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Chapter 7 Solutions

*7.1 W = Fd = (5000 N)(3.00 km) = 15.0 MJ   

*7.2 The component of force along the direction of motion is

F cos θ = (35.0 N) cos 25.0° = 31.7 N

The work done by this force is

W = (F cos θ)d = (31.7 N)(50.0 m) = 1.59 × 103 J   

7.3 (a ) W = mgh = (3.35 × 10–5)(9.80)(100) J = 3.28 × 10–2 J   

(b) Since R = mg, Wair resistance = –3.28 × 10–2 J   

7.4 (a ) ΣFy = F sin θ + n – mg = 0

n = mg – F sin θ

ΣFx = F cos θ – µkn = 0

n = 
F cos θ
µk

  

∴ mg – F sin θ = 
F cos θ
µk

  

F = 
µkmg

µk sin θ + cos θ  

F = 
(0.500)(18.0)(9.80)

0.500 sin 20.0° + cos 20.0°   = 79.4 N   

(b) WF = Fd cos θ = (79.4 N)(20.0 m) cos 20.0° = 1.49 kJ   

(c) fk = F cos θ = 74.6 N

Wf = fk d cos θ = (74.6 N)(20.0 m) cos 180° = –1.49 kJ   

7.5 (a ) W = Fd cos θ = (16.0 N)(2.20 m) cos 25.0° = 31.9 J   

(b) and (c)    The normal force and the weight are both at 90° to the motion.  Both do 0   work.

(d) ∑W = 31.9 J + 0 + 0 = 31.9 J   

t = 20.0°= 20.0°

 mg

n

F

d = 20.0 m

18.0 kg18.0 kg18.0 kg
fR = µkn θ
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7.6 ∑Fy = may

n + (70.0 N) sin 20.0° – 147 N = 0

n = 123 N

fk = µkn = 0.300 (123 N) = 36.9 N

(a) W = Fd cos θ

= (70.0 N)(5.00 m) cos 20.0° = 329 J  

(b) W = Fd cos θ = (123 N)(5.00 m) cos 90.0° = 0 J  

(c) W = Fd cos θ = (147 N)(5.00 m) cos 90.0° = 0  

(d) W = Fd cos θ = (36.9 N)(5.00 m) cos 180° = –185 J  

(e) ∆K = Kf – Ki = ∑W = 329 J – 185 J = +144 J  

7.7 W = mg(∆y) = mg(l – l cos θ)

= (80.0 kg)(9.80 m/s2)(12.0 m)(1 – cos 60.0°) = 4.70 kJ   

60°60°
l

∆y∆y

7.8 A = 5.00; B = 9.00; θ = 50.0°

A · B = AB cos θ = (5.00)(9.00) cos 50.0° = 28.9   

7.9 A · B = AB cos θ = 7.00(4.00) cos (130° – 70.0°) = 14.0   

7.10 A · B = (Axi + Ay j + Azk) · (Bxi + By j + Bzk)

A · B = AxBx (i · i) + AxBy (i · j) + AxBz (i · k) +

AyBx (j · i) + AyBy (j · j) + AyBz (j  · k) +

AzBx (k · i) + AzBy (k · j) + AzBz (k · k)

70.0 N sin 20.0°

 mg = 147 N

n

fk 70.0 N cos 20.0°

d = 5.00 m

15.0 kg15.0 kg15.0 kg
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A · B = AxBx + AyBy + AzBz  
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7.11 (a ) W = F · d = Fxx + Fyy = (6.00)(3.00) N · m + (–2.00)(1.00) N · m = 16.0 J   

(b) θ = cos–1 
F · d
F d

   = cos–1 
16

[(6.00)2 + (–2.00)2][(3.00)2 + (1.00)2]
    = 36.9°   

7.12 A – B = (3.00i + j – k) – (–i + 2.00j + 5.00k)

A – B = 4.00i – j – 6.00k

C · (A – B) = (2.00j – 3.00k) · (4.00i – j – 6.00k)

 = 0 + (–2.00) + (+18.0) = 16.0   

7.13 (a ) A = 3.00i – 2.00j B = 4.00i – 4.00j

θ = cos–1 
A · B
A B

   = cos–1 
12.0 + 8.00

(13.0)(32.0)
    = 11.3°   

(b) B = 3.00i – 4.00j + 2.00k A = –2.00i + 4.00j

cos θ = 
A · B
A B

   = 
–6.00 – 16.0

(20.0)(29.0)
   

θ = 156°  

(c) A = i – 2.00j + 2.00k B = 3.00j + 4.00k

θ = cos–1 




A  · B

A B
   = cos–1 





– 6.00 + 8.00

9.00 · 25.0
   = 82.3°   

*7.14 We must first find the angle between the two vectors.  It is:

θ = 360° – 118° – 90.0° – 132° = 20.0°

Then

F ⋅ v = Fv cos θ = (32.8 N)(0.173 m/s) cos 20.0°

or

F ⋅ v = 5.33 
N ⋅ m

s   = 5.33 
J
s  = 5.33 W  

x

y

t

118°

132°

118°

132°

v = 17.3 cm/s

F = 32.8 N
θ
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7.15 W = ⌡⌠
i

f
   Fdx = area under curve from xi to xf

(a ) xi = 0 xf = 8.00 m

W = area of triangle ABC = 



1

2   AC × altitude,

W0→8 = 



1

2    × 8.00 m × 6.00 N = 24.0 J   

(b) xi = 8.00 m xf = 10.0 m

W = area of ∆CDE = 



1

2   CE × altitude,

W8→10 =  
1
2    × (2.00 m) × (–3 .00 N) = –3.00 J   

(c) W0→10 = W0→8 + W8→10 = 24.0 + (–3.00) = 21.0 J   

*7.16 Fx = (8x – 16) N

(a)

