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Chapter 2

) - d*c~ d%y-~ d%z-
. For a particle Newton’s second law says F = md = m |—— i+ —j+ -3 k|. T
p y m 7 l_dt2 i+ 27 + i k] lake the
second derivative of each of the expressions in Fquation (2.1):
d2‘1:' B ([2:1: Jl!/ 5 ‘[ly dgz, d%z
FTEANTE e~ de? de T oar?

Substitution gives

]:p'v

F = —m a2z’ Tt d*z’ > d%s Z
=1mna = -— —_— . —
" a2 't T e

. From Equation (2.1)

= d::?_l_dy»;+dzz
F=m|—1i+— —k
f FTRFTRIT

——

In a Galilean transformation

de' _dz dy  dy d2 da
dt ~ dt dt — dt dt  dt
Therefore
RN T PO P
p=m o vyt L FEP

However, since

' =m -——,;i— dy =, 427
y T TIAT
. . . . . " dx
the same form is clearly retained, given the velocity transformation TR

. Using the veclor triangle shown, the
speed of the light coming toward the mirror
is Vc2 — v? and the same on the a3

return trip. Therefore the total time is

distance 28,

speed - vz —?

. . v 1Y
Notice that sind = -, so # =sin~! (—)
c c

. As in Problem 3, sin0 = v} fva, s0 0 = sin~ (v, fvz) = sin™! [%ﬁ:ﬁ] =199" and
v = /v — v} = /(0.94km/h)? - (0.32km/h)? = 0.88km/h .

When the apparatus is rotated by 90°, the situation is equivalent, except that we have cffec-
tively interchanged £, and £5. Interchanging £, and €2 in quation (2.3) leads to Fquation
(2.4).
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Ad
* 6. Let n = the number of fringes shifted; then n = T Since Ad = ¢ (At' — At). we have

. C(Atl - At) _ v? (El |- 82)
n= ) ST a2

Solving for v and noting that €; + 3 = 22 m,

A 0.005) (589 x 10-9
v=c é’lnTL’z = (3.00 x 10% m/s) \/( )(22 :1 m) _ 3.47 km/s

* 7. Letting £, — €1/1 — 52 (where 8 = v/c) tke text equation for ¢; becomes

L _20Vi-p 24
YT e -p) o J1-p2

which is identical to t; when €; = €5, so At = 0 as required.

8. Since the Lorentz transformations depend on ¢ (and the fact that ¢ is the same constant
for all inertial frames), different values of ¢ would necessarily lead two observers to different
conclusions about (say) the order or positions of two spacetime events. in violation of postulate

1.

9. Let an observer in S send a light signal along the +z-axis with speed ¢. According to the

Galilean transformations, an observer in S’ would measure the speed of the signal to be

dz' dz
=——p=cCc—v

dt T dt

Therefore the speed of light cannot be constant under the Galilean transformations.

10. From the Principle of Relativity, we know that the correct transformation must be of the

form (assuming y =y’ and z = 2/)
z = ax’ + bt ' =az - bt
The spherical wavefront equations (2.9a) and (2.9b) give us
ct = (ac+b)t’ ct’ = (ac—b)t
Solve the second wavefront equation for ¢’ and substitute into the first:

ot = [(ac+ b)(ac — b)t]

[

¢? = (ac + b)(ac — b) = a*c® — b?

Now v is the speed of the origin of the z’-axis with respect to the z-axis . We can find that
speed by setting 2’ = 0 which gives 0 = azx — bt, or v = z/t = b/a, or equivalently b = av.

Substituting this into the equation above for ¢? yields

2 = a?c? —a?v? = a? (¢ —v?)
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Solving for a:
1

Q

This expression, along with b = av, can be substituted into the original expressions for z and
z’ to obtain

z = (a' + vt') ' =(z —vt)
which in turn can be solved for ¢ and t' to complete the transformations.

When v << cwe find 1 — 32 > 1, so

— Dct
e be —z-fct=z1-uvt
1- 432
t_
t = ﬂz/c—»t—ﬂx/czt
1~/
.r'«l-ﬁc’

a) Conversion 100 km/h = 27.77 m/s so

B=v/c= (2777 m/s)/ (3.00 x 108 m/s) =9.3 x 1078
b) B =v/c = (290 m/s)/ (3.00 x 10® m/s) =9.7 x 1077
¢) v = 2.3Usound = (2-3 - 330 m/s) and

B =v/c=(2.3-330 m/s)/(3.00 x 108 m/s) = 2.5 x 1076
d) Conversion 27,000 kin/h = 7500 m/s so
B =uv/c = (7500m/s)/ (3.00 x 108m/s) = 2.5 x 1075

e) (25cmn) / (2ns) = 1.25 x 108 m/s so B = v/c = (1.25 x 10® m/s)/ (3.00 x 108 m/s) = 0.42
f) (1 x 107Mm ) /(0.35 x 10722s) = 2.857 x 10° m/s

B =v/c= (2857 x 10% m/s)/ (3.00 x 10® m/s) = 0.95
From the Lorentz transformations

At =y [At - 'UA:J:/C2]

But At’ = 0 in this case, so solving for v we find

v=cAtf/Ax
Inserting the values At =ty — t; = —a/2c and Az = z9 - ) = q,
2 (—a/2
v= ¢ (za/2) :/ ) = —c/2

We conclude that the frame K’ travels at a speed c¢/2 in the —z-direction. Note that there is
no motion in the transverse direction.



Chapter 2 Special Theory of Relativity

* 14. There is no motion in the transverse direction, so y = z = 3.5 m.

