Statistical Physics

Chapter 9
Chapter 9
1. a)
OO 1/2 pve)
_ . 1
v = /_oo vig(ve) duy = (g%) /_oo v2 exp (—iﬂmv ) dv,
_ o (Bm\'? e, Lo o Bm\'2ym ( 2\ _ 1
- 2(5) [ e (i) e () S () -
Therefore
1/2 1 1/2 ET 1/2
e B ()= ()
b)
Bm\ /2 1 \
g{vz) = (—2?) exp (—iﬂmvz>
and from (a) we see that (fm)/2 = v;,lms, S0
22
g(‘Uz) d‘U: - \/'— rrms e‘(p( vgrms) dvr

2. a) With v; = 0.01v; s We have exp ( 1 mu ) ~1
1 o2
2 %rzms) d'UI - / :rrms (1) (0 Oozvxrms) —_ 7 ()8 X 10_

g(v,; dUZE - \/— :z:rmb exp(
This is the probability that a given molecule will be in this range, so in one mole the number

is
N = (798 x 107") Ny = (7.98 x 107*) (6.022 x 10%) = 4.81 x 10%

b) With vr = 0.20v, 1y, We have exp [—%%‘2—] = 0.980. Continuing as in (a) we find

0.98) (0.002v; rms) = 7.82 x 10~* and therefore N = 4.71 x 10?

1
T dvI:_Ims
9(v:z) o ver (

c) N =2.91 x 10%
d) N =1.79 x 10%°

e) In this case
9(vz) dvr = (7.98 x 107*) exp (=5 x 10%)

which is on the order of 1072!75_ Therefore we conclude no molecules travel at that speed

f_—.E(th—C))=fo<l+v—f)=fo(1+0)=f

3. a)
b) /2
1 —\ 1/2
o= (T-p0)" = ((ffz)? =(f§%§‘)
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But we know that v2 = kT/m, so

o (M)”Z@ KT

2 m cV m
o 1 [kT
c) From (b) we have T E” —

1 /1.381 x 10-23 J/K (293 K)

51, & -6
ooy 2 = _ = 3.66 x 10
Hyat T=203 K: = = 3555168 m/s\| T 2(1.674 x 107 kg) X
o 1 1.381 x 10~28 J/K (5500 K) s
_ Lo _ : =225x 10
Hat T = 5500 K fo  3.00x 108 m/sJ (1.674 x 10-27 kg) :

This is how we could deduce the surface temperature of a star.

. a) Letting d be the distance between the two atoms we have

2

) d\? md® 16(1.66 x 10727 kg) (8.5 x 10~1%
I; = 2(mr‘)=‘2m(;}-> === ( 2)( )

<

9.59 x 107* kg - m*

b)

2

2 - =
1. = 2 (ngz) = %mRQ =0.8(16) (1.66 x 107" kg) (3.0 x 107" m)"

= 1.91 x 107% kg - m?
c¢) The rigid rotator is quantized (sce Chapter 10) with an energy

R (1 1.085 x 1073 J.5) (1) (2 ,
E= (t+1n _( ‘ s)()()zl.lﬁxlo““J
21 2(9.59 x 10745 kg - m?)
d) Rearranging the energy equation in (c) and using the value of I, to find the ¢ value, we
find

2IE  2(1.91 x 107 kg - m?) (1.16 x 107 J)
no (1.055 x 10-34 J . 5)°
This shows that a much larger energy (larger Eyo:) is required to have £ = 1 for the rotation

about the z axis. Therefore the diatomic molecule proceeds as if there were only two degrees
of rotational freedom.

=3.98 x 10”1

(1+1) =

oC oo 1 5
/ F(v)dv = 471'0/ v* exp (-rﬂm'u‘) dv
e c 2
3/2
with T = 293 K and C = (gﬁ) .
27

b) For example for Hs gas at T = 293 K we have

1, o5 (1) (2) (938 x 10° eV) B 0

2P = x0T VR R Ry o X 10

The exponential of the negative of this value exp (—3.7 x 101%) is almost zero.
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6. Computations depend on the software but should yield numbers very close to zero.

*7. a)
/ (1.381 x 1023 J/K) (300 K)
=925
\/37? ﬂ\/ (1.675 x 107" kg) 2510 m/s
/2AT 2(1.381 x 10-28 J/K) (300 K)
‘)
\/ (1.675 x 10-27 kg) = 2220 m/s
b)
. 1.381 x 10-28 J/K) (2000 K) ‘
v= m\/ m\/ L65x 10T kg)  — ooom/s
/2kT 2(1.381 x 1028 J/K) (2000K) __
\/ (1675 x 1027 kg) = 5740 m/s
8.