20

10

0

−10

−20

321 4321 4
x (m)

Fx (N)

(3, 8)(3, 8)

(b) Wnet = 
–(2.00 m)(16.0 N)

2    + 
(1.00 m)(8.00 N)

2    = –12.0 J   

7.17 W = ∫ Fx dx and

W equals the area under the Force-Displacement Curve

(a) For the region 0 ≤ x ≤ 5.00 m,

W = 
(3.00 N)(5.00 m)

2    = 7.50 J   

(b) For the region 5.00 ≤ x ≤ 10.0,

W = (3.00 N)(5.00 m) = 15.0 J   

4

2

0

B

C E

D

−2

−4

6

642 8 10 12642 8 10 12
x (m)

Fx (N)

AA

B

C E

D

2

1

0

3

6420 8 10 12
x (m)

14 16

Fx (N)
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(c) For the region 10.0 ≤ x ≤ 15.0,

W = 
(3.00 N)(5.00 m)

2    = 7.50 J   

(d) For the region 0 ≤ x ≤ 15.0

W = (7.50 + 7.50 + 15.0) J = 30.0 J   

7.18 W = ⌡⌠
i

f
   F · ds = ⌡⌠

0

5 m
 (4xi + 3yj)  N · dxi

⌡⌠
0

5 m
 (4 N/m) x dx + 0  = (4 N/m)x2/2 

 5 m

0
  = 50.0 J  

*7.19 k = 
F
y

   = 
Mg
y

   = 
(4.00)(9.80) N
2.50 × 10–2 m    = 1.57 × 103 N/m

(a) For 1.50 kg mass   y = 
mg
k

   = 
(1.50)(9.80)
1.57 × 103    = 0.938 cm   

(b) Work = 
1
2   ky2

Work = 
1
2 (1.57 × 103 N · m)(4.00 × 10–2 m) 2 = 1.25 J   

7.20 (a ) Spring constant is given by F = kx

k = 
F
x

   = 
(230 N)

(0.400 m)   = 575 N/m   

(b) Work = Favg x = 
1
2 (230 N)(0.400 m)   = 46.0 J   

7.21 Compare an initial picture of the rolling car with a final picture with both springs compressed

Ki + ∑W = Kf

1500

1000

500

0
0 20 4010 30 50

d (cm)

F (N)
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Use equation 7.11.

Ki + 
1
2  k1 (x2

1i  – x2
1f ) + 

1
2  k2 (x 2

2i  – x2
2f ) = Kf

1
2  mv

2
i   + 0 – 

1
2 (1600 N/m)(0.500 m) 2 + 0 – 

1
2 (3400 N/m)(0.200 m) 2 = 0

1
2 (6000 kg) v2

i   – 200 J – 68.0 J = 0

vi = 2 × 268 J/6000 kg  = 0.299 m/s  

7.22 (a ) W = ⌡⌠
i

f
   F · ds

W = ⌡⌠
0

0.600 m
 (15000 N + 10000 x N/m – 25000 x2 N/m2) dx cos 0°

W = 15,000x + 
10,000x2

2   – 
25,000x3

3  

 0.600

0
 

W = 9.00 kJ + 1.80 kJ – 1.80 kJ = 9.00 kJ   

(b) Similarly,

W = (15.0 kN)(1.00 m) + 
(10.0 kN/m)(1.00 m)2

2     –  
 (25.0 kN/m2)(1.00 m)3

3   

W = 11.7 kJ   , larger by 29.6%

7.23  4.00 J = 
1
2   k(0.100 m)2

∴  k = 800 N/m

and to stretch the spring to 0.200 m requires

∆W = 
1
2 (800)(0.200) 2 – 4.00 J = 12.0 J   

Goal Solution    
G: We know that the force required to stretch a spring is proportional to the distance the spring

is stretched, and since the work required is proportional to the force and to the distance, then
W ∝  x2.  This means if the extension of the spring is doubled, the work will increase by a
factor of 4, so that for x = 20 cm, W = 16 J, requiring 12 J of additional work.

O: Let’s confirm our answer using Hooke’s law and the definition of work.
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A: The linear spring force relation is given by Hooke’s law:  Fs = –kx

Integrating with respect to x, we find the work done by the spring is:

Ws = ⌡⌠
xx

xy
 Fs dx  = ⌡⌠

xx

xy
 (–kx)dx  = – 

1
2  k (x2

f   – x2
i  )

However, we want the work done on the spring, which is W = –Ws = 
1
2  k(x2

f   – x2
i  )

We know the work for the first 10 cm, so we can find the force constant:

k = 
2W0–10

x
2
0–10

  = 
2(4.00 J)

(0.100 m)2  = 800 N/m

Substituting for k, xi and xf, the extra work for the next step of extension is

W = 



1

2  (800 N/m)  [(0.200 m)2 – (0.100 m)2] = 12.0 J

L: Our calculated answer agrees with our prediction.  It is helpful to remember that the force
required to stretch a spring is proportional to the distance the spring is extended, but the work
is proportional to the square of the extension.

7.24 W = 
1
2   kd 2

∴  k = 
2W
d 2   

∆W = 
1
2  k(2d)2 – 

1
2  kd2

∆W = 
3
2  kd2 = 3W  

7.25 (a ) The radius to the mass makes angle θ
with the horizontal, so its weight
makes angle θ with the negative side of
the x-axis, when we take the x-axis in
the direction of motion tangent to the
cylinder.

