Chapter 4 Structure of the Atom

Chapter 4

1. With more than one electron we are almost forced into some kind of Bohr-like orbits. This
was the dilemnma faced by physicists in the carly 20th Century.

. Non-relativistically K = 2mv and

7 MeV)
= 0~2¢
v= \/ ,/ 7,)7 TNV R = o428 X 1

Relativistically K = (y = 1)mc* soy =1+ K/mc? and
7.7 MeV
= ———— = 1.002066
1= ey

1
B=/1- 5= 6.4181 x 107%¢

The difference is about 10~ %c or about 0.16% of the velocity.

3. Conserving momentum and energy:

Moy, = .?\/.f(,n);1 + mev:2 n

Mgk = = Mv? + mev (2)
From (1) we see

’ Me ¢
Va = va = 7
which inserted into (2) gives
} 2 ) Me 2 I
Myv; = My |va — ]\Tave + me

This can be solved to find

But with m, << M, we have v; =~ 2u,.

9

0 .
P(0) = exp (——2> =3 x 1072780
Therefore multiple scattering does not provide an adequate explanation.
*5. a) With 2, =2, Z2 =79, and § = 1° we have

_ Z12y¢? cot (Q) _(2)(79) (1.44 x 1072 eV - m)
8meg K 2 2(7.7 x 108 eV)

cot (0.5°) = 1.69 x 107"* m
b) For 6 = 90°

Z,2y¢? ol (0) (2 (79) (144 x 107° eV - m)

b= e
8meg KX 2(7.7 x 108 eV)

5 cot (45°) = 1.48 x 107"

&

43



d

uaIdynsul sl
s 210 = (,_0T X G£'2) (000g) 8! c0G 78 P2IUN0d 1BQUINU 3Y3 9 38 (T IO 431y J1 pue

X cp7 = (oGT) yuts  (o9)u
p-OL XS = g T (c09)u

s [ (g) LIS 03 [euotjrodoad

AesIaaut st 9[3ue [[ews ¢ yToI) PeIddIap JGUINU 913 ‘)nsal FuLDIRIS PIOJIBYINY Y} WOL] "0 «

LPET = 880€ — GETY ST .08 PUR 0L
U2aM19q PaIaleds IaquIn 3y} pue ggog pue GeFy snyj ale ss[Sue om) 3y 10} sBQNI A,

o (ogz) 2300 (009).[
880£°0 = (s0F) 2200~ (508)S
(o82) 7300 _ (o08)f

(o02)f

cePr 0 =
Ervo (oGE) 4300 . :
prepiug (q

0212 = (212°0) (00001) ST 406 e} 1978018 so[Fue FNOIY] Patadj eds JaquIni oY) os

o {082) 300 (a08)S
L0 = ey 00— (206)/

os ‘se[gue Suweljeos a1} uo Auo spuadop toqumir oya [enba sivjewetvd o130 (1B YW (B 6

(01 X 6P'E =

(A2 901 X §) ¢
o£).300
( ?)(, . ( (IH . Aa G_OI x f’f[) (61) (Z)

) (w g_01) (g-w g0 X 067C) £ =
- 0
<9> leI) (%) jul
0 \Z'Z

SUYY, "o Ul o 0T X 06°¢ = u mouy am g'f ojdurexyy woi -g

Il
—

eeoe = &L = Aenivin (VN

6L 6L)oy)u T (ny)N

a10JaI19Y ], 19813
Iay31e 10j dures 813 s1 ju os [enbs st vare jun 1ad Elonu Bulidl1eds Jo Iaquinu Y3 ‘19A9MOY
‘sajes uonsenb ayy, *(z1'F) uonenbsy woly zZ 01 pue ju 03 [euotyodoad st f uoryoely ayJ, 2

(o0'T) 2300 (o2)f

007 = g0~ G/

os ‘saj3ue ayy ydeoxo aures ayy s1 Funyyf1eaa sef3ue JuolajIp 0Av} 81} 10,

4 ) ( >109u8)
=].,00 | =——)quL =
(9 o \pP%zlz /

‘9 4

wojy 317 Jo aInjoniyg ¥ 1ordeyp



cr

"AS1aua yonui 0oy st () pur pamojfe jou st (8) Lres() (2
_(wug g xgy)g 40
A 009— = .