F(v) = 4nCexp (—%/Bva) v?

In the limit as v — 0, the exponential reduces to € = 1 and v? approaches zero, so clearly

1i1r(1) F) =
The other limit is )
V2
lim F(v) =47C lim ———
S () 7C lim oxp (Qﬁmvz)
Applying L’Hopital’s rule,
lim F(v) = lim 2v = lim Le (—lﬁmvz> =0
S  v—o0 Bmuexp (3fmv?)  v—oo fm P\ 72 B
9. a)
. [2kT  [2(1381x10-2 J/K) (268 K)
TV Tm T\ T 28(1.6605 x 1077 kg) =399 m/s
b)

2(1.381 x 10-2 J/K) (303 K)
= = 424
v V V 28 (1.6605 x 10-27 kg) m/s
10. The equation to be satisfied is
‘ 2k
2v% exp (—%6mv?> =v*2exp (—%ﬁmv‘?) = £6_1

m
where we have used the fact that v* = 4/ 2:1T Thus

v exp <—é,3mv?> = ,:Ze_l =~ 28000

which can be solved graphically to yield v = 188 m/s and v = 639 m/s. The lower of these is
closer to v* = 390 m/s. which follows from the shape of the distribution curve.

114
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11. Various software packages should all give results very close to 1.

12. The calculations start from Equation (9.14) and are of the form:

3/2 b
I =drm (%:—) / v? exp (—-éﬁrmﬂ) dv

The limits a and b are given in each part. Values are (as a fraction of the total number of
molecules):

a)2x1071%  b)2x10""  ¢)0.156  d)0.494 ) 0350  f) 0.99987

[3kT
13. a) From Equation (9.20) we have vy, = {/ — . The mass of Hp = 2(1.008u) = 2.02u and

m
the mass of Np = 2(14.003 u) = 28.0u.

_[(3)(1.38 x 10~ 1/K) (293K)

Hy Vrms = A/ (2.02u) (1.66 x 102 kg/u) 1902m/s
_/(3)(1.38 x 10-8J/K) (293K) __
No trms =\ 7(28.0u) (1.66 x 10~ kg/u) SLim/s
. . . 2GM )
b) From classical physics we know the escape velocity vesc = & Using the mass and

radius of the earth we find vese = 1.12 x 10* m/s if the object starts at the surface. Neither
Hs nor Ny has vrms > Vesc; however, a very small percentage of molecules in the exponential
tail of the distribution may have speeds greater than ves. and will escape. Since Hz has a
larger vome, a larger fraction will eventually escape.

* 14. a) Use Equation (9.8) for the translational kinetic energy of one atom and multiply by Ava-
gadro’s number for one mole.

K=N4 (ng) = (6.022 x 10%) (% (1.381 x 1073 J/K) (273 K)) = 3406J

b) Since the translational kinetic energy depends only on temperature and one mole of any-
thing contains the same number of objects, the answer is the same for argon or oxygen.

15. a)
anC

8rC T(5/2)
\/§m3/2

o0
E:/0 EF(E)dE = e e

o0
/ E3? exp (-BE) dE =
0

Using '(5/2) = 30(3/2) = 3‘:’? and C = (3m/2r)*? we find
3/2 .
. 87 (Bm 3vm _ 3 _ 3T
V2m3/2 \ 27 4052 ~ 28 2

b) As we know from the text E = émv_2 and by Equation (9.17)

1
Low? = 261 = 1orkr
2 T

which is a bit less than %kT.
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* 16. Starting with the distribution

8rC
F(E) = NI E'Y2exp (-BE)
and setti E =0 et
setting —= =0, we g
0= % [El/2 exp(—BE)] = %E—I/Q exp (—BE) — BEV? exp (= BE)
-1/2 1/2 which solving . : . _AT
Thus 0= FE — 2BE"/* which solving for F gives the desired E* = -

* 17. The ratio of the numbers on the two levels is

na(E) _ Sexp (~BEx)
m(E) ~ 2exp(~BEL)

exp (=B (E2 - Ey)) = 2.5 x 1077

= dexp (-B(E2 — E1)) = 107°

Taking logarithms:

-FE
~B(Ey - Ey) = —E?kT L=n(2.5x1077) = -15.20
For atomic hydrogen E, — Ey = %Eo =10.20 V. Finally
- 2
T = _ E2 El _ 10.20 eV = 7790 K

k(-15.20)  (8.618 x 10-3 eV/K) (—15.20)

: 2
18. a) With £ = ‘)p_ and the mean energy E = %kT we obtain

&

h h h

p_ VemK  3mkT
b) We have A « d. Using A from part (a) and d = (V/N)l/3 we get

h ANA:
—— << —_
V3mkT <N)

If we cube both sides and rearrange.