∑Fx = max

F – mg cos θ = 0

F = mg cos θ  

x

mg

n
F

RR

t

t

θ

θ
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(b) W = ⌡⌠
i

f
 F ⋅ ds 

We use radian measure to express the next bit of displacement as ds = r dθ in terms of the
next bit of angle moved through:

W = ⌡⌠
0

π/2
 mg cos θ Rdθ  = mgR sin θ 


 π/2

0
 

W = mgR (1 – 0) = mgR  

*7.26 [k] = 



F

x
  = 

N
m  = 

kg ⋅ m/s2

m   = 
kg
s2  

7.27 (a ) KA = 
1
2 (0.600 kg)(2.00 m/s) 2 = 1.20 J   

(b)
1
2   mv

2
B   = KB

vB = 
2KB

m
    = 

(2)(7.50)
0.600     = 5.00 m/s   

(c) ∑W = ∆K = KB – KA = 
1
2  m(v2

B   – v2
A  )

= 7.50 J – 1.20 J = 6.30 J   

*7.28 (a ) K = 
1
2  mv2 =  

1
2 (0.300 kg)(15 .0 m/s) 2 = 33.8 J   

(b) K = 
1
2 (0.300)(30.0) 2 = 

1
2 (0.300)(15.0) 2 (4) = 4(33.8) = 135 J   

7.29 vi = (6.00i – 2.00j) m/s

(a) vi = v
2

i x + v 2
iy   = 40.0   m/s

Ki = 
1
2  mv

2
i    = 

1
2 (3.00 kg)(40.0 m2/s2)   = 60.0 J   

(b) v = 8.00i + 4.00j

v2 = v · v = 64.0 + 16.0 = 80.0 m2/s2

∆K = K – Ki = 
1
2   m(v2 – v2

i   ) = 
3.00

2  (80.0)   – 60.0 = 60.0 J   
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7.30 (a ) ∆K = ∑W

1
2 (2500 kg) v2 = 5000 J

v = 2.00 m/s  

(b) W = F · d

5000 J = F(25.0 m)

F = 200 N  

7.31 (a ) ∆K = 
1
2  mv2 – 0 = ∑W, so

v2 = 2W/m     and     v = 2W/m  

(b) W = F ⋅ d = Fxd ⇒  Fx = W/d  

7.32 (a ) ∆K = Kf – Ki = 
1
2  mv

2
f   – 0 = ∑W = (area under curve from x = 0 to x = 5.00 m)

vf = 
2(area)

m
  = 

2(7.50 J)
4.00 kg   = 1.94 m/s  

(b) ∆K = Kf – Ki = 
1
2  mv

2
f   – 0 = ∑W = (area under curve from x = 0 to x = 10.0 m)

vf = 
2(area)

m
  = 

2(22.5 J)
4.00 kg   = 3.35 m/s  

(c) ∆K = Kf – Ki = 
1
2  mv

2
f   – 0 = ∑W = (area under curve from x = 0 to x = 15.0 m)

vf = 
2(area)

m
  = 

2(30.0 J)
4.00 kg   = 3.87 m/s  

*7.33 ∑Fy = may

n – 392 N = 0 n = 392 N

fk = µkn = 0.300(392 N) = 118 N

(a) WF = Fd cos θ = (130)(5.00) cos 0° = 650 J  

(b) Wfk = fk d cos θ = (118)(5.00) cos 180° = –588 J  
 mg = 392 N

n

fk F = 130 N

d = 5.00 m

40.0 kg40.0 kg40.0 kg



Chapter 7 Solutions 11

© 2000 by Harcourt College Publishers.  All rights reserved.

(c) Wn = nd cos θ = (392)(5.00) cos 90° = 0  

(d) Wg = mg cos θ = (392)(5.00) cos (–90°) = 0  

(e) ∆K = Kf – Ki = ∑W

1
2  mv

2
f   – 0 = 650 J – 588 J + 0 + 0 = 62.0 J  

( f ) vf = 
2Kf

m
  = 

2(62.0 J)
40.0 kg   = 1.76 m/s  

7.34 (a ) Ki + ∑W = Kf = 
1
2   mv

2
f   

0 + ∑W = 
1
2 (15.0 × 10–3 kg)(780 m/s) 2 = 4.56 kJ   

(b) F = 
W

d cos θ   = 
4.56 × 103 J

(0.720 m) cos 0°   = 6.34 kN   

(c) a = 
v

2
f  – v2

i

2x
   = 

(780 m/s)2 – 0
2(0.720 m)    = 422 km/s2   

(d) ∑F = ma = (15 × 10–3 kg)(422 × 103 m/s2) = 6.34 kN   

7.35 (a ) Wg = mgl cos (90.0° + θ) = (10.0 kg)(9.80 m/s2)(5.00 m) cos 110° = – 168 J   

(b) fk = µkn = µkmg cos θ

Wf = – lfk = lµkmg cos θ cos 180°

Wf = – (5.00 m)(0.400)(10.0)(9.80) cos 20.0° = – 184 J   

(c) WF = Fl = (100)(5.00) = 500 J   

(d) ∆K =  ∑W = WF + Wf + Wg = 148 J   

(e) ∆K = 
1
2  mv

2
f
  – 

1
2  mv

2
i  

vf = 
2(∆K)

m
 + v2

i     = 
2(148)
10.0  + (1.50)2     = 5.65 m/s   

t

F = 100 N

vi

ll

θ
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7.36 ∑W = ∆K = 0

⌡⌠
0

L
   mg sin 35.0° dl – ⌡⌠

0

d
   kx dx = 0

mg sin 35.0° (L) = 
1
2  kd2

d = 
2 mg sin 35.0°(L)

k
    

= 
2(12.0 kg)(9.80 m/s2) sin 35.0° (3.00 m)

3.00 × 104 N/m      = 0.116 m   

7.37 vi = 2.00 m/s µk = 0.100

∑W = ∆K

– fk x = 0 – 
1
2  mv

2
i   

– µkmgx = – 
1
2  mv

2
i   

x = 
v

2
i

2µk g
   = 

(2.00 m/s)2

2(0.100)(9.80)   = 2.04 m   

Goal Solution    
G: Since the sled’s initial speed of 2 m/s (~ 4 mph) is reasonable for a moderate kick, we might

expect the sled to travel several meters before coming to rest.

