Chapter 6 Quantum Mechanices 11

* 4.

* 5.

Chapter 6

The function’s output does not approach zero in the limits -~ and +~¢, so it cannot be
normalized over Lhese limits.

. a) Given the placement of the — sign, it moves in the +r-direction.

b) By the same reasoning as in (a), it moves in the —z-direction.
¢) It is a complex number.
d) It moves in the +xr-direction. Looking &t a particular phase kr - wt, r must increase as t

increases in order to keep the phase constant.

The derivatives arc dU/0t = —iwl and >V /9r> = —k°W. Substirnting in the time-
dependent Schrédinger equation

B2 R
i (—iwWl) = -%n (~K20) + 10

The term on the left. reduces to Aw¥ = EW¥ and the first term on the right is

209 2
Ll LA
2m 2m

where K is the kinetic energy. The result is F = K + V. which is a statement of conservation
of mechanical energy.

TP = A%exp [—ilkr —wt) + i(kz — wt)] = A2

a a
/ U \dr = Ag/ dr = A%a=1 S0 A= — and
0 0

= % exp fi(kr - wt)]

Y

* > — . 9 4203
/ U Wdr = .42/ r?exp (ﬁ) dr = A2 [ .;] = Aa =
0 0 a (2/ay 1

A= \/g = 2(»'3/2

. 2
Wl = A%? oxXp ( ! )

Therefore

In order for a particle to have a grearer prohability of being at a given point than at an

o o . [ OV
adjacent point, it wonld need to have infinite speed. This is seen as p = ih (—)—— — x at
O

a discontinuity. Another problem is that the second derivarive mnst exist in order 1o sarisfv
the Schrodinger equation.
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Chapter 6 Quantum Mechanies 11

’ 7. a) The wave function does not satisfy condition 3. The derivative of the wave function is no
continuous at x = 0.

b) Based on (a) the wave function cannot be realized physically.

c) Very close to + = 0 we could modify the function so that its derivative is continuous. If
we do so just in the neighborhood of x = 0. we need not chauge the functiou elsewhere.

3.
_ 344+394+824+474+414+384+39+47+ 11 +45+3.8+4+.L5+48+39+4.1
- 15
= 4.247
(2%) =
3424392 +522 + 472 + 417+ 3.8+ 3.9 AT + 17 4 457 £ 387+ 457 £ 487 +3.97 + 44
15
(%) = 18.254
The standard deviation is
M N DN R - \/Z:r? e o . S 2
7= N N =YV N TN N
r Look at the three terms in the sum. The first is just (x?). The second is -27 (T) = 272,
The third term is
_—) —)
- Nz° _,
= —— =T
N N

Putting the results together

o= \/<$2)_2§- + 72 = \/(£2)~;T:2

For the data given we have

I ,
o =/{z2) — T = y18.250 — (4.247)° = 0.466

9. If V is independent of time, then we can use the time-independent Schrédinger equation.
Then by Equation (6.15)

VY =¥ (2)u(rle e™" = v (1)u(r)

/‘P"I’:L‘d[:/t,,"(l‘)l.'(.t')rd.r

* 10. Usiug the Buler relations between exponential aud trig functions

Then

which is independent of timne.

73



Chapter 6 Quantum Mechanics 11

Normalization: _ -
/ v dr = -l;l? (:()S.l {.c) dr = 4:&?/—‘ =

=T

1 T .
Thus A = _')ﬁ and the probability of being in the interval [0, 7 /3] is
W/S 1 b ) 1 > ] =5
b= / vvde= :/ cos” (x) dr = — (3 + -sin('_’.r))l
0 nJo T \2Z 4 '0
1 1
= —+——==0119
16 _17,'\/5
11. )
= o 7r
/ vddr = :11/ sin(r) de = A*Z =1
‘ 0 0 2

