
8.38 (a) The mass moves down distance 1.20 m + x.  Choose y = 0 at its lower point.

Ki + Ugi + Usi + ∆E = Kf + Ugf + Usf

0 + mgyi + 0 + 0 = 0 + 0 + 
1
2  kx2

(1.50 kg)9.80 m/s2 (1.20 m + x) = 
1
2 (320 N/m) x2

0 = (160 N/m)x2 – (14.7 N)x – 17.6 J

x = 
14.7 N ± (–14.7 N)2 – 4(160 N/m)(–17.6 N · m)

2(160 N/m)   

x = 
14.7 N ± 107 N

320 N/m   

The negative root tells how high the mass will rebound if it is instantly glued to the
spring.  We want

x = 0.381 m   



(b) From the same equation,

(1.50 kg)1.63 m/s2 (1.20 m + x) = 
1
2 (320 N/m) x2

0 = 160x2 – 2.44x – 2.93

The positive root is x = 0.143 m   

(c) The full work-energy theorem has one more term:

mgyi + fyi cos 180° = 
1
2  kx2

(1.50 kg) 9.80 m/s2 (1.20 m + x) – 0.700 N(1.20 m + x) = 
1
2 (320 N/m) x2

17.6 J + 14.7 N x – 0.840 J – 0.700 N x = 160 N/m x2

160x2 – 14.0x – 16.8 = 0

x = 
14.0 ± (14.0)2 – 4(160)(–16.8)

320   

x = 0.371 m   

8.39 Choose Ug = 0 at the level of the horizontal surface.

Then ∆E = (Kf – Ki) + (Ugf – Ugi) becomes:

–f1s – f2x = (0 – 0) + (0 – mgh)

or –(µkmg cos 30.0°) √
↵


ϒ0.30sin

h
– (µk mg)x =

–mgh

Thus, the distance the block slides across the horizontal surface before stopping is:

x = 
h
µk

  – h cot 30.0° = h √√↵


ϒ0.30cot

1

k

= (0.600 m) √
↵

 ϒ0.30cot
200.0

1

or x = 1.96 m  

h = 60.0 cm

= 30.0°

m = 3.00 kg

θ



*8.40 The total mechanical energy of the diver is Emech = K + Ug = 
1
2  mv2 + mgh.  Since the diver

has constant speed,

dEmech

dt   = mv 
dv
dt   + mg 

dh
dt   = 0 + mg(–v) = –mgv

The rate he is losing mechanical energy is then

dEmech

dt   = mgv = (75.0 kg)(9.80 m/s2)(60.0 m/s) = 44.1 kW  

8.41  U(r) = 
A
r   

Fr = – 
∂U
∂r    = – 

d
dr  

A
r    = 

A
r2   

8.42 Fx = – 
x

U

ƒ
ƒ

= – 
x

xyx
ƒ

−ƒ(3 73

= –(9x2y – 7) = 7 – 9x2y

Fy = – 
y

U

ƒ
ƒ

= –
y

xyx

ƒ
−ƒ(3 73

= –(3x3 – 0) = –3x3

Thus, the force acting at the point (x, y) is

F = Fx i + Fy j = (7 – 9x2y)i – 3x3 j  

*8.43 (a) There is an equilibrium point wherever the graph of potential energy is horizontal:

At r = 1.5 mm and 3.2 mm, the equilibrium is stable.
At r = 2.3 mm, the equilibrium is unstable.
A particle moving out toward r → ∞ approaches neutral equilibrium.

(b) The particle energy cannot be less than –5.6 J.   The particle is bound if

–5.6 J ≤ E < 1 J  .

(c) If the particle energy is –3 J, its potential energy must be less than or equal to –3 J.

Thus, its position is limited to 0.6 mm ≤ r ≤ 3.6 mm  .

(d) K + U = E.  Thus, Kmax = E – Umin = –3.0 J – (–5.6 J) = 2.6 J  

(e) Kinetic energy is a maximum when the potential energy is a minimum, at

r = 1.5 mm  .

(f) –3 J + W = 1 J.  Hence, the binding energy is W = 4 J  .



*8.44

stable unstable neutral

8.45 (a) Fx is zero at points A, C and E; Fx is positive at point B and negative at point D.

(b) A and E are unstable, and C is stable.

(c)

x (m)

Fx

A

B

C

D

E

8.46 (a) As the pipe is rotated, the CM rises, so this is stable   equilibrium.

(b) As the pipe is rotated, the CM moves horizontally, so this is neutral   equilibrium.

(c) As the pipe is rotated, the CM falls, so this is unstable   equilibrium.