G

(a

‘poads pomo[je UEB JOU SI UYDIjam

2G1L=2 (wu 4_01 x 7°1) (A® 000115) _ 40w up A _ g
' W - A® F A

n
29 2

(e #1
(1°p ejdurexy)
Fuliajyess 1no13os[e Aq peurejqo ssoif) Yim epnjmuSewt ul ojqereduios a1e synsal aseq], (q

. (wu 1°0) (ASIN 01)
LTI00= Ppel .01 XBCT= =
PRl =01 X8 = i po v ) 62) (@) 0

(e g1
(wu 1°0) (AP 8)
910°0 = P®l 01l X ¥8C= -
] [ k¢ (I 8(: (mUAafW[)(SL)(Z) 9
(a
031 Ay 03u) auw d
aQ(.zz Zazz17 1 dV

UOI108]Jop WNUITXBUL O
ayouy  a youy

= =7 =d
A ye %7t vd v

ust ], " 3 BL¥/ ;887 01 [enba pue aelms dY] 1 51 9010] UIONO)) WNUIXEW Y], (e

_ WO XQL+ W -0l XET .
AS LET = =y
(uI “A® §-01 X W'I) (62)(1)

W 0T X9+ W0l XET )
9N 78°E = =MV
AN (u1- A9 0T x ¥¥°1) (81)(1)

%7 Jo seulea JUIIBYIP om) aY3 0] pue [ = 7 mON (a
W e 0T XQL+ W01 X997 .
SN J €7 = =3 ny
AL = 00 Ao g0 xb01) (62)(2)

. W01 X9g+ We-0IX9%% . .
9N T = R
APIN 709 (m - A? 01 X W"I) (eD)(2)

ny 10§ L =%z Y Iojgr =73z pueg =17 (®
‘(yonoy 3snf
so[oraaed a1y sequoiput wejqold a1y se) saoryred tejnotyred oY) Jo lipel ay) ale tu pue i ateym

(o + ) O3
iy =l

:£810u0 [eryusjod 01 paSueyo st £310Ua J1IPULY B [[B 35D YL uj 11

WOy 9} Jo 21njdnng ¥ 1oydey)n



Chapter 4 Structure of the Atom

*15. a)
v = e _ ec _ 1.44 eV - nm 175 10~
Vidregmr  dAmweomcZr \/(938 x 108 eV) (0.05 nm)c = 1.75 x c
= 5.25x 10" m/s
b)
2 144 eV -
E=-— = O . 144 eV

" 8meor | 2 (0.05 nm)

¢) The “nucleus” is too light to be fixed, and there is no way to reconcile this model with the
results of Rutherford scattering.

16. For hydrogen:

e ec v1.44 eV -nm
= = C
Vadremr  dmeemcdr /(511 x 103 eV) (0.0529 nm)
= 7.30x 1073 =2.19 x 10° m/s

_v? (219x 108 m/s)2
0= T T T520x10 " m

=9.07 x 102 m/s’

For the hydrogen-like Lit*

Ze? mu? 9 Ze?
- = or
4megr? r

" 4megrm

But we also know ,
4regh” ag

T Zme? Z

. 2% 32 (1.44 ¢V - nm)
V"= Tregaom | (5.29 x 10-1T m) (511 x 10% eV/e2)

r

=479 x 10742

orv = 2.19x 10~ 2¢ = 6.57x 10% m/s. This is a factor of 3 greater than the speed for hydrogen.

22 (657 x 10° m/s)’

v_ =245 x 10** m/s®
r - (529x 10-T m)/3 m/s

Q=

-Z%Ey

— = —Z%Fy forn = 1.
n

17. For a hyvdrogen-like atom E =
H: F=—-Ey= —-13.6 eV
He': FE = —4FEy = —54.4 eV

Litt: E=-9E, = —122.5 eV

The binding energy is larger for atoms with larger Z values, due to the greater attractive
force between the nucleus and electron.
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Chapter 4 Structure of the Atom

18. The total energy of the atom is —e?/ (8meor). Differentiating with respect to time:

dE _ e? dr
dt ~ 8megr? dt

Equating this result with the given equation from electromagnetic theory

e dr _ 1 2 [d2r\?
8megri dt  4meg 3¢3 \ dt2
e? dr _ 22 [d*r\?
22dt ~ 33 \ di?
. i : . . .
In a circular orbit — is just the centripetal acceleration, which is also given by

dt?