.
VI-p2 V1i-08

7= =5/3

=g (' +vt') = g (2m +0.8¢(0)) =10/3 m

= (04 (0.8¢) (2 m) /c?) = 8.9 x 10795

mlu

t = (t +vr'/c?) =

15. a)

2y .2 2 3 m) +5m +10m
Varr s I Ve ( (om? e

t=
3.00 x 108 m/s

b) With @ = 0.8 we find as in previous problems y =5/3. Then y =y =5m, 2’ =2 =10
m,
’

P=q(@—vt)=:[3m — (240 x 10® m/s) (3.86 x 1078 5)] = —-10.4 m

Wi n

t' = (t —vz/c®) =

c)

wlo;

[(3.86 x 1078 5) — (2.40 x 10® m/s) (3 m) / (3.00 x 10° 111/5)2] =51.0 ns

f22 L 2 104m + (5 m)? + (10 m)®
T +y + 22 \/( + (G m)+( ) =2.994 x 108 m/s

51.0 x 1079 s

which equals ¢ to within rounding errors.
16. Try setting Az’ = 0 = v (Az — vAt). Thus
0=Az—-vAt=a+va/2c
Solving for v we find v = —2¢, which is impossible. There is no such frame K’.

17. For the smaller values of 3 we use the binomial expansion vy = (1 — ﬁz)_l/2 ~ 1+ p%/2.
a)y=1+02/2=1+43x107%  b)yy=1+6%/2=1+47x10"13
y~1+/4/2=1+31x10"12 d)yy=~1+3%/2=1+31x1071°
e)y=(1-8)""=(1-0422)"" =110
f)y=(1-p6)"=(1-0952)"" =32

18. At the point of reflection the light has traveled a distance L + vAt; = ¢At;. On the return
trip it travels L — vAly = cAts. Then the total time is
2Lc 2L/c

Aty + Alp -2 1-?/2

But from time dilation we know (with At’ = proper time = 2Ly /c)

2L0/C

V1-v%/c?

At =y Al =



19.

* 21.
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Comparing these two results for At we get
2Lfc  2Lo/c

1 - '—c’; V103

which reduces to

L=Lov1-v/c?= %9
This is equation (2.21).
With a contraction of 1%, L/Lg = 0.99 = /1 — v2/cZ. Thus
1 - 42 =(0.99)% = 0.9801

Solving for B, we find 8 =0.14 or v = 0.14¢.

. The round-trip distance is d = 40 ly. Assume the same constant speed v = fc for the entire

round trip. In the rocket’s reference frame the distance is only @’ = d1/1 — 82 . Then in the
rocket’s frame of reference

_ distance d' 401y V1-p362 —Cm

T time 40y 40y

Rearranging

ﬁ:%:\/l—ﬁ2

Solving for 8 we find 3 = V0.5 , or v = V0.5¢c = 0.71¢c. To find the elapsed time ¢ on earth,
we know t' =40 y. so

t=t' = 40y =56.6y.

1
V1= 42
In the muon’s frame Ty = 2.2 us. In the lab frame the time is longer; see Equation (2.19):
T' = «4Tp. In the lab the distance traveled is 9.5cm = vT' = vyTy = BeyTo, since v = Se.

Therefore
9.5cm (\/ﬁl - ﬂ2)
p= cTo
So
v 9.5cm (\/1 - 52)
p= c ¢ (2.2 us)

Now all quantities are known except 8. Solving for S we find 8 = 1.4x 1074 orv = 1.4x 1074 ¢.

. Converting the speed to m/s we find 25,000 mi/h = 11,176 m/s. From tables the distance is

3.84 x 108 m. In the earth’s frame of reference the time is the distance divided by speed, or

8
g @ 38IX107m 5 e
v 11,176 m/s

In the astronauts’ frame the time clapsed is t' = t/y = ty/1 — 82 . The time difference is
At=t—t'=t—t 1—ﬁ?=t[1—\/1—ﬂ2]

5
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23.

24.

* 26.

27.

Evaluating numerically

11,176 m/s > .
At=34359s [1—f1= (o) | =24%x107%s
0N S \/ (3.00 x 108 m/s> :

T' = Ty, so we know that

Solving for v we find

1
L = Lo/v so clearly v = 2 in this case. Thus 2 = —1—\/_-_—2—/—_2 and solving for v we find
—v?/c
V3e

v=—

2

5. The clocks' rates differ by a factor of v = 1/y/1 —v?/c?. Since B is very small we will use

the binomial theorem approximation y = 1+ 32/2. Then the time difference is
At=t—t'=t—qt=t(y-1)
Using v — 1 = 2/2 and the fact that the time for the trip equals distance divided by speed.
2
375 m/s

At = t(82) = 8 x 106 m (3.00x105 m7s)

- ~ 375m/s 2

= 167x107%s =16.7 ns

a) L' = L/y = L\/T—v%]c = 3.58 x 10" km V1 — 0.94%2 = 1.22 x 10* km

b) Earth's frame:

3.58 x 107 m
t = = = 0.12~
Liv= G50y 3.00 x 108 m/s) ‘s

t' =t/y=0.1275 V1 -0.94%2 = 0.0433 5
Spacetime invariant (see Section 2.9): cZAf2 — Az? = ¢2At'? — Az'?
We know Az = 4 km, At =0, and Az’ =5 km. Thus
Az'? - Az? (5000 m)? = (4000 m)®

Golf ball's frame:

At? = . — = 1.0x 10710 §?
c (3.00 x 108 m/s)
and At' =1.0x107%s
. a) Converting v = 120 km/h = 33.3 m/s.
Now with ¢ = 100 m/s, we have 8 = v/c = 0.333
! 1 1.061

TR ioE Vi-o0333
We conclude that the moving person ages 6.1% slower.
b) L' = L/y = (1lm)/(1.061) = 0.942m
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r 29. Converting v = 300 km/h = 83.3 m/s
Now with ¢ = 100 m/s, we have § = v/c = 0.833