O: We could solve this problem using Newton’s second law, but we are asked to use the work-
kinetic energy theorem: W = Kf – Ki,  where the only work done on the sled after the kick
results from the friction between the sled and ice.  (The weight and normal force both act at
90° to the motion, and therefore do no work on the sled.)

A: The work due to friction is W = –fk d where fk = µkmg.

Since the final kinetic energy is zero, W = ∆K = 0 – Ki = – 
1
2  mv

2
i  

Solving for the distance d = 
mv

2
i

2µk mg
  = 

v
2
i

2µk g
  = 

(2.00 m)2

2(0.100)(9.80 m/s2)  = 2.04 m

L: The distance agrees with the prediction. It is interesting that the distance does not depend on
the mass and is proportional to the square of the initial velocity.  This means that a small car
and a massive truck should be able to stop within the same distance if they both skid to a stop
from the same initial speed.  Also, doubling the speed requires 4 times as much stopping
distance, which is consistent with advice given by transportation safety officers who suggest
at least a 2 second gap between vehicles (as opposed to a fixed distance of 100 feet).



Chapter 7 Solutions 13

© 2000 by Harcourt College Publishers.  All rights reserved.

7.38 (a ) vf = 0.01c = 10–2(3.00 × 108 m/s) = 3.00 × 106 m/s

Kf = 
1
2   mv

2
f   = 

1
2 (9.11 × 10–31 kg)(3.00 × 106 m/s) 2 = 4.10 × 10–18 J   

(b) Ki + Fd cos θ = Kf

0 + F(0.360 m) cos 0° = 4.10 × 10–18 N · m

F = 1.14 × 10–17 N   

(c) a = 
∑F
m

   = 
1.14 × 10–17 N
9.11 × 10–31 kg   = 1.25 × 1013 m/s2   

(d) xf – xi = 
1
2 (vi+ vf) t

t = 
2(xf – xi)
(vi + vf)

   = 
2(0.360 m)

(3.00 × 106 m/s)   = 2.40 × 10–7 s   

7.39 (a ) ∑W = ∆K ⇒  fd cos θ = 
1
2  mv

2
f   – 

1
2  mv

2
i  

f(4.00 × 10–2 m) cos 180° = 0 – 
1
2 (5.00 × 10–3 kg)(600 m/s) 2

f = 2.25 × 104 N  

(b) t = 
d

v
–  = 

4.00 × 10–2 m
[0 + 600 m/s]/2  = 1.33 × 10–4 s  

7.40 ∑W = ∆K

m1gh – m2gh = 
1
2 (m1 + m2)  v2

f   – 0

v
2
f   = 

2(m1 – m2)gh
m1 + m2

  = 
2(0.300 – 0.200)(9.80)(0.400)

0.300 + 0.200  
m2

s2  

vf = 1.57  m/s = 1.25 m/s  

7.41 (a ) Ws = 
1
2  kx

2
i   – 

1
2  kx

2
f   = 

1
2 (500)(5.00 × 10–2) 2 – 0 = 0.625 J

∑W = 
1
2  mv

2
f   – 

1
2  mv

2
i   = 

1
2  mv

2
f   – 0

so vf = 
2(∑W)

m
  = 

2(0.625)
2.00   m/s = 0.791 m/s  
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(b) ∑W = Ws + Wf = 0.625 J + (–µkmgd)

= 0.625 J – (0.350)(2.00)(9.80)(5.00 × 10–2) J = 0.282 J

vf = 
2(∑W)

m
  = 

2(0.282)
2.00   m/s = 0.531 m/s  

*7.42 A 1300-kg car speeds up from rest to 55.0 mi/h = 24.6 m/s in 15.0 s.  The output work of the engine
becomes its final kinetic energy,

1
2 (1300 kg)(24.6 m/s) 2 = 390 kJ

with power 
390000 J

15.0 s  ~ 104 W   , around 30 horsepower.

7.43 Power = 
W
t

   = 
mgh

t
   = 

(700 N)(10.0 m)
8.00 s    = 875 W   

7.44 Efficiency = e = useful energy output/total energy input.  The force required to lift n bundles of
shingles is their weight, nmg.

e = 
n mgh cos 0°

Pt
  

n = 
eP t
mgh

   = 
(0.700)(746 W)(7200 s)

(70.0 kg)(9.80 m/s2)(8.00 m)   × 
kg · m2

s3 · W    = 685 bundles   

7.45 Pa = fa v ⇒  fa = 
Pa

v
   = 

2.24 × 104

27.0    = 830 N   

*7.46 (a ) ∑W = ∆K, but ∆K = 0 because he moves at constant speed.  The skier rises
a vertical distance of (60.0 m) sin 30.0° = 30.0 m.  Thus,

Win = –Wg = (70.0 kg)g(30.0 m) = 2.06 × 104 J    = 20.6 kJ  

(b) The time to travel 60.0 m at a constant speed of 2.00 m/s is 30.0 s.  Thus,

Pinput = 
W
∆ t

   = 
2.06 × 104 J

30.0 s    = 686 W    = 0.919 hp
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7.47 (a ) The distance moved upward in the first 3.00 s is

∆y = –v  t = 




0 + 1.75 m/s

2  (3.00 s)   = 2.63 m

W = 
1
2   mv

2
f    – 12   mv

2
i    + mgyf – mgyi = 

1
2   mv

2
f    – 12   mv

2
i    + mg(∆y)

W = 
1
2 (650 kg)(1.75 m/s) 2 – 0 + (650 kg)g(2.63 m) = 1.77 × 104 J

Also, W = 
–
P  t

so
–
P   = 

W
t

   = 
1.77 × 104 J

3.00 s    = 5.91 × 103 W   = 7.92 hp

(b) When moving upward at constant speed (v = 1.75 m/s), the applied force equals the
weight = (650 kg)(9.80 m/s2) = 6.37 × 103 N.