F e?
m  4dwegmr?

e? dr _ 2¢? e? 2
22 dt ~ 33 \ dmegmr?
dr _ 4et

dt (47reo)2 3m2c3r?

a=

Substituting:

Solving by separation of variables:

3m2c3
= dren)2 2000 = L2
dt = — (4weg) 1o rdr
, 3m2e3 [0 , m2e3
= — (dmen)? 20 = (dwen)? 3
t = — (dmeg) 168 /ao T dr = (4dweg) Tor %

Inserting numerical values we find ¢ = 1.55 x 107! s,

f=5=z2Rc(i2—i)

2
A ny ng

19.

F(Ko) = Z°Re (1 - %) f(K5) = Z°Re (1 - %) f(La) = Z2Re (11 - %)
With 1 —1/4 4 (1/4-1/9) =1 - 1/9 we see
f(Ka) + f(La) = f(Kp)
20. As in Problem 16, v = 2.19 x 10° m/s and

L =mur = (9.11 x 1073 kg) (2.19 x 10° m/s) (5.29 x 107" m) = 1.0554 x 10734 kg - m?/s

Notice that L = h.



Chapter 4 Structure of the Atom

21

Z1.

he = (4.135669 x 107! eV - 5) (299792458 m/s) = 1239.8 eV - nm

e (L.6021733 x 107'° C)” 1eV 10° nm
4meg  4m (8.8541878 x 10-12 F/m) 1.6021733 x 10-19 N - m

me? = (510.99906 keV/c?) ¢? = 511.00 keV

= 1.4400 eV . nm

dmeph® A (8.8541878 x 107!2 F/m) (1.05457 x 103 J - 5)°

a = =
0 me? (9.1093897 x 10-31 kg) (1.6021733 x 10-19 C)?
= 52918 x 107" m =5.2018 x 1072 nmn
€2 (1.6021733 x 10-1% C)?
E = =

8mepap 87 (8.8541878 x 10-12 F/m) (5.2917725 x 10~1T m)
2.179874 x 10718 ] = 13.606 eV

* 22. From Equation (4.31) v, = (1/n)(h/mayp)

1 1.055 x 10734 J . s
=1: == =2.19x 105 m/s = 0.0073
n=1 U1 1911 x 107 kg) (5.29 x 10-11 m) x 107 m/s ¢
1 1.055 x 10731 J -5
=2 =z =1.09 x 108 = 0.0036
" ® T 2(9.11 x 10791 kg) (529 x 1011 m) X 107 m/s ¢
1 1.055 x 10734 J . .
=3 = - =7.30 x 10° = 0.0024
" " T 3011 x 1077 kg) (5.20 x 10711 m) X 107 m/s ¢

* 23. The photon energy is
he 1240 eV - nm

A 434um
This is the energy difference between the two states in hydrogen. From Figure 4.16, we see

E3 = —1.51 eV so the initial state must be n = 2. We notice that this energy difference exists
between n = 2 (with Ey = -3.40 eV) and n =5 (with E5 = —0.54 eV).

E= = 2.86 eV

24. The photon energy is

he 1240 eV -nm
F=—=——"""=1305¢eV
A 95 nmn €
This can only be a transition to n = 1 (E; = —13.6 eV) and because of the energy difference
it comes from n = 5 with F5 = —0.54 eV,

25. In general the ground state energy is Z2FEg.

a)
E=12E,=13.6eV

The reduced mass does not change this result to three significant digits.

b)
E =2’FEy; = 54.4 eV

c)
E=4%Ey =218 eV

48



Chapter 4 Structure of the Atom

. Following the strategy of example 4.8, we use Equation (4.37) to determine appropriate

Rydberg constants for atomic hydrogen, deuterium, and tritium. The Balmer series has n
lower equal to 2. The « refers to n, = 3; O refers to n, = 4, etc. Then we use Equation
(4.30) to calculate the "isotope shifted” wavelengths.

