Chapter 4 Even Answers

- **2.** (a) (1.00i + 0.750j) m/s (b) (1.00i + 0.500j) m/s, 1.12 m/s
- **4.** (a) $(-5.00\omega \mathbf{i} + 0\mathbf{j})$ m/s, $(0\mathbf{i} + 5.00\omega^2\mathbf{j})$ m/s²
 - (b) $\mathbf{r} = (4.00 \text{ m})\mathbf{i} + (5.00 \text{ m})(-\mathbf{i} \sin \omega t \mathbf{j} \cos \omega t),$ $\mathbf{v} = (5.00 \text{ m})\omega(-\mathbf{i} \cos \omega t + \mathbf{j} \sin \omega t),$
 - $\mathbf{a} = (5.00 \text{ m})\omega^2 (\mathbf{i} \sin \omega t + \mathbf{j} \cos \omega t)$
 - (c) path is a circle of 5.00 m radius and centered at (0, 4.00) m
- **6.** (a) -12.0t j m/s, -12.0 j m/s² (b) (3.00i 6.00j) m, -12.0j m/s
- 8. (a) $\mathbf{r} = [5.00t\mathbf{i} + \frac{1}{2}(3.00t^2)\mathbf{j}] \text{ m}, \mathbf{v} = [5.00\mathbf{i} + (3.00t)\mathbf{j}] \text{ m/s}$
 - (b) (10.0 m, 6.00 m), 7.81 m/s
- **10.** (a) $v = d\sqrt{\frac{g}{2h}}$ horizontally (b) $\theta = \tan^{-1}\left(\frac{2h}{d}\right)$ below the horizontal
- 12. $48.6 \,\mathrm{m/s}$
- 14. $0.600 \,\mathrm{m/s^2}$
- **16.** (a) 22.6 m (b) 52.3 m (c) 1.18 s

18.
$$x_h = \frac{v_i^2 \sin \theta_i \cos \theta_i}{g}$$
, $R = \frac{v_i^2 \sin 2\theta_i}{g}$

- **20.** 18.7 m
- **22.** 9.91 m/s
- **24.** (a) 1.02×10^3 m/s (b) 2.72×10^{-3} m/s²
- **26.** 0.0337 m/s² directed toward center of the Earth
- **28.** 0.186 s^{-1}
- **30.** 7.58×10^3 m/s, 5.80×10^3 s (96.7 min)
- **32.** (a) 0.600 m/s^2 (b) 0.800 m/s^2 (c) 1.00 m/s^2 (d) 53.1° inward from path
- **34.** (a) $30.8 \text{ m/s}^2 \text{ down}$ (b) $70.4 \text{ m/s}^2 \text{ upward}$
- **36.** (a) 26.9 m/s (b) 67.3 m (c) $(2.00\mathbf{i} 5.00\mathbf{j}) \text{ m/s}^2$
- **38.** 18.0 s

40.
$$t_{\text{Alan}} = \frac{2L/c}{1 - v^2/c^2}$$
, $t_{\text{Beth}} = \frac{2L/c}{\sqrt{1 - v^2/c^2}}$, Beth returns first.

- **42.** (a) 10.1 m/s^2 at 14.3° south of vertical
 - (b) 9.80 m/s² vertically downward

44. (a)
$$2\sqrt{\frac{R}{3g}}$$
 (b) $\frac{1}{2}\sqrt{3gR}$ (c) $\sqrt{gR/3}$ (d) $\sqrt{\frac{13gR}{12}}$ (e) 33.7° (f) $\frac{13R}{24}$ (g) $\frac{13R}{12}$

46 54.4 m/s^2

48. (b)
$$A = -\frac{g}{2v_i^2}$$
 (c) 14.5 m/s

- **50.** (a) 1.69 km/s (b) 1.80 h
- **52.** 10.7 m/s
- **54.** (a) 26.6° (b) 0.949
- **56.** $\frac{\pi}{2}$
- **58.** 7.50 m/s in direction ball was thrown
- **60.** (a) $v_i > \sqrt{gR}$ (b) $(\sqrt{2} 1) R$
- **62.** (18.8, -17.3) m

2 Chapter 4 Even Answers

- **64.** 0.139 m/s
- **66.** (a) 22.9 m/s (b) 360 m from base of cliff (c) $(114\mathbf{i} 44.3\mathbf{j})\text{m/s}$
- **68.** (a) 5.14 s (b) $(-1.30\mathbf{i} + 4.68\mathbf{j})$ m/s where $+\mathbf{i}$ is eastward and $+\mathbf{j}$ is northward (c) 19.4 m
- **70.** Safe distances are less than 270 m or greater than 3.48×10^3 m from the eastern shore.