/2
so 4= - and the probability of being in the interval [0, 7 /4] is

/4 o T 5 (r 1 7/4
P = /C; PyYdr = ;/0 sin? (x) dx = - (-2— -3 Slu(‘lc)) .
2 (% 1 1 1
= Z(2-Z)=Z-— =009
T (8 4) { 27
12. .
_ n¥a?n? B = (n+1)% 72n2 ‘\
" o2mL? ekl = 2mL? :
232 242
mh 9 . mh*
ABy=Enyi = En= 53— [(n +1)% - nl] = (2t )
Computing specific values
) w2h?
A (3)
242
‘ m=h -
J_\Eh = m (1 l)
n
7252

AFEg0 = m (1(‘301)

, . ) . 2 /nrx .
* 13. The wave function for the nth level is ¥, (x) = \[;5111 ( 2 ) s0 the average value of the

square of the wave function is

Lobevids L L
42 (4 Jo ¢rwde 1 / . 2 / .y (L
‘U'" € = _— = v l.l.lf = — sin d.L’
(enfe)) fULdr L Jy L? J; ( L )
2L 1
A

This result for the average value of the wave function is independent of 1 and is the same as
the classical probability. The classical prebability s uniforns thronghout vhe box, but this =
‘)

B

- . - . - . i
not so in the quantum mechanical case which is 7 sin® (k).

IE



Chapter 6 Quantum Mechanics 11

14. a) We know the energy values tfrom Equation (6.35). The energy value £, is proportional to
n? where 7 is the quantum nmuber. If the ground state energy is 1.3 e\’ . then the next three
levels correspond to: 1E) = 17.2 eV for n = 2; 9E; = 38.7 e\" for n = 3: and 165, = 63.5 oV
for n = 4.

b) The wave functions and energy levels will be like those shown in Figure 6.3.
* 15. a) Starting with Equation (6.35) and using the electron mass and the length given, we have
E o MR, w7 (he)?

= n° =n" ——
" 2mL? 2 (mc?) L?

72 (197.3¢V - nm)?
2(5.11 x 105 eV) (2000 nm)?

2
= n

=n%(9.40 x 107" eV)

Then the three lowest energy levels are: E; = 9.40 x 107%eV: Ey = 188 » 107 " eV; and
E =282x10"7eV;

3
5

3
b) Average kinetic energy equals §kT = 1609 % 10-197

which equals 1.68 x 103 eV. Substitute this value into the cquation ahove as E,, and solve
for n. We find n = 134.

a1 eV \
(1.381 x 1072 J/K) (]——)J 13K

16. For this non-relativistic speed we have E = %mv? = %(mcz) 3% = 0.002555 eV. Using
; 2h2
= 8%&? we find
, S8mL?E  8mc®L:E 8(511 x 10° ¢V) (48.5 um)’ (0.002553 V') 6.0
n- = = = = 16.
h? h2¢? (1240 eV - nm)?
and therefore n = 4.
. 2 . /mx
17. The ground-state wave function is ¢, = \/;sm (-f)
Ly 2 (LB na 2 [+ L 2w\ [
P = A @D?dI:%/D sin? (T—Ll)d;rz I (é —4—_‘5111 (Tl)) .

Il
TN

[ =

|
[0.¢]
N
——

Il

o

—

o

I

1 /3
2 (—, - L) =0.1955
() ST

Notice that Py + Py + Ps = 1 as required.



Chapter 6 Quantum Mechanics 11

. . 2 . 2
18. The first excited state has a wave funclion ¢ = \/z sin (ko) with & = Tl
‘L3 Do/ L3
— me g = 2 2 Gy (e
P = /0 Wil i (_2 " .sln(-k.l)) ;

1 \/3‘ .
21 -+ — | =0.402
(6 + l(in')

/3
Py=2 ((l - ;_3> =0.196
D T

and Py = P, = 0.402. Notice that Py + P+ 3 =1

Similarly

*19.
h? h2¢? _ (1240 ¢V - min)?

T BmL? ~ 8mAL®  §(511 x 108 V) (10-5 um)>
Then E» = 4E; = 15.05 GeV and AE = Fy — £7 = 11.3 GeV.