1 1
= = =181
V1- V1-10.8332

So the length is L = Lo/y =40/1.81 =22.1m

v

30. Let subscript 1 refer to firing and subscript 2 to striking the target. Therefore we can sce
that z; =1 m, 29 = 121 m, and {; = 3 ns.

distance 120 m
lo =t + ——— =3 ns +

speed 0080 ns + 408 ns = 411 ns

To find the four primed quantities we can use the Lorentz transformations with the known
values of z1, z2, t;, and t2. Note that with v =0.8¢, v = /1 —v?/c? = 5/3.

ty =7 (t1 - vz1/c*) = 0.56 ns (1)
th =y (t — vaa/c?) = 147 ns (2)
i =7z —vt) =047 m (3)
Ty = (T2 — vty) =37.3 m (4)

* 31. Start from the formula for velocity addition, Equation (2.23a):

r uy + v

Uy

T+ vul /c?
a)
0.7¢+ 0.8¢c 1.5¢ 0.96
Uy = = = 0.96¢
T 14(0.7¢)(0.8¢c) /et 1.56
b)
—0.7¢ 4+ 0.8¢ 0.1c
= = — 0‘
g (=0.7¢)(0.8¢)/c2  0.44 23¢
32. Velocity addition
W = TV
Fol-vuy/c?
with v = —0.8¢ and u; = 0.8¢c.
0.8¢ — (~0. 1.6
u, = c—(-08) _ 16 _ 0.976¢

71— (=0.8c)(0.8¢)/c? ~ 1.64

33. Conversion: 110 km/h = 30.556 m/s and 140 km/h = 38.889 m/s. Let u, = 30.556 m/s and
v = —38.889 m/s. Our premise is that ¢ = 100 m/s. Then by velocity addition
Uy — v 30.556 mfs — (—38.889 mn/s)

ul = - = 7 = 62.1 m/s
1 —wvuzfer 1 — (—38.889 m/s) (30.556 m/s) / (100 m/s)

f‘ By symmetry each observer sees the other one traveling at the same speed.

7
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34,

* 36.

* 37.

From Example 2.5 we have

c[1+nv/e
U= —|———
n|l1+v/ne

For light traveling in opposite directions

c [1 +nvfe  1-— nv/c]

Au = -
“ l+v/ne 1-v/ne

mn

Since v/c is very small, use the binomial expansion:

1+ nv/e

T+ v/ = (1 +nv/c) (1 +v/nc)™" =~ (I + nv/e) (1 —v/ne) = 1 + nvfc - v/ne
v/ne

where we have dropped terms of order v?/¢2. Similarly

1-nv/c

o/ ~1-nufe+v/nc

Thus
c 2v 5
Au =~ - [(1 + nvfe—v/ne) — (1 —nv/c+v/nc)] = — (1-1/n)=2v(1-1/n%)
Evaluating numerically

Au = 2(5 m/s) (1 - ) =4.35 m/s

1.332

. Clearly the speed of B is just 0.60c. To find the speed of C use u, = 0.60c and v = —0.60c:

o Up — v 0.60c — (—0.60c¢)
i

= = =0.88
* T T vug/2 1 (—0.60c)(0.60¢)/c ¢

We can ignore the 400 km, since it’s small compared with the earth to moon distance of
3.84 x 10® m. The rotation rate is w = 27rad x 100s~! = 27 x 10 rad/s. Then the speed
across the moon’s surface is

v=wR = (27 x 10% rad/s) (3.84 x 10® m) = 2.41 x 10" m/s

Classical: 4205
1 r
t= =143 x 107° s
0.98¢ X s
Then |
- - 2)t
N = Ngexp [——(t“_)—] = 14.6 or about 15 muons
/2
Relativistic: .
.43 x 10~
Vmtfy=—2 % =286x10s

)

—(In2)¢
N=N0exp[——ith]—)

] = 2710 muons
1/2

Because of the exponential nature of the decay curve, a factor of five (shorter) in time results
in many more muons surviving.

N
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39.

40.

41.
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The circumference of the fixed point’s rotational path is 27 R, cos(39°), where R, = radius of
earth = 6378 km. Thus the circumference of the path is 31,143 km. The rotational speed of
that point is v = (31,143 km) /24h = 1298km/h = 360.46 m/s. The observatory clock runs
slow by a factor of

1 .
Y= = 1+82/2=14+722x 10713

V-5

In 41.2 h the observatory clock is slow by (41.2 h) (7.22 x 107!3) = 2.9746 x 10~ h = 107
ns. In 48.6 h it is slow by (48.6 h) (7.22 x 10713) = 3.5089 x 107! h = 126 ns.

The Eastward-moving clock has a ground speed of 31,143 km/41.2 h = 755.9 km/h = 210.0
m/s and thus has a net speed of 210.0 m/s + 360.5 m/s = 570.5 m/s. For this clock

S
V1-p2
and in 41.2 hours it runs slow by (41.2 h) (1.81 x 107!?) = 7.4572 x 107! h = 268 ns.

The Westward-moving clock has a ground speed of 31,143 km/48.6 h = 640.8 km/h = 178.0
m/s and thus has a net speed of 360.5 m/s - 178.0 m/s = 182.5 m/s. For this clock

~1+82/2=1+181x107%

1
iaViey:

and in 48.6 hours it runs slow by (8.6 h) (1.85 x 10713) = 8.991 x 107!2 h = 32 us.

~1+3/2=1+185x10"13

So our prediction is that the Eastward-moving clock is off by 107 ns - 269 us = —162 ns,
while the Westward-moving clock is off by 126 ns - 32 ns = 94 ns. These results are correct
for special relativity but do not reconcile with those in the table in the text, because general
relativistic effects are of the same order of magnitude.

The derivations of Equations (2.31) and (2.32) in the beginning of Section 2.10 will suffice.
Mary receives signals at a rate f’ for ¢} and a rate f” for t;. Frank receives signals at a rate
f! for t; and a rate f” for t,.