1 1 1
—=R. [~ - —
A w(nf nﬁ)

The example with n upper equal to 3 is completed in example 4.8; the results are repeated

here:
A (Hq , hydrogen) = 656.47 nm A (H, , deuterium) = 656.29nm A (H, , tritium) = 656.23nm

A(Hg , hydrogen) = 486.27 nm X (Hg, deuterium) = 486.14 nm A (Hg, tritium) = 486.10 nm
A (H, , hydrogen) = 434.17nm A (H, , deuterium) = 434.05 nm A (H, , tritium) = 434.02nm
X (Hs  hydrogen) = 410.29nm A (Hs , hydrogen) = 410.18 nm A (Hy , hydrogen) = 410.15 nm

. We know from Equations (4.25) and (4.29) that £} = —hcR. We must adjust the Rydberg

constant to account for the finite mass of the nucleus. Use the calculations of example 4.8
that provide the constants for deuterium Rp = 0.99973 Rand tritium Ry = 0.99982 R,.
Then we see

E\p = he(0.99973) Roo = 1239.8 eV - nm (0.99973) (1.097373 x 1072 nm™!) = 13.602eV

Ei7 = he(0.99982) Roo = 1239.8€V - nm (0.99982) (1.097373 x 10~ nia™!) = 13.603eV

In problem 21 we found that E; y = 13.606eV.

. a) It is only the first four lines of the Balmer series, with wavelengths 656.5 nm, 486.3 nm,

434.2 nm, and 410.2 nm.

b) To determine the energy levels in helium, perform the same analysis as in the text but
with e2 replaced by Ze? = 2e2. This results in an extra factor of Z2 = 4 in the energy, so the
revised Rydberg-Ritz equation is

1 4FE [ 1 1 1 1
=S5 -==U3TTx10"m™) | 5 - =
A he (n? nﬁ) ( x m™) (n? nﬁ)

We need the wavelength to be between 400 and 700 nm. The combinations of n; and n, that
work are tabulated below:

ny n, A (nm) comments

3 4 470

4 6 658

4 7 543

4 8 487 etc. withn; =4 ton, =13

4 13 404 but n; = 4 and n,, > 13 gives A < 400 nm
5 12 691

5 13 670 etc. with ny = 5 all the way to...

5 oo 571 a series limit

49



Chapter 4 Structure of the Atom

29.

* 30.

* 31

33.

From Problem 22 the speed in the n = 3 state is v = 7.30 x 10° m/s. The radius of the orbit
is n2ag = 9ag. Then from kinematics
vt (7.30 x 10° m/s) (1078 s)

. , . v _ 6
number of revolutions = S 2 ) (B X10-Tm) 2.44 x 10

The energy of each photon is he/A = 12.4 eV. Looking at the energy difference between levels
in hydrogen we sec that E; — E} = 102 eV, E3 — E} = 12.1 eV, and Ey — E} = 12.8 V.
There is enough energy to excite only to the second or third level. In theory it is possible
for a second photon to come along and take the atom from one of these excited states to a
higher one, but this is unlikely, because the n = 2 and n = 3 states are short-lived.

We must use the reduced mass for the muon:

06 MeV/c?) (938 MeV/c?
= mM (106 MeV/c?) ( eV/c?) — 052 MeV/c?
m+ M 106 MeV/c? + 938 MeV /2

a)
2 6.58 x 10~16 ¢V . 5)? 3.00 x 108 2
2 = 471'602h _ (6.58 x eV - s) ( x m/s) o 81 10-®
e (1.44 x 109 eV - m) (95.2 x 106 eV/c?) c?
b)
2 1.44 x 1079 eV -
e? _ (Lddx eVom) oeas ev

~ Bmeoao 2 (2.84 x 10~13 m)

