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Chapter 7 The Hydrogen Atom

Chapter 7

Starting with Equation (7.7), let the electron move in a circle of radius a in the zy-plane, so
sinf® = 1. With both r and 6 constant, R and f are also constant. Let R = f = 1. Then
g = ¥ and the derivatives of R and f are zero. With this Equation (7.7) reduces to

Lty

Y de?

In uniform circular motion with an inverse-square force, we know from the planetary model
that £ =V/2, and

A‘)
_;_gaa (E-V)=

1% 1%
E-V=g5-V=-3=|E
Thus
2u 4 1 d%y
Ty
1 &2y 2pu

Zag T F=0

. This is a simple harmonic oscillator equation. Assume a standard trial solution ¥ = Aexp (iB¢).

With this trial solution d?¥/d¢> = —B?1. Substituting this into the equation from the pre-

vious problem

1 2u
2 (-B)¥+ 5 |E| =0

Solving for B,
B Vpl|Ela
=

To find A, normalize
2

2
/ Ppdp=1= A2 dp = 21 A®
0 0

so A = \/1/2%. Note that B must be an integer (let B = n) so that ¥ will be single-valued
[¥(0) = ¥(27)]. With B = n we have

0 2u 0 n2h?

n° = = |E|a® El=—

=3 1Bl = 5o
2 v

For circular motion |E| = 57 where rotational inertia I = pa® for a particle of mass . Thus
252

n“h .
— n252

L? =2I|E|= 2pa22

or L = nh, which is the Bohr condition.

. Assuming a trial solution g = Ae**® (which is easily verified by direct substitution), and using

the boundary condition g(0) = g(2w), we find
AeO - AeZm‘k

which is only true if & is an integer.
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Chapter 7 The Hydrogen Atom

4. Using the transformations it can be shown that for any vector A

S 8% 10y 1 oy

Vo =7 or +o7 60+¢rsin0(_9$
L. 10 1 1 04,
V’A_rza (T 4) 980(Sln0A0)+rsin0W

Because V2 = V - 61/) we can combine our results to find

10 (,0¢ 19 oY 1 %
2, _ Y thdd - ¥ R
V= r2 or (T (‘31‘) * n6 50 (sm() 39) * r2sin® § 92

and from this a simple rearrangement gives the desired result.

* 5. Letting the constants in the front of R be called A we have

R=A (2 - L) e=r/20
Qo

dr ag

3
2
Q = A i? — LS e—T/2ao
dr? 205  4dag

Substituting these into Equation (7.13) we have

1 2uE 5 4pE  2pe? 4 dpe? \1
(__3_#_2),,+ 5 wE 2)+<__+ pe N1y
day  aph 2a; h* dmegagh ap  dmegh* /) T
To satisfy the equation, each of the expressions in parentheses must equal zero. From the 1/r
term we find

47T€Qh2
ag = 5
pe
which is correct. From the r term we get
h? Eo
E = —_—— =
8uaj 4

which is consistent with the Bohr result. The other expression in parentheses also leads
directly to E = —Ep/4. so the solution is verified.

6. As in the previous problem

R = Are-/2ao
dR r
= _ —r/2ap
dr A (l 2ag> €
2dR ) r3 —
22— A 2_ r/..ao
dr (Y‘ 2(10
i r‘lﬁ = Al 2T2 7.3 —rf2ao
dr dr | — T ag dak )~



Chapter 7 The Hydrogen Atom

Substituting these into Equation (7.10) with £ = 1 and after substituting the Coulomb po-

tential, we have
1 2uF 1 2ue? 1
—_— - 2—-2)-=0
(4(1% * h? >T+ ( 2a9 -f_élfn'csoﬁ2 + )r

The 1/r term vanishes, and the middle expression (without 7) reduces to

dregh?
ag = )
ue
which is correct. From the r term we get
K2 Eo
E=——-=-"—
8uaj 4

which is consistent with the Bohr result.

R0 T ppo <r>2
V3 (200)*% 20 "~ 3(2a0)° \ a0

To normalize, we integrate over all space:

o8] o 1 o0
/ “R'Rdr = — rie"/%0 dr =
0 2400 0

1 ar |
24a} (1/ag)®

so the wave function Rp; was normalized.

* 8. Do the triple integral over all space

1 2% prw PO 5
// P YdV = — / / / 2 sin 0 e =27/ dr df de
Ty Jo Jo Jo

The ¢ integral yields 27, and the 8 integral yields 2. This leaves

[o <]
// vrpadv = T [T eria g, o A2

ma3 Jo a3 (2/a0)®
as required.