Therefore, P = Fv = (6.37 × 103 N)(1.75 m/s) = 1.11 × 104 W   = 14.9 hp

*7.48 energy = power × time

For the 28.0 W bulb:

Energy used = (28.0 W)(1.00 × 104 h) = 280 kilowatt ⋅ hrs

total cost = $17.00 + (280 kWh)($0.080/kWh) = $39.40

For the 100 W bulb:

Energy used = (100 W)(1.00 × 104 h) = 1.00 × 103 kilowatt ⋅ hrs

# bulb used = 
1.00 × 104 h
750 h/bulb   = 13.3

total cost = 13.3($0.420) + (1.00 × 103 kWh)($0.080/kWh) = $85.60

Savings with energy-efficient bulb = $85.60 – $39.40 = $46.2  
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7.49 (a ) fuel needed = 

1
2
 mv

2
f  – 1

2
 mv

2
i

useful energy per gallon  = 

1
2
 mv

2
f  – 0

eff. × (energy content of fuel) 

= 

1
2
 (900 kg)(24.6 m/s)2

(0.150)(1.34 × 108 J/gal)  = 1.35 × 10–2 gal  

(b) 73.8  

(c) power = 




1 gal

38.0 mi  




55.0 mi

1.00 h  




1.00 h

3600 s  




1.34 × 108 J

1 gal  (0.150)  = 8.08 kW  

7.50 At a speed of 26.8 m/s (60.0 mph), the car described in Table 7.2 delivers a power of
P1 = 18.3 kW to the wheels.  If an additional load of 350 kg is added to the car, a larger output
power of

P2 = P1 + (power input to move 350 kg at speed v)

will be required.  The additional power output needed to move 350 kg at speed v is:

∆Pout = (∆f)v = (µrmg)v

Assuming a coefficient of rolling friction of µr = 0.0160, the power output now needed from the
engine is

P2 = P1 + (0.0160)(350 kg)(9.80 m/s2)(26.8 m/s) = 18.3 kW + 1.47 kW

With the assumption of constant efficiency of the engine, the input power must increase by the
same factor as the output power.  Thus, the fuel economy must decrease by this factor:

(fuel economy)2 = 




P1

P2
 (fuel economy) 1 = 





18.3

18.3 + 1.47  




6.40 

km
L  

or (fuel economy)2 = 5.92 
km
L  
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7.51 When the car of Table 7.2 is traveling at 26.8 m/s (60.0 mph), the engine delivers a power of
P1 = 18.3 kW to the wheels.  When the air conditioner is turned on, an additional output power
of ∆P = 1.54 kW is needed.  The total power output now required is

P2 = P1 + ∆P = 18.3 kW + 1.54 kW

Assuming a constant efficiency of the engine, the fuel economy must decrease by the same factor
as the power output increases.  The expected fuel economy with the air conditioner on is
therefore

(fuel economy)2 = 




P1

P2
 (fuel economy) 1 = 





18.3

18.3 + 1.54  




6.40 

km
L  

or (fuel economy)2 = 5.90 
km
L  

7.52 (a ) K = 




1

1 – (v/c)2
 – 1   mc2 = 





1

1 – (0.995)2
 – 1  (9.11 × 10–31)(2.998 × 108) 2

K = 7.38 × 10–13 J  

(b) Classically,

K = 
1
2  mv2 = 

1
2 (9.11 × 10–31 kg)  [(0.995)(2.998 × 108 m/s)]2 = 4.05 × 10–14 J

This differs from the relativistic result by

% error = 




7.38 × 10–13 J – 4.05 × 10–14 J

7.38 × 10–13 J   100% = 94.5%  

7.53 ∑W = Kf – Ki = 




1

1 – (vf/c)2
 – 1   mc2 – 





1

1 – (vi/c)2
 – 1   mc2

or ∑W = 




1

1 – (vf/c)2
 – 

1

1 – (vi/c)2
  mc2

(a ) ∑W = 




1

1 – (0.750)2
 – 

1

1 – (0.500)2
 (1.673 × 10–27 kg)(2.998 × 108 m/s) 2

∑W = 5.37 × 10–11 J  

(b) ∑W = 




1

1 – (0.995)2
 – 

1

1 – (0.500)2
 (1.673 × 10–27 kg)(2.998 × 108 m/s) 2

∑W = 1.33 × 10–9 J  
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Goal Solution    
G: Since particle accelerators have typical maximum energies on the order of GeV (1eV =

1.60 × 10–19 J), we could expect the work required to be ~10–10 J.

O: The work-energy theorem is W = Kf – Ki   which for relativistic speeds (v ~ c) is:

W = 






1

1 – v2
f/c2

  mc2 – 






1

1 – v2
i/c2

  mc2

A:  (a)  W = 




1

1 – (0.750)2
 – 1  (1.67 × 10–27 kg)(3.00 × 108 m/s) 2

– 




1

1 – (0.500)2
 – 1  (1.50 × 10–10 J) 

W = (0.512 – 0.155)(1.50  10–10 J) = 5.37  10–11 J    ◊

(b) E = 




1

1 – (0.995)2
 – 1  (1.50 × 10–10 J)  – (1.155 – 1)(1.50 × 10–10 J)

W = (9.01 – 0.155)(1.50  10-10 J) = 1.33  10-9 J    ◊

L: Even though these energies may seem like small numbers, we must remember that the proton
has very small mass, so these input energies are comparable to the rest mass energy of the
proton (938 MeV = 1.50 × 10–10 J).  To produce a speed higher by 33%, the answer to part (b) is
25 times larger than the answer to part (a).  Even with arbitrarily large accelerating
energies, the particle will never reach or exceed the speed of light.  This is a consequence of
special relativity, which will be examined more closely in a later chapter.