N R 1
=<K
V (3mkT)3?
¢) For any ideal gas
6.022 x 10?3
22.4 x 10-3 m3

For argon gas (a monatomic gas) at room temperature

%’r_ = = 2.69 x 10%° m3

N h3 .
—_—— = (2.69x 10*® m™*
V (3mkT)¥? ( )

~ 3x 1077

(6.626 x 10-34 J . 5)°
(3 (40) (1.66 x 10~27 kg) (1.38 x 10~23 J/K) (293 K))*/?
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19.

20.
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so Maxwell-Boltzmann statistics are fine. However. for electrons in silver N/V = 5.86 x 10?®
-3
m~ and

(6.626 x 10734 J .5)°
(3(9.11 x 1031 kg) (1.38 x 10-23 J/K) (203 K))*/*

N
V (3mkT)3?

(5.86 x 102 m~3)
~ 1.5x10%

and in this case Maxwell-Boltzmann statistics fail.

F(v) dv = 47Cv” exp (—%ﬂmvz> dv = F(E)dE

With £ = %mv'2 we differentiate to get dE = mvdv or dv = % = —\/%. Then
F(E)dE 4 C2E E b 87C El? E) dE
(E) = 4m Fexp(—ﬂ )m— @ Wexp(—ﬁ )
_ 871'0 1/2
= WE exp (—ﬂE) dE

a) We will assume that the magnetic moment is due to spin alone. In general n(E) =
g(E)Fpp. There is no reason to prefer one spin state or the other, so the two g(E) are the
same. Thus the ratio of the numbers in the two spin states is governed by the Maxwell-
Boltzmann distribution:

n(Ey) _ Fup(Es) _ exp(-BEy)
n(E1)  Fup(E1) exp(—BEY)

=exp (B (E1 - Ep))

The energy of a magnetic moment f in a magnetic field Bis E = —fi- B. We know from
Chapter 7 that this works out to be

e = = e eh

Then E| = —ugB is the energy of an electron aligned with the field, and E = +ugB is the
energy of the spin opposed to the field. Therefore

—ugB — ugB —2ugB
=exp(ﬂ(E1—Ez))=exP(—“B o )”“‘”( T )

n(E2) (-QpBB) B -2(9.274 x 1072* J/T) (6 T) | _
=P =P ABmx 0B R R ) -

n(Ey) (_2p33> 3 -2(9.274 x 1072 J/T) (6 T) | _
= oXp =P a8 x 0B /K @i K | — 97
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At T =600 K

n(Ey) o <—2uBB> — exp (—2 (9.274 x 10=24 J/T) (6 T)) — o087

B kT (1.381 x 10-2 J/K) (600 K)

As the temperature is increased, the alignment of the spin with the magnetic field is less
probable.

21. Starting with Equation (9.30) and setting Frp = 0.5 when FE = Ef, we have

1
~ Byexp(BEr) +1

Solving for By, we find Byexp (BEr) +1 = 2, so Byexp(BEr) = 1 and By = exp (-BEFf).
Therefore in general

0.5

1 1 1
Feo = Biexp(BE) +1  exp(—BEr)exp(BE) +1 - exp(B(E - Ef)) +1

* 22, At first one may think it should be 0.5. but this is not quite true, due to the asymmetric
shape of the distribution. Starting with Equation (9.43) for g(E) and using the fact that
Frp = 1 in this range, we have

E 3 —-3/2 E 9 —3/2%5
N(E < Ef) = / 9(E)(1) dE = SNE; / E'*dE = NE;/*E3/?
V] 0

But recalling that E = %Ep, we see that
3\ 3/2
N(E<Ep)=N (;) =0.465N

23. a) From dimensional analysis

0.10787 kg

1,05 x 10% kg/m® 1 mol 6.022 x 102
’ mol

> =586 x 1028 m™3

b) For electrons an extra factor of 2 is required due to the Pauli principle:

N 24 3/2
S0 2/
2/3 5.86x10%% m~3 —34 7.2
r_ (Zr) R ( 2 ) (6626 107 1<) =528 x 10" K
2rmk 27 (9.109 x 10-3! kg) (1.381 x 1023 J/K)
c)

2 —9\2/3 — 2
. () re  (E0%E—) (6626x 107 1)

= =528x%x10° K
Sk 57 (0.100 x 10-7 kg) (1381 x 10-B 1/K) ~ > %
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* 20,

30.