9. It is required that £ < 6 and |m,| < £.
£=5 mp=0+1 %2, +3, +4.+5 f=4 my=0.%1,+2 +3 +4
€=3:mg=0,£1.£2,43 ¢=2: mpy=0.%1%2 =1 m;=0,+1 £=0:my=0
*10. n=3and€=1.somy;=0o0r £1. Thus L, =0 or &k
L=\E¢(€+1)h=V2h
Ly and L, are unrestricted except for the constraint L2 + L2 = L2 — [2,
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Chapter 7 The Hydrogen Atom

1 /2 _
1'[}310 = R31Y10 = — — ao 3/2 (6 — —,;-) (L) e—r/3ao COSG
81V ag ap

1 -3/2 r r ) .
= E y = 6 —T/3a.0 9 ‘im‘)
w31:l:1 3111+1 31 \/— Qg ( 0) (—0) € simve

11.

12. The sum is of the form .
2
2y
y=-=
which by symmetry is equivalent to
T
2> v
y=1
Let us first consider (as a lemma) the sum

T

i[(y+1)3—y3] = ) [BP+3y+1]

= P-+@FE -+ @+ -5
= (z+1P-13=2%4+32"+3z

Now let us write
e 4 z T I
3} u? =) [+ -] -3 v-1
y=1 y=1 y=1 y=1
The first of these sums is given by our lemma above. The others are

ed

iy:%m(m+l) Zl:m
y=1 '

=1

Combining these results

z 3
3Zy2=m3+3$2+3m_3m(m+1)—$= %3(23:-%—1)(1:—‘:-1)

&

y=1
Therefore N
1
Zyz = ém(?m—i—l) (z+1)
y=1
and .
1
Z y2=§a:(21:+l)(x+1)
y=—z
Then ,
3 .
2 2 242 2
N=3(L:) = h° = A
i——

y

13. As in Example 7.4 the degeneracy is n? = 36
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Chapter 7 The Hydrogen Atom

14. There are five possible orientation,
corresponding to the five different
values of mg = 0, &1, £2.

For the m; = —1 component we have (with £ = 2)

=e(l+1)h=V6h L,=mih=—h
LI+ L2 =1L%- L% =6h% - h? = 517

*15.
Lz _ mg

L i+

For this extreme case we could have ¢ = m; so

cosf =

4 2 o 2? e
— cos” (3°) = =
VEE+1) E(e+1) £24+¢

cos (3°) =

Rearranging we find

1 -1
= _ 1 = .
(mg 1) =

and we have to round up in order to get within 3°, so £ = 365.

16. There is one possible m value for € = 0. three values of my for £ = 1. five values of my for
¢ = 2, and so on, so that the degeneracy of the nth level is

9

1+434+54+..=n°

*17.
Yo = BnYi- = 8\/%1—(13‘/2 (é) e~"/%0 gin e~
Y210 = Ry Yo = L (—r-> e~/ cos 8
4\/2_7ra‘3/2 2]
1 r2 ..
Yi2_1 = R3aYo_) = VI —37 ( ) e~"/3% gin  cos e~

18. We must calculate the triple integral over all space. The definite integrals can be evaluated
from a handbook or from Appendix 3.

1 2r rm poo r 2
/// '9/1-5001,0200 dV = m/ / / (2 - ‘a—'5'> e—r/aoT'Z Sin@dr dg d¢
0 JO 0 JO



Chapter 7 The Hydrogen Atom

19.

* 21.

The ¢ integral yields 27, and the 8 integral yields 2. This leaves

oo 2 oo 3 4
///w*wdv = —1-3- (2—l> r%-r/%dmia 4?28 LT emrieo gr
8ay Jo ag 8ay Jo ag ag

1 4 1 P
= — 2Mad) — = (314 — (4! a3

523 [4 (2! ag) p” (3tag) + 2 (4.a0)]
= 1

as required.

Repeat the process with the second wave function:

///w b1 dV = — /%/ﬂ/co r Qrzs'msee‘r/“"d o do
F21-1¥21-1 —6477(1,8 0 0 0 ag "

The ¢ integral yields 27 as before. The 8 integral can be found in integral tables and equals
4/3. This leaves

7Y’ 2 g-r/ao LS IR TO N
// P*pdV 94%/ <ao) e dr = 24% [ao (4!(10)] =1

as required.

With £ =1 we have m¢ = 0,£1 and L, = m¢ % = 0, £A.