= 3.76 GeV

£y

20. a) As in the previous problem

h?c? 240 eV - nm)?
Ei= — o= U0V mm)” ) g5 Mev
8mc°L 8(938.27 x 106 eV) (1.4 x 1073 nm)~
b)
h2c? (1240 eV - nin)?
E, ¢ (1 eV . nm) — 963 keV

~ 8mc?L? 8(3727 x 108 eV) (1.4 x 10-5 nm)?
21. As in previous problems the ground state energy is

R2 h2¢? (1240 eV - )’

8mc2L2 ~ 8511 x 103 ¢V) (0.5 nm)?

vk = 1.5045 eV

E,

The other euergy levels are E,, = nE):
Ey =4E) =6.02 eV E; =9E; = 13.54 eV Ey =16E) =24.07 eV
The allowed photon energies are

Es—FE3 = 105¢eV Ey— Ly =181 ¢V Ly — Ey =226 eV
E3 - E2 = T5eV E;g - E] =120 e\»" Eg - E1 = 4.52 eV

(S
N

Lacking an explicit equation for finite square well energies, we will approximate using the
infinite square well formula. In order to contain threr cuergy levels the depth of the well
must be at least o .

I L

T8ml? Sinl?

Evaluating numerically with the given mass

9h? 9h*c? 91240 oV - 1)’
_ ] I L.)L - (} i iy =961 MeV
8mL>  SmcPL? N(2 0 107 V) (3 2 107" ny”

E

16
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Chapter 6 Quantum Mechanies 11

. a) The wavelengths are longer for the finite well. because the wave functions can leak outside

the box.
b} Generally shorter wavelengths correspond to higher cnergios, so we expect energios 1o the
lower for the finite well.

¢) Generally the number of bound states is limited by the depth of the well. We expect no
bound states for £ > V4.

. From the boundary condition (2 = 0) = ta(r = 0) we have Ac® = Ce+ DeC or 4 = C+ D.

From the condition #{(r = 0) = ¢3{z = 0) we have ol = ikC" — ikD. Solving this last
expression for 4 and combining with the first boundary condition gives

e ik
c+p=Sc_-%p
(2} [ad

or after rearranging
C ik 4+ n

D ik—a

. As in the previous problem matching the wave function at the boundary gives
p yg

C(JikL + De——sz — BE_“L
and matching the first derivative gives
chvelkL — I'kDe—lkL — _(11‘36—0[4

Eliminating B from these two equations gives

. " 1./. . vr o
Cet 4 Demb = 2 (ik D= ikCek!)
a
Thus _
C itk—a _oyup
—_ = —0e -
D ik+a
242
7 h* 2 2 ) - 9 2 2
= _—_(ny+n5+n3) = Iy (n,“ + T+ Ny
omL2 (13 2 3) 72y D 3)
where
99
= w-h*
T

Then the second, third, fourth. and fifth levels are

FEy = (22 + 174 12) Eg = 6Fy (degenerate)

Ey= (22«22 +1°) £, = vE, (clegenerate)

E;=(3-1°+ 17) By = 11E, {degenerate)
E; = (‘2? +22 . 2?) Iy =12F, inot degenerate;



Chapter 6 Quantum Mechanics [1

27. In general we have

Y(r) = Asin (n,;-r) sin (”'-zry) sin (113;:)
For ya(r) we can have (ny.na.n3) = (1.1.2) or (1.2.1) or (2.1.1)
For y3(r) we can have (ny.n3.n3) = (1,2,2) or (2.2, 1) or (2.1, 2)
For ¢4(z) we can have (n1.ny,n3) = (1, 1.3) or (1.3. 1) or (3.1.1)
For ¥3(x) we can have (n;.79,n3) = (2,2,2)

* 28. We must normalize by evaluating the triple integral of ¥ ¢ :

/// U dadyd: =1

with 9(z,y.z) given by Equation (6.47) in the text. We can evaluate the iterated triple

integral
A? ./OLsin2 (W—Lx—) dI/OL sin? (%) dy/OL sin® (7;—:) dz = A’ (é)z =1

Solving for A we find
5y 3/2
A==+
(2)

29. Taking the derivatives we find V2% = — (k? + &3 + k2) 4 so the Schrédinger equation becomes
R, B2 0 - ,
- W
From the boundary conditions k; = A s
i
E = _ﬁ?‘—’r?' (.n_;z + n_%. + n_g
2m \Ly L3 I}

The three quantum numbers come directly from the three boundary conditions.