31.

32.

33.

34.

SO

<l=

3
= 1.80x10¥ m™3

T <8mEF)3/2 7 8(9.109 x 1073 kg) (11.63 €V) (1.602 x 10-19 J/ev) |/
3\ A2 (6.626 x 10-34 J . 5)°

c) Dividing the conduction electron density by the number density we obtain almost exactly
3, from which we conclude that the valence number is three.

In general Ep = mu, so up = \/2Ef/m.
a)

2EF _ [2(3.93 eV) (1602 x 10-1 J/eV)
m 9.100 x 10-31 kg

_ [2Br _ [2(9.47 eV) (1602 x 10-19 J/eV) .
EV T T \/ 9.100 x 1031 kg = 1.83x 10" m/s

Beginning with Equation (9.34) consider the following cases as T" — 0:
E— FEr
kT
E - Ep
kT

E—-FEp 1
T —>OsonD—»§

In general n(E) = ¢(E)Frp. Using Equation (9.43) for ¢(F) and the result of Problem 21 for
Fyp. we can substitute to find

up = =1.18 x 10° m/s

E > EF: — 0050 Frp — 0

E < Ep:

— —00 so Fpp — 1

E = FEg:

3N __3p EY?
E)= —E
M= e BE - ¥
The graphs will resemble those of Figure 9.11 (b). The T = 0 line will match the dashed line

and the T = 300 K line will match the solid line. The T = 1500 K line will deviate a bit more
from the dashed line.

Numerical integration should yield accurate results with kT = 0.02586. However, in Mathcad,
for example. the upper limit cannot exceed 20 as the engine calculates e raised to the power
before taking the reciprocal and thus rejects the problem. But as you adjust the upper limit
above 10. the integral equals 1 within rounding error.

Ls(my [ B/ dE
S(7) /0 exp(E=7)/(0.02586)) + 1 ~ !

Setting up the numerical integration in Mathcad we have with £T = 0.02525 eV,
7 El/?
1.5 (7 -3/2/ dE = 0.203
(O . epWE =7/ 0025950 + 1

So we see that about one-fifth of the electrons are within 1 eV of the Fermi energy. which
makes sense given the shape of the distribution.
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35.

36.

* 37.

* 38.
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We can use the relationship (9.42)

2 2/3
g (3N
8m \ wi3

We use the neutron mass and from dimensional analysis

N 450 x 10%* kg 1 (neutron)
L3 47 (10 m)® 1.675x 10" kg

=6.41 x 104 m™3

Then

2/3

R 3N\ (6626 x107341-5)? /3 -
= (=) = . 2 (6.41 x 10* m~
Ex 8m <7TL3> 8(1.675 x 10—27 kg) (71’ ( X ™)
= 236 x 1071 J = 147 MeV

The close packing of the neutrons makes the Fermi energy large compared with Fermi energies
in normal matter.

The probability that a state will be occupied can be determined from the Fermi-Dirac factor.
With k7T = 0.02525eV:
a)

1
Frp = ! = =0.981 = 98.1%

exp [(E_fp)] +1 exp [éﬁgg—%] +1
b) When F = Ep, then Fp
c)

w}
]
[T
I
ot
o
IS¢

1 1
exp [%‘#} +1 exp [6.%%':)75] +1

Therefore a state with energy less than the Fermi energy is almost certainly occupied and
one above the Fermi energy has a very small probability of being occupied.

Frp =

=0.0187=19%

We assume that the collection of fermions behaves like an ideal gas. Using Maxwell-Boltzmann
statistics, we know that £ = %kT or BE = 3/2. We note that exp(BF) = exp(3/2) = 4.4817.
Now the MB factor is exp(—(FE) and we want this to be within 1% of the FD factor: Fpp =

E_IE . So we want
exp kTF +1

exp[B(E — Er)] +1=4.5265 or [B(E— Ep)=In(3.5265).