¢) First series:

he 1240 eV - min
A= = mmav - 0.49 nm

Second series: dhe  4(1240 eV
c _ 4( eV - nm) _ 1.96 nm

A=F 2535 eV

Third series:
9he  9(1240 eV - nm)

g = 4.
E 2535 eV 40 nm

A

]
il

2. The reduced mass for this system is u = mm/(m + m) = m/2 where m is the mass of each

particle. Then

47I’£0fl2
r= 7 = 2aq
e
2 2
-__& ___¢ —_Eo_ ggev
8megr 871'50 (20,0) 2
a) As shown in Problem 32, the radius of the orbit is 2a,.
b) With Eg = 6.8 eV (see Problem 32) we have
E(l E() 3E0
Then
. 9 .
N = he _ 1240 eV - nm — 9243 nm

AE 5.1 eV

50



Chapter 4 Structure of the Atom

34. a)
ro — 11 = 4ag — ag = 3ag = 1.59 x 10719
b)
16 — T5 = 36ay — 25ag = 11ag = 5.83 x 10719 m
c)

11 — 110 = 121ag — 100ag = 21ag = 1.11 x 10~ % 1

Note that in each case r,, — 7, = (m + n)ag which is valid when m and n differ by 1.

35. 1 | 1
hydrogen: 3= Ry (Z - ;12;)
. 1, 1 1 1 4
helium: 3= Z2%Rie (E - n—%) = Rie (-4- — n—%)

We see that the lines match very well when n, is even for helium but not when it is odd. For
example, when n, = 6, for the ionized helium, then the n, = 3 state for hydrogen will be
very similar. In the same fashion, the n, = 8 for the ionized helium will be very similar to
the n, = 4 for hydrogen. Also, all thie “matched” lines differ slightly because of the different
Rydberg constant (which is due to the different reduced masses). The differ by a factor of
Rye/Ry = 0.99986/0.99946 = 1.0004.

36. As mentioned in the text below Equation (4.38), if each atom can be treated as single-electron
atoms (and the problem states we can make this assumption), then
1

R=
1+

o0

where Ry, = 1.0973731534 x 107 m~! and m = 0.0005485799 u.

Using ‘He (M = 4.0026 u), R = 0.999863 R, = 1.097223 x 10" m~! (off by 0.14%)

Using 3K (M = 38.963708 u), R = 0.9999859R . = 1.097358 x 107 m~! (off by 0.0014%)
Using 28U (M = 238.05078 u), R = 0.9999977 R, = 1.097371 x 107 m~! (off by 0.00023%)

37. The derivation of the Rydberg equation is the same as in the text. Because et is hydrogen-
like it works with R = Z?Rp. and Ry = 1.097223 x 107 m~! as in Problem 36. Then

R =4(1.097223 x 10" m™!) = 4.38889 x 107" m~!

* 38. For L, we have 26
. .
f 7 SR(Z —7.4)
A= —36__5
5R(43 - 7.4)
36
Z = 61: A= ————— = = 0.23 nn
5R (61 — 7.4)2 .
36
Z =175 A= —————— =0.14 nm
SR (75 — 7.4)2

A=

= 0.52 nm
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Chapter 4 Structure of the Atom

39. For Pt Z =78 and for Au Z = 79. For the K, lines

40.

* 41,

43.

- 4
3R(Z - 1)?

= 20.49 pm Au: A= 4 = 19.97 pm

Pt: A
3R(78)2

T 3R(77)?

Therefore AX = 0.52 pm which is less than the specified resolution, so it will not work.

rom)= g -y

=c1{(Z—1)2(1 l)zggR

This is higher than the K, frequency by a factor of (8/9)(3/4) = 32/27, which seems to be
in agreement with Figure 4.19.

Helium:
A(K,) 4 122 nm A K(5) 2 103 n
n) = — 5 = A / = —— = nm
VT 3R(Z -1)? A= BR(Z —1)?
Lithium:
MKy = —— =304 M) = ————— = 25.6 nn
= = 30.4 nm = = 29. 1
T 3R(Z-1)? Al = 8R(Z-1)?
Refer to Figure 4.19 and Equation (4.46). X is inversely proportional to (Z — 1)* for the K

series and to (Z — 7.4)? for the L series.

a)

MU)  (6-1)*
XC) = @ 1) = 0.0030

AMW) (20 - 7.4)

NCa) ~ (da—Tap 003

The longest wavelengths are produced for an electron vacancy in the K-shell. We begin with
Equation (4.43) and notice that the longest wavelengths will occur when the expression on
the right of the equal sign is as small as possible; thus we choose n equal to 2, 3, and4. The
series limit occurs for n = co. Molyhdenum (Mo) has Z = 42. Then

1
Ka

1
=R(Z-1) (1 - %) = (1.09737 x 107 m™") (41)? (1 - ?) = 72.28pm
n
In a similar fashion, we find
A(Kp) = 60.99pm A(K,) =57.82pm

and the K series limit to be A = 54.21 pm.
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* 44,

45,

46.