L L L L 2
Tehith=g+o+y 3

v v

Frank sends signals at rate f, so Mary receives fT = 2fL/v signals.
2L
T =t +th=—
1t p
Mary sends signals at rate f, so Frank receives f1' = 2 fL/~v signals.

62 = 22 4 y? 4 22 — A2

Using the Lorentz transformation

52 ,72(1:1 + 'Utl)2 + y/:z + 212 _ C27g(t' +‘UII/CQ)2
I/‘).,y‘z (1 _ ,U'.?/CQ) + y12 + z/2 _ Czt'272 (l _ vz/cz)

2 2 P) 2
:1:/_ +y1_ + zl2 _ c_tl2 — S"'
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* 42. For a timelike interval As? < 0 so Az? < c2At%. We will prove by contradiction. Suppose
that there is a [rame K’ is which the two events were simultaneous, so that At = 0. Then

43.

44.

by the spacetime invariant

Az? — A2 = AT'? - EAL? = AL'?

But since Az? < c2Af2, Lhis implies Az'? < 0 which is iimpossible because Az’ is real.
p I

As in Problem 42, we know that for a spacelike interval As? > 0 so Az? > c2At%. Then in a

frame K’ in which the two events occur in the same place, Az’ = 0 and

Ar? — AA% = A% - A2AY? = —2AL?

But since Ax? > c2At? we have ¢2At'2 < 0, which is impossible because At is real.
N I

In order for two events to be simultaneous in K,

the two events must lie along the =’ axis, or along

(43

a line parallel to the z’ axis. The slope of the =’ axis Slope
is 3 =v/c, so v/ec =slope = %—3;‘. Solving ____(_.--)-""(;-,2)
x4

for v, we find v = c2At/Ax. Since the slope of the
' axis must be less than one, we see that Az > cAt,

s0 52 = Azx? - ¢2A¢? > 0 is required.

. a) and b) To find the equation of the line use the Loreuntz

transformation. With ¢’ = 0 we have t' =0 =7 (t ~ vz/c?)
or, rearranging, ct = vzfc = fc Thus the graph of ¢t vs. =
is a straight line with a slope of 8.

¢) Now with ¢’ a constant the Lorentz transformation
gives ' = v (t — vz/c?). Again we solve for ct:

¢t = Bz + ¢t/ /v = Oz + constant This line is parallel to

the t' = 0 line we found earlier but shifted by the constant.

d) As we saw in (c), the lines are parallel.

10

<l
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47.

* 48.

49.

Chapter 2 Special Theory of Relativity

The diagram is shown here. Note that there is only one

. x'=0
worldline for light, and it bisects both the z, ¢t axes
and the 2/, ct’ axes. The z’ and ¢t’ axes are not
perpendicular. This can be seen as a result of the =0
Lorentz transformations, since ' = 0 delines the x
ct’ axis and ¢’ = 0 defines the 7’ axis.

[

Lighdines

The diagram shows that the events A and B that occur at the same time in K occur at
different times in K.

ct ct'

The Doppler shift gives

/1—3
AZ’/\Q .H-—/ﬁ

With numerical values Ag = 670 nm and A = 540 nn, solving this equation for I gives
B = 0.212. The astronaut’s speed is v = fc = 6.4 x 107 m/s. In addition to a red light
violation, the astronaut gets a speeding ticket.

According to the fixed source (K) the signal and receiver move at speeds ¢ and v, respectively,
in opposite directions, so their relative speed is ¢ + v. The time interval between receipt of
signals is At = Af(c + v) = 1/ fo. By time dilation

At A
At = — =
7 ct+)
we find

. 1
Usmg A= C/vg and Y= T-\/—v?—%i

At =

cy/1-v3fc2  \/1-p2
fole +v) — fo(1+8)

1
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fl=__1_’_f0(l+ﬂ)__ I'Fﬂ
Ar /1-p2 1-4
50. For a fixed source and moving receiver, the length of the wave train is ¢T"4vT. Since n waves
are emitted during time T,

= <l +uT
n
and the frequency f =c¢/) is
o
f= cT +oT
As in the text n = foTy and T = T'/y. Therefore

jo STl /1R 18
T T+ol T 148 Vi+p

- -0.92
= = (400 H = 82 H.
f \/ = (100 Hz) \/ 1092 =821z

52. The Doppler shift function
1-4 v — : ) @ @——»— v
1+

is the rate at which #1 and #2 receive signals from each other and the rate at which #2 and
#3 receive signals from each other. But for signals between #1 and #3 the rate is

" __ gt ‘l_ﬂ_ 1-
f "f\/|+/3_f° + B

r_ I—B— <£
f_fo\,1+ﬂ

is the rate at which #1 and #2 receive signals from each : @
other and the rate at which #2 and #3 receive signals

* 51,

/"= o

w

—

53. The Doppler shift function

from each other.
As for #1 and #3 we will assume that these plumbing vans are non-relativistic (v << ¢).
Otherwise it would be necessary to use the velocity addition law and apply the transverse
Doppler shift. From the figure we see that
_ 1

ty + (tz - tl)

!

Now fo = 1/tp and
2r  2utgcost

t2-ll=——
C (s

With an angle of 45°, cosf = 1/v/2 and

1 _ Jo __Jo
1/fo+ (2vcos8)/cfy 1+ (2vcosb)/c ™ 1+ 2v/c

f'=

12
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* 54. The Doppler shift to higher wavelengths is (with Ag = 589 nm)

A =700 nm = gy LEB

1-5
Solving for 8 we find 8 = 0.171. Then

0.171) (3.00 x 10% m/s
v _ (0171 ( ~ /%) _ 5059 x 10° s
a 25 m/s”

which is 23.75 days. One problem with this analysis is that we have only computed the time
as measured by earth. We are not prepared to handle the non-inertial frame of the spaceship.