30. ¢o(x) has these features: it is symmetric about r = 0: it has a maximum at r = 0 because
the wave function must tend toward zero for x — x; there is no node in the ground state:
the wave function decreases exponentially where V7 > F.

* 31.
AEn = L4l — En = (T? + 1+ %) how — (Il - %) hw = hw for all n

This is true for all n, and there is no restriction on the munber of lovels,

32. Normalization

—_—

o S (=, . Lo . 1 =
1= / vipdr = A° / PR T g = 247 / e gy =040 — 0 &
. Ja 10 \ "

- Eihade 8

T~



Chapter 6

Solving for A we find 4 = 25~ 1/1p3/4

>
(2) = A2 / e dr = 0

Ciia

because the integrand is odd over symmetric limits.

9 9 x 4 2 3 31D 542
(:r") = 4" e dr= - A7 CaT =
J 4
. 3
Ar = \/(r2) - (@) =/ —
2a

33.

=
Il

1
(n+§> hw

(4.136 x 1072 eV) <n + %)

k

. . 9

For the harmonic oscillator w~ = — s0
m

(n,+ %) hf = (4136 x 107" eV .5) (1013 s71) (n + 5)

Quantum Mechanies [1

k =w?m = an?fhm = 4x? (10% 571)? (3.32 x 1072 kg) = 131 N/m

34. Taking the second derivative of i for the Schrodinger equation:

diy 2 L2
i 5Aaze /2 — 9202 Ax3emer /2
T
de) D) - . 2
o7 (5a - 5a’2? — 6a?a? + 2a°z7) de" /2
oy

Starting with Equation (6.56), and with the wave function given in the problemn. we have

d%y
dz?
= (2032 + 2% (=208 - o®) + 3) Aemnrif?

(QQIQ -B)y = (112.132 - }3) A (2()‘1:? ~1) o T2

Matching our two values of d%¢/dz? we see that the Schrédinger equation can only be satisfied

if 8 =5c«. Then -
2mE | [mk
h? =9 7’2—

or E = 3hw. This is the expected result, because the wave function contains a second-order

polynomial (in z), and with n = 2 we expect E = (n + 1,) how = ?f"'

{p?
35. By symmetry (p) = 0. Setting the ground state energy equal to i we find
i
2
- 1
(p ! = <hw /p? i = hem
2m 2 ’
Note, however, that a detailed calculation gives /p?;, = fhime. The factor of one-half is

evidently the difference between the kinetic enerev and the total energv, which if raken into

account does give the eorrect result.

9



Chapter 6 Quantum Mechanics 11

* 36. Taking the derivatives for the Schrodinger equation

dyr

—ars/2 I —nrli?
— = Ae™ 7~ AngPemT 2
LI

d?w —n'r'y/"’ 2.3 —ar/? 2.2 .
d—,, = =3daxze """+ Aa"rte™ 7 = (rr";r - 30) i
f.&re<
Combining Equation (6.56) with this, we see
%Qi = ((1‘21‘2 - = ((y?:r? - 3a)
72
Thus we see that 8 = 3« or
2mkE 3 mk
K2 TV A2

3, [k 3
E:§71 ;=§hw

37. The classical frequency for a two-particle oscillator is (see Chapter 10, Equation (10.4))
w = Vk/p = Vk(m + mg) /mymy = /2k/m since the masses are equal in this case.
The energies of the ground state (Ep) and the first three excited states are given by E, =
(n+ %) fw so the possible transitions (from E3 to E, £3 to E). ete. are AE = hw, 2hw, and
3hw, or