47.

48.

49.

Chapter 4 Structure of the Atom

The longest wavelengths occur for an electron vacancy in K shell. The two longest wavelengths
correspond to the K, and the K. Use Equation (4.41) and rearrange it to solve for (Z — 1)2.

Then
4 1 4

T 3RXk. 3(1.09737 x 107 m=1) (0.155 x 10-9m)

This gives (Z — 1) = 28 or Z = 29. Using the expression for Ak, from problem 10, we have

(Z-1)* = 783.89

(Z-12= 2; Using the second wavelength given, 0.131 nm, we find
8 Rk,
1
(Z-1P =2 =3 = 782.58

8 Rk, 8(1.09737 x 107m~")(0.131 x 10-9m)

This yields (Z — 1) = 27.97 or Z = 29. Therefore we can conclude the target must be copper.

Non-relativistically 40 eV = %mv? $0

2 (40 eV) 6
= 2N 00125¢ = 3.75 x 10°
YT\ 11 kev/2 ¢ x 107 m/s

From elementary physics

: 2m, 2 (0.0005486 u)

V2 = Y1 = 5.0005486 u + 202.97 u

= (3.75 x 10% m/s) = 20.3 m/s
m) + my

where we have used the most abundant mercury isotope. Then
9
2
9 x 1016 m?2/s2

Ky, = émgvé = % (202.97 u) (931.49 MeV/u - ¢?) (

) (20.3 m/s)?

= 433x 1074 eV

Without the negative potential an electron with any energy, no matter how small, could drift
into the collector plate. As a result the electron could give up its kinetic energy to a Hg
atom and still contribule to the plate current. The Franck-llertz curve would not show the
distinguishing periodic drops, but rather would rise monotonically.

Using AE = he/\ we find

_AAE (254 nm)(4.88eV)

h = =413 x 10715 ¢V .
c 3.00 x 108 m/s * ev-s

36eV,4.6eV,2(3.6eV)=72eV. 3.6eV +4.6eV =82 eV, etc. with other combinations
giving 10.8 eV, 11.8 ¢V, 12.6 eV, 4.4 eV, 154 eV, 16.2 eV, 16.4 eV, 17.2 ¢V, 18.0 eV.

Magnesium:
AMEo) = —4—,, = 1.00 nm MLa) = —LQ =31.0 nm
3R(Z -1)° 5R(Z —7.4)
Iron:
MKo) = ————= =0.194 nm MLgy) = __ % = 1.90 nin
3R(Z - 1) 5R(Z — 7.4)°
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Chapter 4 Structure of the Atom

*50. K, is a transition from n = 2ton =1 and Kg is from n = 3 to n = 1. We know those
wavelengths in the Lyman series are 121.6 nm and 102.6 nm, respectively. The redshift factor

(A/Xa) is (with § = 1/6)

1+  [1+41/6
1-8 \1-1/6

Then the redshifted wavelengths are higher by 18.3% in cach case. The observed wavelengths

= 1.183

are:
Kq: A= (1.183) (121.6 nm) = 143.9 nm
Kg: A =(1.183)(102.6 nm) = 121.4 nm
*51
B 22,2\, (8
f=mnt (87r60f( cot 3
a)
. _ _ (2)(79) (1.44 x 1079 eV -m .
f(1°) = #(590x10%® m™?) (4 x 1077 m) ( 2((8 105 oV ) cot? (0.5°)
= 0.197
. 2
o S . (2)(79) (144 x 107% eV - m) 20
f2°) = 7(590x 10% m™) (4 x 10 m)( 2(8 x 10 o) cot? (1°)
= 0.0492

The fraction scattered between 1° and 2° is 0.197 — 0.0492 = 0. 148.

b)
f(1°) cot? (0.5°)

F(10°) — cot?(5°)

fa°)y cot? (0.5°)
£(90°) — cot? (45°)

= 100.5

=1.31 x 10*

52. From classical mechanics we know
—
that L is conserved for central forces.

L= lf, = |7 x P| =rposinf

But rsinf3 = b so L = pgb = muygh.