* 55. Let the instantaneous momentum be in the z-direction and the force be in the y-direction.
Then dp = F dt = ym dv and d7 is also in the y-direction. So we have

. dv
F = 'ymd—? =gmd

56. The magnitude of the centripetal force is

yma = ym—

for circular motion. For a charged particle F = quD, so

2
v
quB =ym—
T
or, rearranging
gBr = ymv=p
P
gB

When the speed increases the momentum increases, and thus for a given value of B the radius
must increase.

57.
- . mu
p=qmi =
1 —v?/c?
. dp
F=

The momentum is the product of two factors that contain the velocity, so we apply the

13
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product rule for derivatives:

F d mi
= m— et —
dt | /1 =v2]c2
dijdt__ _d 1
= m| ——— — | ———
VIi-ol/c?  dt 1 —v2/c?

+
e (-3)
= qma+mv —5

= 7nz&+73m6(—

2 ’U2

= ¥md [l -2 + ?] =~*mad

58. From the previous problem F = 43ma. We have a = 10!? m/s? and m = 1.67 x 10727 kg.
a)

1 1
V1-12/c2  V/1-0012
F o= (1.00005)° (1.67 x 10~2" kg) (1019 m/s”) = 1.67 x 1078 N

= 1.00005

¥ o=

i

b) Asin (a) y=1.005and F =170 x 1078 N

c) Asin (a) y=2294 and F =2.02x 10°" N

d) Asin (a) v =7.0888 and F = 5.95 x 1075 N
59. p = ymu. with

1 3 1
V1-v2/c2  V1-0.922
p 10-% kg -m/s _
v (2.5516) (0.92) (3.00 x 108 m/s)

v= = 2.5516

m = 1.42 x 1072° kg

* 60. The initial momentum is

m (0.5¢) = 0.57735 mc

1
= YNV = —/—————
=7 VI=052

a) p/po = 1.01

ymuv
1.01 _—
0.57735 me
yv = (1.01)(0.57735¢) = .58312¢

Substituting for v and solving for v,

1 11°12
V= |———— 4 — = 0.504¢
(.58312¢)2 2
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62.

Chapter 2 Special Theory of Relativity

b) Similarly
1 17172
V=l t+ 5 = 0.536
[(.63509 o)’ c2] e
c) Similarly

v_[ 1 L1
(1.1547¢)* €2

230-MeV protons have K = 230 MeV and £ = K + Ey = 1168 MeV. Then

JE2 2
p= ——E—ﬂ = 696.0 MeV/c

c

Converting to Sl units

-13
p = 696.0 MeV/c (1'60 x 10 J) ( ¢

= —]9 { - o
MeV 3.00 x 108 m/s) =3.71 x 10 kg-m/s
From Problem 56 - /
P 3.71 x 10~ g m/s
B= Y = —o
gr ~ (1.60 x 10-19 C) (15 m) 0.155 T

Initially Mary throws her ball with velocity (primes showing the measurements are in Mary's
frame):
wp, =0y, = —uo

After the elastic collision, the signs on the above expressions are reversed, so the change in
momentum as measured by Mary is

muyg —Tnug _ 2mug
V1-ud/e2  J1-u5/2 /1 -u/c?
Now for Frank’s ball, we know up, = 0 and uf, = ug. The velocity transformations give for
Frank’s ball as measured by Mary

up, =—v  up =upV/1—v2/c?
)

2
To find 4 for Frank’s ball, note that ('11.’[;‘2)2 + (‘u’py) =% +1ud (1 —2%/c?)
Then

Apy =

1 1 1

1= \/l—u',?/c2 - V1=12/c? —ud(1~v2/c?) /c? - \/(1 —u2/c?) (1 — v2/c?)

Using p’ = ymu’ along with the reversal of velocities in an elastic collision, we find

App = ym(—ug) V1 - v?/c? — ymugy/1 — v2/c? = ~2ymug+/1 — v2/c?
—2mugy/1 —v%/c2  —2mu
JU=wd/@) =)\ [(1-ud/e?)

Finally
—2mug + 2me
Ap = App + Apyy = — 2t 20 _

V(1 —ug/e?)

as required.
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63.

64.

65.

66.

To prove by contradiction. suppose that I = %’ymvz. Then

1
K=E-Ey=~mc® -mc?=(y-1)mc* = ;;'wnvz

This implies v — 1 = v2/2¢2, or v = 1 ++ v?/2¢?, which is clearly false.

The source of the energy is the internal energy associated with the change of state, commonly
called that latent heat of fusion Ly. L.et m be the mass equivalent of 2 grams and M be the
mass of ice required.

m = E _ Lfﬂ/f
2 2
Rearranging
2 (0.002 kg) (3.00 x 108 m/s)’
b =TS (0002 k) BO0X M m/S)” g ug 108 g
Ly 334 % 10% J/kg
5 K
In general K = (y - 1)mc*,soy =1+ —3.
me
For 9 GeV electrons: 9000 MeV
= eV _ 1
7= o ey — 0 X 10

Then from the definition of 4 we have

1
B=[1- == - 5s=1-1.6x107°
g (1.76 x 104)

Thus v = (1 = 1.6 x 1079) ¢ = 0.9999999984 c.
For 3.1 GeV positrons:

3100 MeV
=1+ ———— = 6068
= ey = %
! -8
B=,/1- s=1-1.4x10
(6068)

Thus v = (1 — 1.4 x 107%) ¢ = 0.999999986 c.