¢ 2 (1. 3N
hw = h -2—k = (6.58‘2 x 10718 ov. s) \/ (1.1 x 107 N/m)
m

755 eV
1673 x 10-7 kg 79 e

A= %‘—: = %\?ﬂ = 1640 nm
hw = 2 (6.582 x 10-16 eV . 5) \/ 21%'72’;11%3_;2/ 1::) =131 eV
3hw = 3 (6.582 x 107'% eV . 5) \/ 21%'713211%3_'9\;/;:; =226 eV

he _ 1240eV - nm

A= — =
E 2.26eV

= 549 nm
38. The kinetic energy is (see Chapter 9)
., 3 3 - CE s gy . . .
K=3kT=3 (8.617 » 107" eV /K) (12000 K) = 1.551 o\

Assume a square-top potential of height

' 6e? 6(1.440 eV - n i
1o Je _ Bet  6(140c M) =315 M
dmeor dwzer (1.2 % 105 nm)(12)'"

K0



Chapter 6 Quantum Mechanies [1

( where we have used the fact that the radius of a nucleus is approximately 1.24%3 fin (sce
Chapter 12). For the width of the potential barrier use twice the radius or

L=2(12% 107" um) (12)V* = 549 » 107 um
Then
) Vv2meZ (Vo — E)  /2(938.27 x 100 V) [3.145 x 108 eV - 1.531 eV
T he - 197.3 eV - nm
= 3.89 x 10° nm™!
kL = (3.89 x 10° mn™") (5.49 x 107% nm) = 2.135
r- (] (3.145 x 10 eV) sinh? (2.135) 10 10-7
= N = * x
* T(1551 oV) (3.145 x 106 eV — 1551 V)
39. a)
p=\2m(E -1)
L K=E-}V,
P 2m(E - 1)
b)
S B T
p=V2m(E+ 1p)
P K=E+V
p 2m(E + W)
r * 40. In each case KL > 1 s0 we can use
“ - E E —2xL
T = lb% <1 - —‘70> €
where

o fomae . . 172
2mc (Vo — E) _ (2(3727 x 10° V) (10 x 10° eV) )} 138 x 101 1!

nE he = 1974 eV - nm

a) With L=13x 107" m

T, 5 MeV ( 5 MeV ) (21300107 1) (1322075 ) _ g -6

15 MeV U 15 MeV
b) With V5 = 30 MeV

2meZ (Vo — E)  (2(8727 x 10% eV) (25 « 10° V)2

K= = — - =219 x 10¥ m™!
he 1974 eV - nm

5 MeV 5 MeV —2(219 410 ~1)(1 30070 ) ' o s,
— N - P4 B4 m R 1 =1 » lU <
o= 163551y ( 30 I\“Ie\f) ‘

¢) With Vg = 15 MeV we return to the original value of &, but now L = 2.6 » 10 B and

7*c — 16 3 “\Ie\i _ 5' '\‘I“\C' (:—'!(1.55 PRI '1){'_' [P U NIt =24, 10 31
15 MeV 15 MeV

r« By comparison T, > 1}, > T..

51



Chapter 6 Quantum Mechanics 1

41. When E > V' the wave function is oscillating, with a longer wavelength as I — V' decreases.
Then when E < V' the wave function decays.

¥(x) Oscillavon

42. In general for £ > V)
V2 sin? (kyL)]
1E(E ~ %)

R:l-T:]-—[l-}-

If E > Vp then 4E (E - Vp) = 4E2%. From the binomial theorem (1 + ) ' =1 - z for small

z and

4E? 4£72
N . . L 2
R (\osm(k_l))

Rel- [1 _ Vgsin? (kgL)J _ Vdsiv? (kL)

2E

43.

-9 .l -1
T [1 Vi sin? (k'zL)]

T E(E- 19
a) To obtain T' = 1 we require sin(k,L) = 0. Except for the trivial solution L = 0. this occurs

whenever koL = nw with n an integer. Letting n = 1 we find

T wh _ he | 1240 eV - nm

i
k2 J2m(E - Vo) 2.2mc(E - V) 2./2(511x 108 eV)(7.2eV)

Any integer multiple of this value will work.