. The maximum difference is between the my; = —2 and my = +2 levels, so Amg = 4. Then

AV = pp (Ame) B = (5.788 x 107° eV/T) (4) (2.5 T) = 5.79 x 107* &V

Differentiating £ = he we find

A
dE = i,, d\  or [AE| = % |AA|
In the Zeeman effect between adjacent m, states |AE| = ugB so ugB = (hc) [AA| or
Ao
he

. See the solution to problem 14 for the sketch. To compute the angles with £ =2

cosf =

Lz e e
L~ Vit=n 6

There are five different values of 8, corresponding to the different m, values 0, %1, 2

6 = cos™! (%) =353> f#=cos} (\/ig) =65.9° 6 =cos™!(0) =90°

§ =cos~! (_7;) =114.1° 6 = cos™! (:/—%) =144.7°
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23.

Chapter 7

With € = 3 we have (as in the previous problem)
: myg _ My
L Jig+1) V12

For the minimum angle my = € = 3 and

6 = cos™} (—%) = cos~} (@) = 30°

cosf =

. From Problem 21

AN = AopsB
he
so the magnetic field is
_hedAX (1240 eV - nm) (0.04 nm)

T M (656.5 nm)? (5.788 x 10-5 eV/T)

magnetic field
.606 eV
E= _E_g _ _13606eV o v
n 25

The Zeeman splitting is given by

The Hydrogen Atom

=199 T

. There are seven different states, corresponding to my; = 0, %1, 42, £3. In the absence of a

AE = pgB (Amg) = (5.788 x 107° ¢V/T) (3 T)me = (1.7364 x 107* V) m,

For my = 0 we have AE = 0. For the other m; states

mg=+1: AE = (1.7364 x 107 eV) (£1) = £1.74 x 107 eV

me = £2: AE = (1.7364 x 107% ¢V) (£2) = £3.47 x 1071 eV

my = £3: AE = (1.7364 x 107 eV) (£3) = £5.21 x 107% eV

. From the text the magnitude of the spin magnetic moment is

268 |9 _ oo
TR Th

3h
\/2— = V3up

Ks

The the z-component of the magnetic moment is (see Figure 7.9)

1/2 _ ks

Bz = pscosf =

The potential energy is V = —i- B = —p.B, and so the vertical component of force is

F. = -dV/dz = p, (dB;/dz). From mechanics the acceleration is

F. _I—‘de:

m m dz

97



Chapter 7 The Hydrogen Atom

30.

31.

33.

and with constant acceleration the vertical deflection of each beam is z = %aztz. With the
time equal to the horizontal distance divided by incoming speed. or t = z/v,, we have

1, U fpdB.\(z\® 1/927x10"% J/T 0.071 m\?
¢ = ged _Q(m z ) \o) 2\ Taxiom g ) B0 T/ o5 /s

= 3034x10%m

The separation between the two silver beams is twice this amount, or 6.07 x 10™* m.

. The kinetic energy of the atoms is

3
K = Esz

|

(1.38 x 1072 J/K) (1273 K) = 2.64 x 1070 J

From the previous problem, we see that the separation of the beams is (remember p, = ug)

‘ (quBz) <x>2
§=2z2=(—— —_
m dz Uy

2dB;  smv®  2sK  2(0.01 m) (2.64 x 10720 )
T4z T Tus me | 92T x10-% /T

Rearranging we see that

=57T0T -m

The magnet should be designed so that the product of its length squared and its vertical
magnetic field gradient is 57 T-m.

. As shown in Figure 7.9 the electron spin vector cannot point in the direction of B, because

its magnitude is S = y/s{s +1) = \/3/4h and its z-component is S, = msh = hf2. If the
z-component of a vector is less than the vector’s magnitude, the vector does not lic along the
z-axis.

. For the 5f state n = 5 and £ = 3. The possible m; values are 0,=1,£2, and %3 with

ms = £1/2 for each possible m value. The degeneracy of the 5f state is then (with 2 spin
states per m;) equal to 2(7) = 14.

For the 6d state n = 6 and € = 2. The possible m, values are 0, £1, and %2, with mg; = £1/2
for each possible m; value. The degeneracy of the 6d state is then (with 2 spin states per my)
equal to 2(5) = 10.

If we determine the thermal energy that equals the energy required for the spin-flip transition,
we have

; 3
59 x107%eV = ng == (8617 x 107°eV/K)T

This gives T = 0.0456 K.

. The spin degeneracy is 2 and the n? is shown in Problem 16.