Note that the proton’s mass is 938 MeV/c?. In general K = (y —1)me?, so v = | + —.

p=yf1-2

For the first section K = 0.750 MeV, and

Then from the definition of v we have

_ L OTBOMeV
r= 038 MeV

1 1
B=l-—==0f=1-———— =0.040
2 g (1.00080)2
16
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Chapter 2 Special Theory of Relativity

Thus v = 0.04c at the end of the first stage. lor the other stages the computations are
similar, and we tabulate the results:

K (CeV) ~ 8
0.400 143 0.7l
8 9,53 0.994

150 160.9  0.99998
1000 1067  0.9999996

*67. a)
(511 keV/c?) (0.01 c)

p = ymu = = 5.11 keV/e
=7 V1= 0012
(511 keV/c?) (c?)
E =~mc* = =511.03 keV
V1 -0.012

K =FE~ Ey =511.03 keV —511.00 keV = 30 eV
The results for (b) and (c) follow with similar computations and are tabulated:
B p(keV/c) E (keV) K (keV)

0.1 514 513.6 2.6
0.9 1055 1172 661

*68. E=2Fy =+vEysoy=2. Then

V3e

9

F4

and v =
69. For a constant force, work = change in kinetic energy = Fd = mc¢?*/4, because 25% = 1/4.

me? (80 kg) (3.00 x 108 m/s)* i
d = = = 2.25 X 10 = 23.8 l
va 1B N) " y

70. E= K + Ey = 2Ey + FEy = 3Ey = vEp, so vy = 3. Then

Thus v = 0943 c.
71. a) E=K + [, =01Eg + Ey = 1.1Ey = vEp, so vy =1.1. Then

/ 1 / 1
B = 1~—?—[3— 1——1'1,_,—0.417
and v=0417e¢.

b) Asin (a) v = 2 and v = V/3¢/2.
c) Asin (a) v =11 and v = 0.996 c.
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72.

73.

* 74.

75.

E,
K=F- Eo = 0 — Iy
1-32
K+ E() = EO
1 - 32
Rearranging
2
1-pr= L
K+ Iy
E 2
B=1- (0
K+ Ey
Ey \*
=41 -
p \/ (K + Eo)
Using E = ymc? along with p = ymuv we see that v = E/mc* = p/mv. Solving for v/c we

find 3 = v/fe = pe/E.
It is the same for protons, electrons, or any particle.

. 1
K=(-1)me=101{=-mv®) = 0.505mc*3?
2

1 .
—l= ——— — 1 =05058°
v —

Rearranging and solving for 3, we find 8= 0.114 or v = 0.114 ¢.

Converting 0.1 ounce = 2.835 x 10~ kg.

2

E = mec? = (2.835 x 1073 kg) (3.00 x 108 m/s)” = 2.55 x 10 J

Eating 10 ounces results in a factor of 100 greater mass-energy increase, or 2.55 x 1016 J.
This is a small increase compared with your original mass-energy, but it will tend to increase
your weight; depending on how they are prepared, peanuts generally contain about 100 keal
of food energy per ounce.

. The energy needed equals the kinetic energy of the spaceship.

1
K = (y=-1)me*= (————- —1|mc
V1-p/2
= <—1_1W - 1) (10* kg) (3.00 x 108 m/s)® = 4.35 x 10'° J

or 1.35% of 102! .

18
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*T77.

78.

79.

80.

* 81.

Chapter 2 Special Theory of Relativity

Up to Equation (2.57) the derivation in the text is complete. Then using the integration by

parts formula
/:vdy =ay — /yd;r

and noting that in this case x = u and y = yu, we have

/u d(yu) = yu® — /’yu du

~u
K = m/ u d(yu) ='ymu2—'m/’yudu
Jo

Thus

- 2 _ u
= ymu m/mdu

Using integral tables or simple substitution

u
K = ymu®+me? /1 - u?/cz‘o
= gmu’ +mc® V1 —u?/c? — me?

2 2 27,2
me* +me- (1 —u/c .
= ( / ) —mce* = 'ymc2 — mc?

Converting 0.11 cal - g =1.°C ! =460 J - kg =} - °C~! = ¢y (specific heat). From thermo-
dynamics the energy AE used to change the temperature by AT is mey AT. Thus

AE = (1000 kg) (460 J/(kg-° C)] (0.5°C) = 2.30 x 10° ]
_AE _ 230x10° )
¢ (3.00 x 108 m/s)?

The source of this energy is the internal energy of the arrangement of atoms and molecules
prior to the collision.

Am =256 x 10712 kg

E, = [2mp+ 2m, —m (He)]c?
o {931.494 MeV
= [2(1.007276 u) + 2(1.008665 u) — 4.001505 u} ¢ <—?2-—‘i—le—> = 28.3 MeV
AE = [mn,—m,—mg]c
= [1.008665 n — 1.007276 u — 0.000549 u] ¢* (W) =0.782 MeV
u

FE=K+Ey=1TeV+938 MeV = 1 TeV

19
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Vo7 ] 1 TeV + 938 MeV)? — (938 MeV)?
BP-E _ \/(7 -l ) = 1.000938 TeV/c

c C

E+ Ly 1.000938 TeV .
Ey 0.000938 TeV

1 ;
BP=1-—5=1-878x107"

¥
B=V1-878x10"T~1-4.39x 1077

v = fc = 0.999999561 ¢
82. ) E = /P + B3 = /(30 GeV)® + (511 keV)? ~ 30.0 GeV
K = E - Ey = 30.0 GeV

b) E = VPP + B§ = /(30 GeV)? + (0.938 GeV)? = 30.015 GeV
K = E - Ey = 30.015 GV — 0,938 GeV = 20.08 GeV

*83. E =K+ Ey =200 MeV 4106 MeV = 306 MeV

Vo ) 306 MeV)? — (106 MeV)?
= EP- By _ \/( )C ( ) = 287.05 MeV/c
C

p

B 306 MeV
T T E, T 106 MeV

3 = /__1_2=o.938 so v =0.38c
v

84. a) The mass-energy imbalance occurs because the helium-3 (®He) nucleus is more tightly
bound than the two separate deuterium nuclei (2I1).