=0.229 nm

L=

. L nmw ) .
b) For maximum reflection sin® (koL) =1 or L = T for any odd integer n. From the result
2k

of (a) we see that the first maximum is with L equal to half the value of L for the first
minimum, or L = 0.114 nm.

2me? (Vo - £ 2(511 x 10% eV} (1.5 eV)]/*
.= m (0 )_L( e)( ueAj] :(}_QT“m“

- he - 197.4 ¢V - nmn

With a probability of 10™* we know L >> 1 and we can use

E E o 1 1 i /
T=16—{1- = -2l =16— |1~ — 2l 2L (—-Z
l’b( "b)e 62.5( 2'5)( 3.84e 10

44.

82



Chapter 6 Quantum Mechanics [I

Solving for L:
In (3.84 x 10%)

T 2(6.27 x 10° m-1)

Now using the proton mass

=842 x 10719y,

I (Vo — ) ]2(938.27 x 106 eV) (1.5 eV)]'/?
K= me? (Vo )=[( e)( e)] = 268.8 nm™!
he 197.4 eV - nm

T = 3.84e~2°L — 3_848—2(268.8x109 m~')(8.42x107" m) _ 9.9 x 10-197
The proton’s probability is much lower!

45. The sketch of the potential will be like Figure 6.12. Since the question mentions tunneling,
the assumption is that the total energy is less than the potential. Therefore the wave function
will be sinusoidal on either side of the barrier with an exponential decay in the barrier region.
Each sketch will be similar to Figure 6.15. From Equation (6.70) we can see that in part
b) with a barrier twice as wide, the exponential factor will be markedly smaller (a ratio of
e~? = 0.135 while doubling the barrier height in c) will reduce the transmission coefficient as
compared to a) by less than 1/2.

a) ¥ Exponential decay

/
ANA AN
AW ERVARY

Sinusoidal

b) ¥  Exponential decay

Sinusoidal Sinusoidal

¥ Exponential decay

Sinusoidal

Sinusoidal

83



Chapter 6 Quantum Mechanics II

46,

* 47,

48.

*49.

V2me(Vo — E)  /2me? (Vo ~ E)
h - he
2) n = V2(511 x 103eV) (6.4eV — 1.4eV)
- 197.33eV

Starting with T =~ e 2L and & = , we find:

=11.5nm™}

Then T =~ e~ 250 = 2¢~2(11.5am ™! (28nm)) _ 9,644 — 9 7  10~28

. V2(3727 x 108eV) (19.2 x 106eV — 4.4 x 10%eV)
' 197.33 eV

Then T =~ e~ 2¢L = 26—2(1.683)(10‘5n\’1(6.7x10“5m)) — 92e-226 —_ 31 x 10-10

b) =1.683 x 10°nm™!

For value of kL >- 1.. Equation (6.70) is a good approximation for Equation (6.67) and
Equation (6.73) gives at least an estimate of the transmission that is to within an order of
magnitude.

As in the text we find
. E= K22 n%_*_n_%_*_n%
"\t

and substituting the given values of L we find

h2r2 o 5  nE
E=——(n?+2n2+ 23
2mL* ( ! 2+ 4

Letting Eg = h?7%/2mL? we have

E1=Eo(1+2+l) =EE0

2'2
E, =Ey (1 -{-2+—) = 4F,

1
4
22
Es = Ep (l+2+—4—-) = Ey (224.2_}_.1) =7E,
Of those listed, only Fs is degenerate.

.. . . . . 3
Recognizing this as the infinite square well wave function we see that £k = — and
o

)

R2k? 9h3n?
2m  2m  2ma?

a) In general inside the box we have a superposition of sine and cosine functions. but only the

sine function satisfies the boundary condition ¥(0) = 0, and thus ¥ = Asin(kzx). With V' =0

2R VImE
- h

—_ ork =
2m 2m k

inside the well £ =

. Outside the well the decaying exponential

84



53.