The selection rule Amg = 0.1 gives three lines in each case.
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34.

* 35.

36.

37.

38.

Chapter 7 The Hydrogen Atom

a) Af = 0 is forbidden

b) allowed but with An = 0 there is no energy difference unless an external magnetic field is
present

c) A€ = -2 is forbidden
d) allowed with absorbed photon of energy

1 1

We must find the maxima and minima of the following function.

2 143 4
P(r) = r?|R(r)|* = A%e~"/o0 <2 - L) r? = 42 (4 23, T_2> -r/ag
ag ag ag
d
To find the extrema set o = 0:
T
1 473 12r7 473
0= —-— (47.2 - L + T_)) e—r/ao + (87‘ _ r + L{)) e—r/ao
ag Qg ag ag ag

3 2
T 8r 167
0 = ——3' + —5 - + 8
ag a§ ag
r

Letting z = — the equation above can be factored into (z — 2) (z2 — 6z + 4) = 0. From the
first factor we get = = 2 (or r = 2ag), which from Figure 7.12 we can see is a minimum. The
second parenthesis gives a quadratic equation with solutions £ = 3= /5,sor = (3 + \/5) ap.
These are both maxima.

In the previous problem we found that the two maxima are at r = (3£ /5)ap. From

Figure 7.12 it is clear that the peak at r = (3 + \/5) ap is higher. This can be verified by
substituting the two values for r and computing P(r). The most probable location is therefore
atr = (3 + \/5) ag = 5.24 ag, which is significantly further from the nucleus than the 2p peak
at T = dayg.

From the solution to Problem 35 we see that P(r) = 0 at r = 2a¢. Note that P(0) = 0 also.
A sketch is found in Figure 7.12.

The radial probability distribution for the ground state is

P(r) = 2 R()P = re~2/s
g

With r <« ag throughout this interval we can say e~27/90 = 1. Therefore the probability of
being inside a radius 10715 m is

10-15 10-15 3 10-18
4 4r 5
/ P(r)dr ~ > 2dr = — =90 x 10"
0 ap Jo 3ag |y
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39.

, 4
P(r) = r* |Rir)[* = —rle?/e
0
To find the desired probability, integrate P(r) over the appropriate limits:

1.05a0 4 [l0%a0
/ P(r)dr == r2e=2/%0 gy
0

3
95a0 gy J0.95a0
Letting z =r/ap

1.05a0 1.05
/ P(r)dr =4 / e dz = 0.056
0.95a0 0.95

where the definite integral was evaluated using Mathcad.
40. In general -
(r)y = / rP(r)ydr = / 2 |R(r)| dr
0 0

For the 2s state

1 == 4 2
=g [ (- L D) eI
3ag Jo ap ag

Using integral tables

oS
/ rie~"%dr = nl (ag)™*!
0

1 4 s 1
(r) = 8l [4 (31 ag - = (4" (a3) + - (51) ag] = % (24 — 96 + 120) = 6ag
0

For the 2p state

1 o0 r 2 1 o0
{ry = ——3/ r (—) e T/odr = 5/ rde~T/%0 4y
240,0 0 ag 24(10 0
1 _ 120(10

= N (a8
2443 (8!) (o) = =5

= dap

41. For the 2s state: )
p 1 ’ “
P(r) = r? lR(r)l2 = —3r2 (2 - L) e~"/a0
8aj

ag

As in Problem 38 for r < ag we can say e~"/% = 1. so the probability is given by the integral

10718 10-15 2 10718 3 4
1 : 4
/ P(r)dr 3 / r? (2 - L) dr = Ls (41‘2 A T—,,) dr
0 8ap Jo ag 8ay Jo ap ag

1 (4, ™ 7
= Sz -—+=
8ay \3 ap  Saf

Similarly for the 2p state:

Q

P(r) =12 |R(7‘)|2 = 941&5 rie=T/o0
=404

10718 1 10-13 -5 10718
/ P(r)dr~ — / rldr = —
0 24a3 Jo 120aq
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* 44,

45.

Chapter 7 The Hydrogen Atom

To find the most probable radial position in the 3d state:

2y 2 6
Pir) = IR = A2t (1) 12 < 2 () b
0

To find the extrema set £ =0:

=L (52 o

ag \ @ 3a}
6r> 218
0= —F - so r=9a and r =0
ay 3ag

are the two solutions. From Figure (7.12) you can see that r = 0 is a minimum where P(r) = 0
and r = 9aq is a maximum.