*7.54 (a ) Using the classical equation,

K = 
1
2  mv2 = 

1
2 (78.0 kg)(1.06 × 105 m/s) 2 = 4.38 × 1011 J  

(b) Using the relativistic equation,

K = 




1

1 – (v/c)2
 – 1   mc2

= 




1

1 – (1.06 × 105/2.998 × 108)2
 – 1  (78.0 kg)(2.998 × 108 m/s) 2

K = 4.38 × 1011 J  
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When (v/c) << 1, the binomial series expansion gives

[1 – (v/c)2]–1/2 ≈ 1 + 
1
2 (v/c) 2

Thus, [1 – (v/c)2]–1/2 – 1 ≈ (v/c)2

and the relativistic expression for kinetic energy becomes K ≈ 
1
2 (v/c) 2 mc2 = 

1
2  mv2.  That

is, in the limit of speeds much smaller than the speed of light, the relativistic and
classical expressions yield the same results.

*7.55 At start, v = (40.0 m/s) cos 30.0°i + (40.0 m/s) sin 30.0°j

At apex, v = (40.0 m/s) cos 30.0°i + 0j = 34.6i m/s

and K = 
1
2  mv2 = 

1
2 (0.150 kg)(34.6 m/s) 2 = 90.0 J   

*7.56 Concentration of Energy output = (0.600 J/kg · step)(60.0 kg) 




1 step

1.50 m    = 24.0 
J
m  

F = 




24.0 

J
m  





1 

N · m
J    = 24.0 N

P = Fv

70.0 W = (24.0 N)v

v = 2.92 m/s   

7.57 The work-kinetic energy theorem is

Ki + ∑W = Kf

The total work is equal to the work by the constant total force:

1
2  mv

2
i    + (ΣF) · (r – ri) = 

1
2  mv

2
f  

1
2  mv

2
i    + ma · (r – ri) = 

1
2  mv

2
f  

v
2
i  + 2a · (r – ri) = v2

f   
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7.58 (a ) A ⋅ i = (A)(1) cos α.  But also, A ⋅ i = Ax.

Thus, (A)(1) cos α = Ax or cos α  = 
Ax

A
 

Similarly, cos β = 
Ay

A
 

and cos γ = 
Az

A
 

where A = A
2
x + A2

y + A2
z  

(b) cos2 α + cos2 β + cos2 γ = 



Ax

A
 
2
 + 



Ay

A
 
2
 + 



Az

A
 
2
 = 

A2

A2  = 1

7.59 (a ) x = t + 2.00t3

therefore,

v = 
dx
d t

   = 1 + 6.00t2

K = 
1
2  mv2 = 

1
2 (4.00)(1 + 6.00t2)  2 = (2 .00  + 24.0t2 + 72.0t4) J   

(b) a = 
dv
d t

   = (12.0t) m/s2   

F = ma = 4.00(12.0t) = (48.0t) N   

(c) P = Fv = (48.0t)(1 + 6.00t2) = (48.0t + 288t3) W   

(d) W = ⌡⌠
0

2.00
   P dt = ⌡⌠

0

2.00
 (48.0t + 288t3) dt = 1250 J   

*7.60 (a ) The work done by the traveler is mghsN where N is the number of steps he climbs during
the ride.

N = (time on escalator)(n)

where (time on escalator) = 
h

vertical velocity of person  , and

vertical velocity of person = v + nhs
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Then, N = 
n h

v + nhs
  and the work done by the person becomes

Wperson = 
mgnhhs

v + nhs
 

(b) The work done by the escalator is

We = (power)(time) = [(force exerted)(speed)](time) = mgvt

where t = 
h

v + nhs
  as above.  Thus,

We = 
mgvh

v + nhs
 

As a check, the total work done on the person’s body must add up to mgh, the work an
elevator would do in lifting him.  It does add up as follows:

∑W = Wperson + We = 
mgnhhs

v + nhs
  + 

mgvh
v + nhs

  = 
mgh(nhs + v)

v + nhs
  = mgh

7.61 W = ⌡⌠
xi

xf
   F dx = ⌡⌠

0

xf
 (– kx + βx3) dx

W = 
–kx2

2   + 
βx4

4  
 xf

0
  = 

–kx
2
f

2   + 
βx

4
f

4  

W = 
(–10.0 N/m)(0.100 m)2

2    + 
(100 N/m3)(0.100 m)4

4   

W = – 5.00 × 10–2 J + 2.50 × 10–3 J = – 4.75 × 10–2 J   

*7.62 ∑Fx = max ⇒  kx = ma

k = 
ma
x

  = 
(4.70 × 10–3 kg)0.800(9.80 m/s2)

0.500 × 10–2 m   = 7.37 N/m  

mmm

a

n

Fs

mg

mmm
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7.63 Consider the work done on the pile driver from the time it starts from rest until it comes to rest
at the end of the fall.

∑W = ∆K ⇒  Wgravity + Wbeam = 
1
2  mv

2
f   – 

1
2  mv

2
i  

so (mg)(h + d) cos 0° + (F
–

 )(d) cos 180° = 0 – 0

Thus, F
–

  = 
(mg)(h + d)

d
  = 

(2100 kg)(9.80 m/s2)(5.12 m)
0.120 m   = 8.78 × 105 N  

Goal Solution    
G: Anyone who has hit their thumb with a hammer knows that the resulting force is greater

than just the weight of the hammer, so we should also expect the force of the pile driver to be
greater than its weight:  F > mg ~20 kN.  The force on the pile driver will be directed
upwards.