Chapter 6 Quantum Mechanics 1

2,2
is required as explained in section 6.4 of the text, with E = 'k + W which reduces to
m
Vo —
k=1tk = ——————2m(h0 E).

b) Equating the wavefunctions and first derivatives at £ = L:

Asin(kL) = Be™"t
kAcos(kL) = —xBe "L

Dividing these two equations

tan(kL) 1
k&
ktan(kL) = —k

. From the previous problem xtan(kL) = —k or kLtan(kL) = —kL. Let o = kL and 8 = kL

so that
Btana = —a (1)

Now from the value of V; given in the problem and the definitions of & and £ we have

2mVL?  2mEL?> 2m(Vy— E) L?
b= R * h?

=KL+ 2L =a* + § (2)

Solving Equations (1) and (2) numerically we find & = 0.20 and 8 = —0.98. Then F is given
by
_ R a(a/L)?  0.04R7 _ 0.004h°

E 2m om  2mL?2 = 8ml2

. Referring to the solution to the previous problem, we see that only a finite number of solutions

to Equation (1) exist up to any particular (finite) value of V5. Therefore for any finite Vg
only a finite number of combinations of & and 3 will satisfy both equations, and the number
of bound states is finite.

. Using the nomenclature of Problem 49

= =1.14

L V2m (Vo - E)L  /2(939 x 105 eV) (2.2 x 106 eV) (3.5 x 10~° nm)
b= h 197.4 eV - nm

where we have used the mass of one nucleon, because one nucleon is “bound” by the other.
Now kL = 3 = —aftana so a = 2.07 = kL. Then

_R%? 52 (/L) h2(2.07/L)2 3 (2.07)* (197.4 eV - nm)?

E
2m 2m 2m 2(939 x 108 eV) (3.5 x 10~6 nm)?

=7.26 MeV

This means that V5 = 2.2 MeV +FE = 9.46 MeV. The next solution of the equation 8 =
—aftana is at a & 4.94, a value that will put E > Vj. Therefore there are no excited states.

a) This was calculated in Problem 34.
b)

(z) =/°° P Pdr=0

-0
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Chapter 6 Quantum Mechanics 11

. \/2 (4.42 eV) (39.10 u + 35.45 u) lu 2.998 x 108 m/s
(39.10 u) (35.45 u) 931.5 x 108 eV/c? c
hw = 0.03477 eV
h%w?  (0.03477 eV)?
4D 4(4.42eV)
Evaluating for specific energy levels:

=6.838 x 1075 eV

1 )
Eo = (0 + 5) (0.03477 V) — (0 +=) (6.838x 107 eV) = 0.017 eV

E

(1 + %) (0.03477 eV) — (1 +
1 1
(2 + 2) (0.03477 V) — (2 +5

Ey= (3 + %) (0.03477 eV) — (3 +

Note that for these low quantum numbers the second-order correction is small.

Ey

2
) (6.838 x 107° eV) = 0.052 eV
) (6.838 x 107> eV) = 0.086 eV

) (6.838 x 1075 eV) = 0.121 eV

* 57. The solution is identical to the presentation in the text for the three-dimensional box but
without the z dimension. Briefly, we assume a trial function for the form

Y(z,y) = Asin(k ) sin(kay)

Assuming that one corner is at the origin, applying the boundary conditions leads to

T NyT
'TL 2TL
and substituting into the Schrédinger equation leads to
212
m-h 2, 2
= 2mlL? (nz: + ny)

To normalize do the iterated double integral
L L L (L
. d A2 in2 (227N gin? ("™ drd
/‘;/sz,bdxy /O/Osm(L)sm(L)zy
L\ (L
2({ =2 — =
(3) ()=

2

so A= I Now to find the energy levels use the energy equation with different values of the
9
quantum numbers. Letting Ey = % we have
Ey = Ey (17 +1%) = 2E, n=1n=1
Es = Ey (22 + 12) =5Fg ny =2, na = 1 or vice versa
E3 = Ey (22 +2%) = 8K, ny =2 ny=2
Ey = B (32 +1%) = 10K ny = 3. na = 1 or vice versa
Es = Ep (32 + 22) = 13E, ny = 3. ng = 2 or vice versa
Es = Eg (42 + 12) =17Fy ny = 4. ng = 1 or vice versa
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Chapter 6 Quantum Mechanics I

58. a) For the infinite square well, the energies are given by Equation (6.35) and increase as n?.