AE = (2m(*H)] - [mn + m(*He)]) ¢*

= 2.887

931.494 MeV

= [2(2.014102 u) — (1.008665 u + 3.016029 u)] ¢ ( 2

) = 3.27MeV

931.494 MeV

b) The initial rest energy is 2m(2H) = 2(2.014102u) ( Ty
c? -1

the answer in a) is about 0.09% of the initial rest energy.
gy

) = 3752MeV. Thus

* 85. a) The mass-energy imbalance occurs because the helium-4 (*He) is more tightly bound than
the deuterium (H) and tritium nuclei (*H).

AE = ([m(*H) + m(H)] - [m. + m(*He)]) ¢

931.494 MeV )

((2.014102 u + 3.016029 u) — (1.008665 u + 4.002603 u)] 2 ( >
-u

17.6 MeV

I

931.494 MeV) B

b) The initial rest energy is [m(*H) +m(®H)] - & = [(5.030131u)] - c? ( Ty
c .

4686 MeV. Thus the answer in a) is about 0.37 % of the initial rest energy.

20

-



86.

* 87.

88.

* 80.

Chapter 2 Special Theory of Relativity

a) In the inertial frame moving with the negative charges in wire 1, the negative charges in
wire 2 are stationary, but the positive charges are moving. The density of the positive charges
in wire 2 is thus greater than the density of negative charges, and there is a net attraction
between the wires.

b) By the same reasoning as in (a), note that the positive charges in wire 2 will be stationary
and have a normal density, but the negative charges are moving and have an increased density,
causing a net attraction between the wires.

c¢) There are two facts to be considered. First, (a) and (b) are consistent with the physical
result being independent of inertial frame. Second, we know from classical physics that two
parallel wires carrying current in the same direction attract each other. That is, the same
result is achieved in the “lab” frame.

As in the solution to Problem 21 we have

v dy1-p°2

f=-=—F——

- ct’

where d is the length of the particle track and t' the particle’s lifetime in its rest frame. In
this problem t' = 8.2x 107! s and d = 24 mm. Solving the above equation we find 3 = 0.698.

Then 679 MV
E=Fo  _ 1672MeV _ oo50 Mev
V1-p82  V1-.698

2.2 2.2
vy dv ve/c
= m"/gt' [1+ o2 ] =m ‘(]—t [1"}‘——"1_1)2/62]

dv 1 _ 3(1_7-7 . m@ 1
T T (1 —22/c2)3/?

The number n received by Frank at f’ is half the number sent by Mary at that rate, or fL/yv.
The detected time of turnaround is
Lo fL/vv _L\/1+B_L(l+ﬁ)__£+£

f'_u\/(l—ﬂ)/(1+ﬂ)_'yv\/l—23 v v ¢

Similarly, the number n’ received by Mary at f’ is

Y /l—ﬁi_fL(l—ﬁ)
n—f?—f 148y v

Her turnaround time is T7'/2 = L/yv.

21
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90. For Frank to =T —t; = L/v - L/c

: _opr g LB (L LY _ L
# signals = fty = f T-5\s )"

L L 2fL

Total number received = L— + f— = ._f__
I I 1

tosal number received 2L

f T

Mary’s age =

For Mary th =T’ —t} = L/yv

. /l+ﬁL fL
Eo3 = ”’: —_—— = —
# signals = [ty = f =5 7 . (L+53)

2fL
Total number received = /L 1-pg+1+8)= -ﬁ
v v

‘ receiv 2
Frank'’s age = total number received _ 2L
f v
91. a) From Table 2.1
L (52y71) (4 1y)
ber == (1-f)=~—2 2" 72(1-0.8) =52
number - (1-0) ey (1-0.8)
b)
L L 4ly 4ly
t1 = — —_—= —— _— =
7y + ¢ 08¢ + c 7y
o _IL
number = f't; = T\/l — 32 = 156
c¢) Frank:

[ty = %W = 156
so the total is 156 + 156 = 312.
Mary: number = 2fL/v = 520
d) Frank: T=2L/v=10y Mary: T'=2L/yv=06y
e) From part (c) 520 weeks = 10 years and 312 weeks = 6 years, which checks with (d).

92. a) K = E + Ey = 200E; so K = 199E = 199 (511 keV) = 102 MeV

b) v = 200
B = \/E = 0.9999875
v = 0.9999;375 c

c)

JET-RZ /(200 x 511 keV)? — (511 keV)?
p= - Eq = ( . ( ) =102 MeV/c
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Chapter 2 Special Theory of Relativity
93. For the proton

p=ymu= 938 MeV/c?) (0.9 ¢) = 1940 MeV /e

1
V1 -0.92 (

For the electron

E= \/p202 +Ef = \/(1940 MeV)? + (0.511 MeV)2 = 1940 MeV

_EB_100MeV
Y= E, T 0511 MeV

J1-==4/1- =V1-6. Bl -8
B = 37972 94 x 10~8 ~ 1 ~ 3.97 x 10

=(1-397x1078)¢
b) For the proton

1

=(7_1)E0=<_\/1T—(ﬁ

- 1) (938 MeV) = 1214 MeV

For the electron
I\" + E'o _ 1214 MeV 4-0.511 MeV

0511 MoV = 2377
_ _ 07~ _ -8
B=1-==y/1- 23772 =V1-177x1 1 —8.85x% 10
(1-885x107%)¢

94. In the frame of the decaying K°® meson, the pi mesons must recoil with equal speeds in
opposite directions in order to conserve momentum. In that reference frame the available
kinetic energy is 498 MeV —2 (140 MeV) = 218 MeV. The pi mesons share this equally, so
each one has a kinetic energy of 109 MeV in that frame. The speed of each pi meson can be

found:
_ K+ Ey, 109 MeV 4140 MeV 1779
T Ey 140 MeV -
1
u=/1- —Sc= 0.827¢
9

The greatest and least speeds in the lab frame are obtained when the pi mesons are released
in the forward and backward directions. Then by the velocity addition laws:

0.9¢+0.827c
= = 0.990
Ymax = 17(0.9) (0.827) ¢
0.9¢ - 0.827
Vrmin = e - 0.285¢

1 - (0.9) (0.827)
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95.