At room temperature ()~} = 2.525 x 10~2eV so the expression above can be solved to give
E — Ep = 3.2 x 1072eV. This small value is possible at room temperature.

a) To find N/V integrate n(E)dE over the whole range of energies:

N 1Y\ [ 8m  [* E?
v (E> /o n(E)dE = h3c® Jo  exp(E/KT) -1 &

From integral tables we have the following:

o In—l
/ - dz = m™"T'(n){(n)
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1
For us m = T ['(3) = 2! = 2, and from numerical tables ¢(3) ~ 1.20. Thus
/8« 3 8mk3T3
— = — (K y 1.2 = —_— (2.
V = a3 (KT)” (2) (1.20) B3 (2.40)

b) With T = 500 K:

E 8 k3T

V  h33

= 253x10% ;3

(2.40) = 8m(2.40) (

AY

(1.381 x 10-23 J/K) (500 K) :
(6.626 x 10=34 J . 5) (2.998 x 108 m/s)

At T = 5500 K:
L SUPP (1381 x 1072 J/K) (5500 K) )~
4 h3cd - (6.626 x 1034 J . 5) (2.998 x 108 m/s)

\

= 337x10¥ m3

39. Evaluating the following integral in Mathcad we find

oo 1/2
/ Y du=2315
o 1

ev —

40. Expressions for I; and Is are known from the Appendix.

o _dh 1\ _ 1
T 74 T \22?) 222

_ dI‘;) _ ﬁ 3 _5/?_ _ 3\/; _5/2
i da = 4 <—‘2)a T8 @
dIB ]. -3 -3
o R ) =
I da 2( . ) ¢

41.

exp(—fE) = exp (—ﬁ (% + mgz>> = exp (—Ei:) exp (—Bmgz)

A <

Absorbing the (assumed constant) first exponential factor into the normalization constant

C.,
f(2)dz = C, exp (- Bmgz) dz

To find C, we normalize:
o0 o0
/0 f(z)dz = C, /0 exp (—Bmgz) dz = C; (Bmyg)

Thus
1 _4T

C: = Bmg  mg
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43.

44,
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. For air we will us an average m = 29 u = 4.82 x 10726 kg and T = 273 K. In general

p(h) _ exp(-Bmgh)
p(0)  exp(—Bmg (0))

= exp (—Bmgh)

For Denver:

(4.82 x 10-% kg) (9.80 m/sg) (1610 m)
plh) = exp | g1 3 10-B I/K) (273 K) p(0) = 0.817p(0)

For Mt. Rainier:

(4.82 x 10726 kg) (9.80 rn/sz) (4390 m) N
plh) = eXp | ———{ 387X 10-2 J/K) (273 K) p(0) = 0:5775(0)

In equilibrium a fluid layer of density p, mass M, thickness h, and surface area A has a force
F, = P, A acting downward on its upper surface and a force F; = P, A acting upward on its
lower surface. The difference between these forces equals the weight of the fluid layer.

B Fi=(P-P)A=Mg=pgAh

With dP =~ AP = P, — P, and h = Az = dz, we have dP = —pgdz. With N particles of
mass m, the mass density is p = Nm/V. Putting these together:

dP = —pgdz = —% dz

From the ideal gas law, N/V = P/kT, so
mgP

dP = ———d=
kT
Applying separation of variables we can solve this differential equation for P as a function of
¥ 4p <
7= —T—Tg dz InP = _nlz_g‘z + constant = —fmgz + constant

P = (constant) exp (-Bmgz) = Py exp (—fmgz)

a)
dN _ nv  N7TA
i~ 47 4V
Rearranging this expression we find the following differential equation:
dN TA TA ~
- dt ==
N 1% InN v t 4+ constant
TA 74
N = tant -——1l} = ——
(constant) exp ( W ) Noexp ( 1 t)

Setti N_1, t=t find
emgm—§at‘, —I/Q,We n

|-
I
@
o
el
i
:l <l
o~ S
o~
—
~
(]
N—
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4
tijp=—1In2
127 34 .

b)
3 3
V- nD _ (0.4 m) — 0.0335 m”
6 6
_ wd® _ 7(0.001 m)?

A 1 7.85 x 1077 m?

) 4
4 [kT 4 [(1.381 x 10-2 J/K) (293 K)
T = —— _— = 26 3
YT VeV m T ar\ T 29(1.66 x 1077 kg) 4626 m/s
4V 4(0.0335 m?)
tiyp=—h2=— —
TA (462.6 m/s) (7.85 x 10~7 m?)