[ Energy Vo ™ I Energy  }=—
16 £, E,
E.
9F, 3
£
41E,
E, E,

b) For the infinite square well, the wave functions are given by Equation (6.34) and the |¢|?
can be determined easily. Note that for the finite well, the wave functions extend beyond the
boundaries.

G v J

¥al* ),

I\Ilzr |‘I’2|2 J

P

|,

@, 12
9] .

o
t~
<

¢) For the infinite square well, the wave functions equal zero exactly at the boundaries. This
is not true for the finite square well. The determination of the exact energies is rather difficult
and is often treated in Quantum Mechanics texts. The number of available energies depends
on the value of the potential. We assume that four states exist in this problem.

59. This tunneling problem is similar to Example 6.14. Because of the information given in the
problem we will use Equation (6.73) to approximate the transmission probability. We know
Vem (% —E) _ /2m&(Vo - E)
"= h - he %

_ V2(5.11 x 10%) (0.9eV)

= -1
197.33eV - nm =4.86nm™".
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* 60.

61.

Chapter 6 Quantum Mechanics 11

Then from Equation (6.73)

T~ 26_2KL — 28—2(4<86nm-l)(1.3nm) = 6.51 x 10-6

a) Note that this is an approximate procedure for one-dimensional problems with a gradually
varying potential, V(z). We begin with Equation (6.62b) which was derived for a scenario

. . 2m (E - V) .
where E > V but with V constant. We found k& = —m(n__o_) for a constant Vh. Since
2m(E -V
our potential varies slowly, we approximate the wave number by k = m| (z)] We

h
h
also know that p = ik and A = ; Combining all of the above. we find a position-dependent

wavelength
h

2m(E - V(z)]

b) If we neglect barrier penetration, then the wave function must be zero at the turning
points. From the particle in a box example, we know that the number of wavelengths that

AMz) =

.1 3 . . -
fit between the turning points is 50 Or 1, or -, etc., which equals the distance divided by

the wavelength. By analogy, the number of wavelengths that can fit inside our potential well
with a slowly varying wavelength is

dr

=2
AMz) 2

; wheren is an integer.
Substituting from above and rearranging, we have
'2/ \/%[_ETV—(:T,_)]dz =nh; wherenis an integer.
a) Strictly speaking this approach is valid only when the potential varies slowly. From problem

60, we know
2/ v 2m([E — V(z)]dz = nh: wherenis an integer.

For the potential energy V(z) = oo for x < 0 and V(z) = Az for z > 0, we know the classical
turning points occur at z = 0 and where £ — V(z) = 0 = E — Azx. Let us call this point b;
then £ — Ab = 0so b= E/A. So we must evaluate

b
‘2/ V2m[E - Az)ldz = nh
0
-2 5
with b = E/A. We know that [ (a — gz)/2dz = 3—;\/ (a—qz)® so

2@/: VIE = Az)]dz = 2V2m [G%) (E - Az)3/2|2] = nh

e —4V2m [ ap) sj2 _ 3Anh _ (34nh)*®
Simplifying, we find A [—E ]—nh so FE -—m or = A
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Chapter 6 Quantum Mechanics I1

b) A sketch is shown below. The wave functions are oscillating with the lowest state being
one-half a cycle, the second state a full cycle. etc. As mentioned in the answer for Problem 60
part b), these sketches ignore barrier penetration in the region where the potential is finite.
No barrier penetration occurs where r = 0 where the potential is infinite.

W(x)

Potential

Position

90





