
2 _~ -0 2 Y = ) _ = 2 -52
Frp = exp = Bq/2kT] e“"( 2(8.617 x 10-5 V/K) (293 K)) 5x 10
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1.1 eV
2(8.617 x 10—5 eV/K) (293 K)

Frp =exp[-Ey/2kT] = exp (— ) =3.5x 10710
d) For one mole of silicon there are 6 x 10* atoms, so there are still many conduction electrons
available.

a) Replacing ¢y with keg we have for the new Bohr radius

dmegrh®
@) = == = 11.7ap = 11.7(5.29 x 102 nm) = 0.619 nm
b) This value is about 2.6 times the lattice spacing. This is consistent with the fact that the
electron is very weakly bound, and hence the doped silicon should have a higher electrical
conductivity than pure silicon.

From Bolr theory

me?

Ey= —
M2 (47768)2

Replacing eg with xep we have a new Rydberg energy

4
me E 13.6 eV
h = e = = = T2 20 = .099 eV
2h% (4med) k2 RS (11.7)°
This is more than a factor of ten less than the band gap for pure silicon, again consistent
with the idea that the doped version has a higher electrical conductivity.

. Answers will vary depending on algorithms used, but students should find that using a second-

order method results in some improvement.

. a) I = I (exp(eV/kT) — 1). To find the value of V for the diode, use the loop rule:

V+IR=6V,s0V =6V —IR. We are given that [y = 1.75uA and ] = 80 mA with
T =293 K.

IL = 45714 = exp (eV/kT)
0

’ _
In45714 = eV _e6V-IR)

kKT — kT
Solving for R we find
6V — (kTln45714) fe 6V — (8.617 x 1075 eV/K) (203K (In45714)) /e

k= T 0.080 A

=71.6Q

b)
Va = IR = (0.080 A) (71.6 Q) = 5.73V

. a)8=-exp(eV/kT) - 1so0

kTIn9  (8.617 x 107° eV/K) (293 K) (In9)
e e -

b) —0.8 =exp(eV/ET) — 1 so

_ kTIn0.2 _ (8.617 x 107° eV/K) (293 K) (In0.2)

& [

V = 55.5 mV

ot

% = —40.6 mV
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22.
he 1240 eV - nm
=—="——"———=19
E, A 650 nm 19l eV
* 23,
h 240 eV -
Eg=_f=_—l eV -nm _ o260y

A 460 nm

24. a) The total area is (12 x 108) (1.3 x 1077 m)2 = 2.03 x 10~7 m? so each side is the square
root of this or 0.450 mm.

b) The area of each transistor is now 2.5 x 107! m?, so the number is

2.03 x 1077 m?

N =z = 812 % 107
or nearly a factor of 7 improvement.
25. From Problem 16 we have Frp = exp [—E,/2kT).
1.1eV

Siat T = 0°C: FpDzexp( ) =7.02x 107!

~2(8.617 x 105 eV/K) (273 K)

. 1.1 eV 8
= 75°C: oD R e — =1. -
SiatT=75°C:  Frp=exp ( 2(8.617 x 105 eV/K) (348 K)) 108 x 10
o, N 0.67 eV P
Geat T =0°C: Fpp =~ exp <_2(8.617 % 105 oV/K) (273 K)) = 6.54 x 10
o, - 0.67 eV L -5
Ge at T =T75°C: FpD~exp< 3(8.617 x 105 eV/K) (348 K)) =1.41x10

The Fermi-Dirac factor is orders of magnitude higher in germanium, making the conduction
electron density too high. The result is a reverse-bias current that is too large. See Physics
Today December 1997 p. 38.

26, a) Energy is power multiplied by time:
E = Pt = (0.15) (200 W) (3.156 x 107 s) = 9.47 x 10® ]

b) Converting we find 2.8 x 10'2 kW-h = 1.01 x 10'® J. Then the area is

1.01 x 10 J
X 1.06 x 10 m?
9.47 x 108 J/m”

c) Using 2.5 times the area in (b) the fraction of the U.S. covered is

2.5 (1.06 x 10'°m?)

oo x gz o U0

or one-fourth of one percent. See American Scientist July-August 1993, p. 368.
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From the diode equation the current is I = Igexp (eV/kT) — 1. Then the ratio is

If I() exp (er/kT) -1
I. ~ Ipexp(eV,./kT) — 1

1.50 eV

exp ﬁe—7—\_ —
AL T = 77 K- Iy ((861 x10-5 eV/K)(77 K))
P

=-1.5x10%
—1.50 eV )

(B6I7x10-° eV/K)(77 K)

1.50 eV
BBI7x10-7 eV/K) (272 K)

—1.50 eV
(8617x10-5 eV/K)(273 K)

At T =273 K: bt A = —-4.9 x 10%

1.50 eV

(

( )~

( )~
Iy ©Xp ((s BI7x10-" oV/K)(340 K))

( )

( )

At T =340 K: - = ooV
— e
EXP | B617x10-5 V/K)(340 K)

= -1.7 x 1022

1.5
& —617x_5"10— ev“/'k‘(soo K)

At T =500 K: <= =-1.3x 101
I, exp ( ~1.50 eV ) -1

(B.617x10-5 ¢V/K)(500 K)

b) The ratio changes fairly significantly as a function of temperature. which is something
diode designers must keep in mind.

. a) An electron can be produced if the 1.1 2V band gap can be overcome. If we divide the

total energy available by the band gap energy, the maximum number of electrons that can be
produced is
1.04 x 105 eV

=—_—-=g 5
N T1eV 45 x 10

b) If the silicon is cooled well below room temperature, very few electrons will be in the
conduction band. At room temperature, however, enough electrons are in the conduction
band that additional current will be measured, tending to mask the gamma-ray signal.

. From the diode equation the current is I = Ipexp (eV/kT) — 1. Then the ratio is

Iy  Ipexp(eVy/kT) -1 exp(eVy/kT) -1

I,  Iyexp(eVy/kT) -1 exp(eV,/kT) -1

Substititing the values given. we find

0.leV
Iy &P ('('s_,s‘17x1‘o'—5_eev' 77R)(293 K) ) -1 - 595

- —0.1eV
T exp ((8_617)( 10-3 ef’/K)T293 K)> -1

So the ratio of the currents in forward and reverse is 52.5.

Young's Modulus relates the elongation of an object due to an applied force. The formula is

Y = % (K%) Rearranging this formula to solve for F' and subtituting, we find

. -9 2
F=YA (ALL> = 1050 x 10° Pa ("(l'b . io ) ) (0.01) = 2.1 x 107°N
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* 31. The number of bits stored is (4.7 x 10%)(8) = 3.76 x 10%bits. To find the area we use ﬂ
A =m(r} -r?) = 7(0.0582 - 0.0232) = 8.91 x 1073 m?. The number of bits stored per '

square meter is then
3.76 x 100 bits

= 4.2 x 10" bits/m?.
891 x 103 m? ,}ts/m
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