O: The average force stopping the driver can be found from the work that results from the
gravitational force starting its motion.  The initial and final kinetic energies are zero.

A: Choose the initial point when the mass is elevated and the final point when it comes to rest
again 5.12 m below.  Two forces do work on the pile driver: gravity and the normal force
exerted by the beam on the pile driver.

Wnet = Kf  – Ki    so that    mgsw cos 0 +nsn cos 180 = 0

where m = 2 100 kg,  sw = 5.12 m, and sn = 0.120 m.

In this situation, the weight vector is in the direction of motion and the beam exerts a force on
the pile driver opposite the direction of motion.

(2100 kg) (9.80 m/s2) (5.12 m) – n (0.120 m) = 0

Solve for n. n = 
1.05 × 105 J

0.120 m   = 878 kN (upwards)  ◊

L: The normal force is larger than 20 kN as we expected, and is actually about 43 times greater
than the weight of the pile driver, which is why this machine is so effective.
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Additional Calculation:
Show that the work done by gravity on an object can be represented by mgh, where h is the
vertical height that the object falls.  Apply your results to the problem above.

By the figure, where d is the path of the object, and h is the height that the object falls,

hdy
d θ

h = |dy| = d cos θ

Since F = mg, mgh = Fd cos θ = F·d

In this problem, mgh = n(dn), or  (2100 kg)(9.80 m/s2)(5.12 m) = n(0.120 m) and n = 878 kN

7.64 Let b represent the proportionality constant of air drag fa to speed:  fa    = bv

Let fr represent the other frictional forces.

Take x-axis along each roadway.

For the gentle hill ∑Fx = max

– bv – fr + mg sin 2.00° = 0

– b(4.00 m/s) – fr + 25.7 N = 0

For the steeper hill

–b(8.00 m/s) – fr + 51.3 N = 0

Subtracting,

b(4.00 m/s) = 25.6 N

b = 6.40 N · s/m

and then fr = 0.0313 N.

Now at 3.00 m/s the vehicle must pull her with force

bv + fr = (6.40 N · s/m)(3.00 m/s) + 0.0313 N = 19.2 N

and with power

P = F · v = 19.2 N(3.00 m/s) cos 0° = 57.7 W   
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7.65 (a ) P = Fv = F(vi + at) = F 




0 + 

F
m

 t   = 




F2

m
 t  

(b) P = 




(20.0 N)2

5.00 kg  (3.00 s)  = 240 W  

7.66 (a ) The new length of each spring is  x2 + L2 , so

its extension is x2 + L2  – L  and the force it

exerts is k ( x2 + L2   – L) toward its fixed
end.  The y components of the two spring
forces add to zero.   Their x components add to

F = –2ik ( x2 + L2   – L)x/ x2 + L2 

F = –2kxi (1 – L/ x2 + L2)  

(b) W = ⌡⌠
i

f
  Fx dx

W = ⌡⌠
A

0
  –2kx (1 – L/ x2 + L2 )dx

W = –2k ⌡⌠
A

0
  x dx + kL ⌡⌠

A

0
 (x2 + L2) –1/2 2x dx

W = –2k 
x2

2  

 0

A
 + kL 

(x2 + L2)1/2

(1/2)  

 0

A
 

W = –0 + kA2 + 2kL2 – 2kL A2 + L2 

W = 2kL2 + kA2  – 2k L A2 + L2  

7.67 (a ) F1 = (25.0 N)(cos 35.0° i + sin 35.0° j) = (20.5i + 14.3j) N  

F2 = (42.0 N)(cos 150° i + sin 150° j) = (–36.4 i + 21.0 j) N  

(b) ∑F = F1 + F2 = (–15.9i + 35.3j) N  

(c) a = 
∑F
m

  = (–3.18i + 7.07j) m/s2  

(d) v = vi + at = (4.00i + 2.50j) m/s + (–3.18i + 7.07j)(m/s2)(3.00 s)

v = (–5.54i + 23.7j) m/s  

L

(top view)

L

A x

k

k

mmm
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(e) r = ri + vit + 
1
2  at2

r = 0 + (4.00i + 2.50j)(m/s)(3.00 s) + 
1
2 (–3.18i + 7.07j)(m/s2)(3.00 s) 2

d = r = (–2.30i + 39.3j) m  

(f) Kf = 
1
2  mv

2
f   = 

1
2 (5.00 kg)  [(5.54)2 + (23.7)2](m/s)2 = 1.48 kJ  

(g) Kf = 
1
2  mv

2
i   + ∑F ⋅ d = 

1
2 (5.00 kg) [(4.00)2 + (2.50)2](m/s)2

+ [(–15.9 N)(–2.30 m) + (35.3 N)(39.3 m)] = 55.6 J + 1426 J = 1.48 kJ  

7.68 (a )

25

20

15

10

5

0
0 50 100 150 200

L (mm)

F (N)

F  (N) L  (mm) F  (N) L  (mm)
2.00 15.0 14.0 112

4.00 32.0 16.0 126

6.00 49.0 18.0 149

8.00 64.0 20.0 175

10.0 79.0 22.0 190

12.0 98.0

(b) A straight line fits the first eight points, and the origin.  By least-square fitting, its slope

is 0.125 N/mm ± 2% = 125 N/m   ± 2%.  In F = kx, the spring constant is k = F/x, the same

as the slope of the F-versus-x graph.