96.

97.

98.

a) The round-trip distance is Lp = 8.6ly. Assume the same constant speed v = fBc for the
entire trip. In the rocket’s reference frame, the distance is only L = Loy~! = Lo/1 - B2.
Mary will age in the rocket’s reference frame a total of 22 y and in that frame

. 7 - 32
Y distance L _ 8.6lyy1 54 —0.39¢v1 = 32

time 22y 22y

Therefore.

B="2=030/1-72
c

[ 0.397
Solving for 3 we find 8 = 10070392 or # =0.36 so Mary's speed is v = 0.36c.
b) To find the elapsed time on earth, we know that 7y = 22y, so

1
V1-p?

Frank will be 53.6 years old when Mary returns at the age of 52 y.

T =~Ty = 2y =236y

With v = 0.995 ¢ then § = 0.995 and v = 10.01. The distance out to the star is Lo = 5.981y.

. . . 5.981
In the rocket's reference frame, the distance is only L = Logy~! = 0 Oly = 0.597 ly.

a) The time out to the star in Mary's frame is

distance _ 0.597 ly
speed  0.995¢

time = =06y

The time for the return journey will be the same. When you include the 3 years she spends
at the star, her total journey will take 4.2y.

b) To find the elapsed time on earth for the outbound journey, we know that Tp = 0.6y
T =~Tp ={10.01)0.6y = 6.006 y

The return journey will take an equal time. The 3 years the spaceship orbits the star will be
equivalent for both observers. Therefore Frank will measure a total elapsed time of 15.012y.

a) The earth to moon distance is 3.84 x 10® m. The rotation rate is w = 2w rad x 0.03s~! =
1.885 x 107! rad/s. Then the speed across the moon’s surface is

v=wh = (1.885x 107" rad/s) (3.82 x 10® m) = 7.24 x 107 m/s

b) The required speed can be found using ¢ = wR = 27 fR which requires the frequency to
be
¢ 3.00x 10%m/s

= = = 0.124H
2R 2n3.84 x 108m/s z

f

With the data given, § = 3.28 x 10~® which is very small. We will use the binomial approxi-
mation theorem. From Equation (2.21). we know that L = Loy~!. v~ ! = /1 - 82 ~ 1-2%/2.

24
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a) The percentage of length contraction would be

— Lo — -1
Y% change = L[i._L] x 100% = l.O—LQLl x 100%
Lo LO
= [1-97"] x100% = [1 — (1 - B*/2)] x 100%
[32

= x 100% = 5.37 x 10710

b) The clocks’ rates differ by a factor v = 1/\/1 — 2. The clock on the SR-71 measures the
proper time and Equation 2.19 tells us that 7' = vy T %o the time difference is

=T'—Tg=’7T0—TU=TO(7—1)

Using v — 1 =~ #2/2 and the fact that the time for the trip in the SR-71 equals the distance
divided by the speed
983 m/s )2

3.2x 105 m (3.00x105 m/s
/ = 2 2) =
At HF/2) 983 m/s 2

&

= 1.75x 107%s = 17.5us

As the spaceship is approaching the observer, we will make use of Equation (2.32), f' =

VI+8 . .
+ fo with the prime indicating the Doppler shifted frequency (or wavelength). This

vV1-B

equation indicates that the Doppler shifted frequency will be larger than the frequency mea-
sured in a frame where the observer is at rest with respect to the source. Since ¢ = X f, this
means the Doppler shifted wavelengths will be lower. As given in the problem, we see that the
difference in wavelengths for an observer at rest with respect to the source is AAg = 0.5974 nm.
We want to find a speed so that the Doppler shifted difference is reduced to AN = (.55 nm.

We have

AN = NN =o - o= (ff_ﬁ)
B R °\HE

(A2) fo1 - (V) Joa (YD) (Lamle))

1—4_% foa fop2 fo fo2

(752) (5] - [(E)“o'-*oﬂ]

- [(755) )

We can complete the algebra to show that

AN — (AN)?

B =

so that v = 2.47 x 107 m/s.
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* 100. As we know that the quasars are moving away at high speeds, we make use of Equation
(2.33)and the equation ¢ = A f. Using a prime to indicate the Doppler shifted frequency

. , vV1i=-0
ravelength), FEquat 2.33) indicates that frequency is given by f’ =
(or wavelength), Equation ( ) indicates that frequency is given by f mfo or
&z v1+p
fr VI-8

- R () (4
- (5-)-(58-)

1
Therefore (z + 1)2 = 1;2 We can complete the algebra to show that

_(z+1)2—1

ﬂ_(z+1)2+1

and thus v =

(z+ 1) -1 .
(z4+1)2+1|

For the values of z given, v = 0.787 ¢ for z = 1.9 and v = 0.944 ¢ for z = 4.9.

101. a) In the frame of the decaying K meson, the pi mesons must recoil with equal momenta
in opposite directions in order to conserve momentum. In that reference frame the available
kinetic energy is 498 MeV —2 (135 MeV) = 228 MeV.

b) The pi mesons share this equally, so each one has a kinetic energy of 114 MeV in that
frame. The energy of each pi meson is thus £ = K + Fp = 114 MeV + 135 MeV = 249 MeV.
The momentum of each pi meson can be found:

- 249 MeV)? — (135 MeV)?
p= E . Eo _ ‘/( )c ( ) = 209.23 MeV/c