. For the 3d state:

P(r) = R |R(r)[2 = #2 (%)3 <(81)126(30)) (%)Qe_gr/:;ao - ((81)5(15)> <%) —2r/3a0

To find that probability that the electron in the 3d state is location at a position greater than
ag, we must evaluate

/G:O P(r)dr = /{: (ﬁfﬁ) (;_g) e=27/380 g

(Alternatively, we could evaluate the integral from 0 to ag and subtract that answer from 1
since we know that the wave functions are normalized.) From integral tables, we find integrals
of the form

/x'"e'”da: = et i (-1) ﬁ_t— where m =6 and b = =2
= (m — ) hit+l 3ag

Evaluation of the summation gives a probability of 0.9999935 that the 3d electron will be at
a position greater than ay. Well that means it is almost certain!

2 -9
e 144 x1077 eV-m
= = =282 x 107"
4megme? 511 x 103 eV 82x1 m
From the angular momentum equation
3h 3he 3(197.33 eV - nm)

v ¢ =103¢c

“ImR_ dmER° T 1(311 x 10° eV) (2.82 x 10-0 nm)
A speed of 103c is prohibited by the rules of relativity.

A
The electron radius would be 76 =1.21 x 107'2 m. As in the previous problem

= 3v 3hc oz 3(197.33 eV - nm)
T ImR T AImcR. . 2(511 x 10% eV) (1.21 x 103 nm)

This result is allowed by relativity. However, in order to obtain this allowed result, we had to
assume an unreasonably large size for the electron (one thousand times larger in radius than
a proton!).

= 0.24c¢
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46. a) The only change in Equation (7.3) is in the potential energy, with

Ze?
4dmeqr

18 [ ,0¢ 1 8 (., 8¢ 1 % 2u Ze? )
— = —_— —_— 80— —_—t = | F =0
r2 9r (r 81‘) + r2sin 8 99 st 80 + r2sin? 8 02 + K2 + dreqr v

b) Because V' occurs only in the radial part, there is no change in the separation of variables.

V=

¢) Yes. from Equation (7.10) is it clear that the radial wave functions will change.

d) No, there is no change in the 8 or ¢ dependence.

47. Carrying Z through the derivation in the text [Equations (7.12) through (7.14)] we find

1 (Z\*¥? _,
Y100 = —= (—) e~%r/a0
100 = "=\ oo

48. Use the wave function

Ray = Ar (1 _ L) o~r/3a0
6ag

where A4 is constant. Then

P 2 2 2( 2 r3 r —2r/3aq
(r) =r IR(T)I =A°(r° - 3—(10 + 3602 e
0

dP
To find the extrema set e 0. Doing so and factoring out A2re=27/3%0 gives

5 5r re r3

“ 3a Q - 54a3 -
Letting r = T and multiplying both sides by - 54 we get
a0

z° — 182% + 90z — 108 = 0 = (z — 6) (2 — 12z + 18)

a) The minimum is at £ = 6, or r = 6ag, and we find P(6ag) = 0. Clearly P(0) = 0 also.
b) The two maxima come from the quadratic equation in parentheses, with £ = 6 &+ 3v/2 or
r = (6% 3v2) ao.
c)
Y141 = (constant) sin § e=%¢
Then Y'Y is proportional to sin? 8, and the probability is zero at 8 = 0 and 8 = 180°.

* 49. The ground state energy can be obtained using the standard Rydberg formula with the
reduced mass i of the muonic atom

E 2 pet

0 = 1
8mepan 2 (dmey)? B2
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Chapter 7 The Hydrogen Atom

Computing the reduced mass:

mpm, 1 (938.27 MeV) (105.66 MeV)

- = —_ 2
H = T m, — 2(938.27 MeV + 105.66 Mev) — 900 MeV/e
Thus
1 2\?  puc? 1.44 eV - nm)? (94.966 x 106 eV
Ep= “er,z=(e) pe’ _(La4eV - om) ( X10eV) 553 kev
2 (4meg)” R dmeg ) 2 (R2c?) 2(197.33 eV - nm)

The interaction between the magnetic moment of the proton and magnetic moment of the
electron causes hyperfine splitting. The transition between the two states causes emission of

h
a photon with energy of 5.9 x 1078 e¢V. From the uncertainty principle, we know AEAt > 7

With a lifetime of At =1 x 107y then
6.5821 x 1078V

AE> - =1.041 x 107 eV
~ 2(1 x 107y) (3.16 x 107s/y) X ¢
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