53. If the positions of the electron and proton are respectively (along a line) ., and rypy, then
putting the center of mass at R = () we have

R0 mre + Mryy m
= = —— r vk
M or M M e
m m M
r=re—r5{=rc—(-7rc)?r¢(1+ﬁ) or Te = M+mr.

51

N



54.

Chapter 4 Structure of the Atom

m
M+m

Similarly we can show that rp; = ( ) r. From these two expressions we can see that

TJ y m . .
Mo i Now the centripetal force on the electron and the nucleus must be equal (in
Te /i
magnitude) by Newton’s third law so we have
mv? My, . vy, mry  m? vy m
—_— T — _— = ———— = ——_— SO _——,
Te M v2 Mr., M2 ve M

The total angular momentum of the atom is the sum of the electron and nuclear orbital
angular momenta, so

L = muere + Muprpr = muere + M (%ve) (%re) = MUTe (1 + %) = Mu.T.

where the last substitution comes from using the expression for 7. from above. Since the

h
total L must equal nh we find v, = B%  Thisis the equivalent of Equation (4.22b). Now the

mr

centripetal force depends on the distance of the electron from the center of mass while the
Coulomb force depends on 7. the distance between the electron and the nucleus. So Equation
(4.18) becomes

| 2 2 2 . h 2
L) (S omE s () (L))o (Y
4rreq r2 Te 4meg T m mr

dmeqn?h? M 4megn?h?
This can be solved to give mr, = E—Oeg— or m M = ﬁ—egg——. Finally this can
be solved for r and the subscript added to account for allowed orbits. We find
dregn?h?  dmegnh? " mM m
= = with = = .
n A’}‘L’n e2 ue? HEM+m 1+ m/M

This is the modification to Equation (4.24).
a)
me? (9.11 x 1073! kg) (1.60 x 1072° ¢)*

= 5 3: - 5 3=655X1015 HZ
degh?  4(8.85 x 1012 F/m)~ (6.626 x 1034 J . 5)

f

b) As determined in previous problems v = 2.19 x 108 m/s and r = qp = 5.29 x 107!t m.

v 2.19 x 106 m/s
f=5==

v _ — 15 1
2nr 2@ (5.29 x 10-11 m) 6.50 > 107 Hz

c) We know

2 2
¢ and K=-—5"=\E

E=-
871'60(10 87I'€0a0

d) Since K = nhforb/2 = hforb/2 for n =1 we have

2K 2(13.6 eV) _ s
Joro = "h T 4136 x10-15eV.s 6.58 x 107 Hz

which agrees with (a) and (b) to within rounding errors.
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* 55.

56.

We start with X' = nh f,,/2. From classical mechanics we have for a circular orbit f = v/27r,

orr=uv/2nf:
[= o v _ mu? 1
Cmere e (W> - ( 2 ) (W_f)

_ K _nhry _ nh
T owf  2rf 2w

Using K = §ma?,

From problem 32 we know that the reduced mass of the system p = m/2 where m is the mass
of either particle. Then from Equation {4.37). we see that the effective Rydberg constant
would be Ryr = Reo/2. We know that

g _ _(he)(Rer) _  (1239.8eV-nm) (31.09737 x 1072nm~!)  6.803eV
L n? - n? T n?
Therefore E; = —6.803eV, Ey = —1.701¢V, E3 = —0.756eV, and E; = 0.425¢V.

As in other problems, we know the K, wavelength occurs for a n, = 2 to an 17, = 1 and

the L, wavelength occurs for a n, = 3 to an n; = 2 transition, etc. Further, we know that

he
A= ———.
[Eu - Ef]

For example. we have

; 1239.8eV . nm
AHa) = i 701evy — (—6a03evy] ~ 2130nm

In a similar fashion we can show that A (Kg) = 205.0nm, A(Lq) = 1312nm, and A(Lg) =
971.6 nm.
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