(c) F = kx = (125 N/m)(0.105 m) = 13.1 N  
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7.69 (a ) ∑W = ∆K

Ws + Wg = 0

1
2 (1.40 × 103 N/m)  × (0.100 m)2 – (0.200 kg)(9.80)(sin 60.0°)x = 0

x = 4.12 m   

(b) ∑W = ∆K

Ws + Wg + Wf = 0

1
2 (1.40 × 103 N/m)  × (0.100)2 – [(0.200)(9.80)(sin 60.0°)

+ (0.200)(9.80)(0.400)(cos 60.0°)]x = 0

x = 3.35 m  

*7.70 (a ) W = ∆K = 
1
2  m(v2

f   – v2
i  ) = 

1
2 (0.400 kg)  [(6.00)2 – (8.00)2] (m/s)2 = –5.60 J  

(b) W = fd cos 180° = –µkmg(2πr)

–5.60 J = –µk(0.400 kg)(9.80 m/s2)2π(1.50 m)

Thus, µk = 0.152  

(c) After N revolutions, the mass comes to rest and Kf = 0.  Thus,

W = ∆K = 0 – Ki = – 
1
2  mv

2
i       or     –µk mg [N(2πr)] = – 

1
2  mv

2
i  

This gives

N = 

1
2
 mv

2
i

µk mg(2πr)  = 

1
2
 (8.00 m/s)2

(0.152)(9.80 m/s2)2π(1.50 m)  = 2.28 rev  
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7.71
1
2 




1.20 

N
cm  (5.00 cm)(0.0500 m)  

= (0.100 kg)(9.80 m/s2)(0.0500 m) sin 10.0° + 
1
2 (0.100 kg)  v2

0.150 J = 8.51 × 10–3 J + (0.0500 kg)v2

v = 
0.141
0.0500    = 1.68 m/s   

10.0°

7.72 If positive F represents an outward force, (same direction as r), then

W = ⌡⌠
i

f  F ⋅ ds = ⌡⌠
ri

rf (2F0σ13r–13 – F0σ7r–7) dr

W = 
+2F0σ13r–12

(–12)   – 
F0σ7r–6

(–6)  


rf

ri

 

W = 
–F0σ13(r–12

f  – r–12
i )

6   + 
F0σ7(r–6

f  – r–6
i )

6   = 
F0σ7

6   [r–6
f   – r–6

i  ] – 
F0σ13

6   [r–12
f   – r–12

i  ]

W = 1.03 × 10–77 [r–6
f    – r–6

i   ]  – 1.89 × 10–134 [r–12
f    – r–12

i   ]

W = 1.03 × 10–77 [1.88 × 10–6 – 2.44 × 10–6] 10+60

– 1.89 × 10–134 [3.54 × 10–12 – 5.96 × 10–8] 10120

W = –2.49 × 10–21 J + 1.12 × 10–21 J = – 1.37 × 10–21 J   

7.73 (a ) ∑W = ∆K

m2gh – µm1gh  = 
1
2 (m1 + m2)(v2 – v2

i ) 

v = 
2gh(m2 – µm1)

(m1 + m2)  

= 
2(9.80)(20.0)[0.400 – (0.200)(0.250)]

(0.400 + 0.250)    = 14.5 m/s  
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(b) Wf + Wg = ∆K = 0

–µ(∆m1 + m1)gh + m2gh = 0

  µ(∆m1 + m1) = m2

∆m1 = 
m2

µ
  – m1 = 

0.400 kg
0.200   – 0.250 kg = 1.75 kg  

(c) Wf + Wg = ∆K = 0

–µm1gh + (m2 – ∆m2)gh = 0

∆m2 = m2 – µm1 = 0.400 kg – (0.200)(0.250 kg) = 0.350 kg  

7.74 P ∆t = W = ∆K = 
(∆m)v2

2   

The density is

ρ = 
∆m
vol   = 

∆m
A ∆x

  

Substituting this into the first equation and solving for P,  since

∆x
∆ t

   = v

for a constant speed, we get

P = 
ρAv3

2   

Also, since P = Fv,

F = 
ρAv2

2  

7.75 We evaluate ⌡
⌠

12.8

23.7

 
375dx

x3 + 3.75x
  by calculating

375(0.100)
(12.8)3 + 3.75(12.8)  + 

375(0.100)
(12.9)3 + 3.75(12.9)  + . . . 

375(0.100)
(23.6)3 + 3.75(23.6)  = 0.806

and
375(0.100)

(12.9)3 + 3.75(12.9)  + 
375(0.100)

(13.0)3 + 3.75(13.0)  + . . . 
375(0.100)

(23.7)3 + 3.75(23.7)  = 0.791

The answer must be between these two values.  We may find it more precisely by using a value

for ∆x smaller than 0.100.  Thus, we find the integral to be 0.799 N ⋅ m  .

AAA

v

v∆tv∆t
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*7.76 (a ) The suggested equation P t = bwd implies all of the following cases:

(1) P t = b 



w

2  (2d) (2) P 



t

2   = b 



w

2   d

(3) P 



t

2   = bw 



d

2  and (4)  
P
2   t = b 




w

2   d

These  are all of the proportionalities Aristotle lists.

 w

 v = constant

n

fk = µkn F

d

(b) For one example, consider a horizontal force F pushing an object of weight w at constant
velocity across a horizontal floor with which the object has coefficient of friction µk.

∑F = ma implies that:

+n – w = 0     and     F – µkn = 0

so that F = µkw

As the object moves a distance   d , the agent exerting the force does work

W = Fd cos θ = Fd cos 0° = µkwd   and puts out power P = W/t

This yields the equation P t = µkwd which represents Aristotle’s theory with b = µk.

Our theory is more general than Aristotle’s.  Ours can also describe accelerated motion.