In2 =256 s

* 45, The number of molecules with speed v that hit the wall per unit time is proportional to v
and F'(v), so that the distribution W(v) of the escaping molecules is by proportion

W{v) ~ vF;(v) ~ v3exp (—%ﬁmzﬂ)

Let the normalization constant for W(v) be C’, so

’ o 1 2 Y 1 ﬁm -2
C/O v3exp (—§ﬁm‘u ) d‘U:l:C <§> (_2—>

or C' = (3?m?/2. The mean kinetic energy of the escaping molecules is

- 1 — . ‘ 1 2m? =3
E= §mv2 = %mC’/O v° exp (—§ﬁ7nv2> dv = a™m (ﬁ ;n ) (ﬂ—;n—> = 5= 2kT
- 4 A 3/2
46. From Example 9.9 we have v [2rmkT)=
a) Letting m be the electron mass and inserting a factor of 2 for the Pauli principle,
v = i3 [2rmkT)¥/

) | 0
= (6626 x“1(3334 TP [27 (9.109 x 10731 kg) (1.381 x 1072 J/K) (203 K)]*/°

= 2.42x10% m™3

This is quite a bit less than the density of conduction electrons in a metal (such as copper).
which indicates that Fermi-Dirac statistics should be used.

b)

<z

2 3/
= ;1—1:[271'ka]3/2

2 : p 2}
" (662 TN 5 [27 (116749 x 107 kg) (1.381 x 107 3/K) 203 K))*

= 1.91 x 100 3
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c¢) For He gas the Pauli principle does not apply, so

N
1%

A
o [2rmkT)*/?
= Gemx 1:)_34 L [2(4) (1.66 x 1072 kg) (1.381 x 107 I/K) (293 K)]*/?

7.54 x 1030 m~3

* 47. For the harmonic oscillator the position and velocity are

d .
z = x¢ cos(wt) =2 = —wzg sin{wt)

dt

V=_kz’= %kx% cos>(wt)

1 1 1
K= §m112 = amwgzg sin?(wt) = 51:2:% sin?(wt)

&

where we have used the fact that w?m = k. Over one cycle the average of the square of the
sine or cosine function is one-half. Also the total energy is £ = %kzg. Thus

48. The mass of gas molecules would differ slightly depending on the isotope of uranium. **UFg
would have a molecular mass of 235+ 6(19) = 349 while 2*®UFg would have a molecular mass
of 352. Find the rms velocity for each molecule.

JEL BB OBIK) CBK) 4y 100
frms = V 349 (16605 x 1027 kg) =1.447 x 10 m/s

/SkT (1.3807 x 10-23 J/K) (293 K) \
Yrms = \/ 352 (16605 X 10T kg) LMl x 107m/s

The difference is about 0.6 m/s which represents a 0.4 % change from one isotope to the other.

* 49. Rearranging equation (9.64)and with m = 4u we have

N 27 (2.315) 32

7 < Zhrpm
or (2.315)

(6.626 x 10-34J - 5)°

< 1.97x103%m3

IA

[2 (4) (1.6605 x 10~27 kg) (1.381 x 10~23 J/K) (293 K)]*/*

5
The number density of an ideal gas at STP is E - B 1.0135 x 10° Pa

V kT (1.381 x 10-23 J/K) (293K)

N
Therefore — = 2.50 x 102 m~>. As you would expect. the condensate has a number density

nearly one million times greater than the ideal gas.
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50. Rubidium with atomic number 37 has atomic number of 85.47. The stable isotope has atomic
mass of 84.911 u, so we will use 85 for the mass number. Then

[3ET  [3(1.3807 x 10-2 J/K) (20 x 10-°K) ,
= =2.42 x 1073 m /s
vrms =\ T \/ 85 (1.6605 x 10-27 kg) AZx 107 m/s

028

N
51. a) Beginning with Equation (9.65), and with jv =2.5x 108 m™3 we have

T > —
- 2mk (2% (2.315)) (V)

) —34 2 2/3
> ‘ (6.6..6 2”10 ]/K) 1 (2.5 1028 m_3)2/3
3(40) (1.6605 x 102 kg) (1381 x 10-2 J/K) \ 27) (2.315)

> 343 x 107'K =0.343K

b) The temperature found in a) is far below the freezing point of 84 K so no condensate is
possible.

52. Beginning with Equation (9.65), we have

2 2/3
T > I N
2mk \ 27V (2.315)

S (6.626 x 10-3¢ J/K)* 2000 3
= 2(87) (1.6605 x 1027 kg) (1.381 x 1023 J/K) \ 27 (1 x 10~15 m?3) (2.315)
> 293x 1078 K =29.3nK