O CM

b

O

a

CM
O

c

CM

8.47 (a) When the mass moves distance x, the length of each spring changes from L to

x2 + L2 , so each exerts force k( x2 + L2  – L) toward its fixed end. The y-
components cancel out and the x-components add to:

Fx = –2k( x2 + L2  – L) 



x

x2 + L2
  = –2kx + 

2kLx

x2 + L2
 



Choose U = 0 at x = 0.   Then at any point

U(x) = – ⌡⌠
0

xFxdx  = – ⌡⌠
0

x
 





–2kx + 
2kLx

x2 + L2
  dx = 2k ⌡⌠

0

x
xdx  – 2kL ⌡⌠

0

x
 

x

x2 + L2
  dx

U(x) = kx2 + 2kL(L – x2 + L2)  

(b) U(x) = 40.0x2 + 96.0(1.20 – x2 + 1.44 )
−1
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U(x)(J)

x(m)
1.00
2.00

3.00

4.00

5.00

6.00
−0

.2 0

x, m 0 0.200 0.400 0.600 0.800 1.00 1.50 2.00 2.50
U, J 0 0.011 0.168 0.802 2.35 5.24 20.8 51.3 99.0

For negative x, U(x) has the same value as for positive x.  The only equilibrium

point (i.e., where Fx = 0) is x = 0  .

(c) Ki + Ui + ∆E = Kf + Uf

0 + 0.400 J + 0 = 
1
2  mv

2
f   + 0

vf = 
0.800 J

m      

8.48 (a) E = mc2 = (9.11 χ 10–31 kg)(2.998 × 108 m/s)2 = 8 .19 × 10-14J

(b) 3 .60 × 10-8J

(c) 1 .80 × 1014J

(d) 5 .38 × 1041J

8.49 (a) Rest energy = mc2 = (1.673 ∞ 10–27 kg)(2.998 ∞ 108 m/s)2 = 1 .50 × 10-10J

(b) E = γmc2 = 
mc2

1 – (v/c)2
  = 

1.50 × 10–10 J

1 – (.990)2
  = 1 .07 × 10-9J

(c) K = γmc2 – mc2 = 1.07 × 10–9 J – 1.50 × 10–10 J = 9 .15 × 10-10J



8.50 The potential energy of the block is mgh.

An amount of energy µkmgs cos θ is lost to friction on the incline.

Therefore the final height ymax is found from

mgymax = mgh – µkmgs cos θ

where

s = 
ymax

sin θ  

∴ mgymax = mgh – µkmgymax cot θ

Solving,

ymax = 
h

1 + µk cot θ  

*8.51 m = mass of pumpkin
R = radius of silo top

vi ≈ 0

initially

mg

n

v

later

mg

RR
tθ

∑Fr = mar ⇒ n – mg cos θ = –m 
v2

R  

When the pumpkin is ready to lose contact with the surface, n = 0. Thus, at the point
where it leaves the surface:  v2 = Rg cos θ.

Choose Ug = 0 in the θ = 90.0°plane.  Then applying conservation of energy from the
starting point to the point where the pumpkin leaves the surface gives

Kf + Ugf = Ki + Ugi

1
2  mv2 + mgR cos θ = 0 + mgR

h

ymax
θ



Using the result from the force analysis, this becomes

1
2  mRg cos θ + mgR cos θ = mgR, which reduces to

cos θ = 
2
3  , and gives θ = cos–1 (2/3) = ϒ2.48

as the angle at which the pumpkin will lose contact with the surface.

8.52 (a) UA = mgR = (0.200 kg)(9.80 m/s2)(0.300 m) =

0.588 J   

(b) KA + UA = KB + UB

KB = KA + UA – UB = mgR= 0.588 J   

(c) vB = 
2KB

m     = 
2(0.588 J)
0.200 kg     = 2.42 m/s   

(d) UC = mghC = (0.200 kg)(9.80 m/s2)(0.200 m) =

0.392 J   

KC = KA + UA – UC = mg(hA – hC)

KC = (0.200 kg)(9.80 m/s2)(0.300 – 0.200) m = 0.196 J   

8.53 (a) KB = 
1
2  mv

2
B  = 

1
2 (0.200 kg)(1.50 m/s) 2 = 0.225 J  

(b) ∆E = ∆K + ∆U = KB – KA + UB – UA

= KB + mg(hB – hA)

= 0.225 J + (0.200 kg)(9.80 m/s2)(0 – 0.300 m)

= 0.225 J – 0.588 J = –0.363 J  

(c) It's possible to find an effective coefficient of friction, but not the actual value of µ
since n and f vary with position.

*8.54 v = 100 km/h = 27.8 m/s

The retarding force due to air resistance is

R = 
1
2  DρAv2 = 

1
2 (0.330)(1.20 kg/m3)(2.50 m2)(27.8 m/s) 2 = 382 N

2R/3

R

A

B

C



Comparing the energy of the car at two points along the hill,

Ki + Ugi + ∆E = Kf + Ugf

or Ki + Ugi + ∆We – R(∆s) = Kf + Ugf

where ∆We is the work input from the engine.  Thus,

∆We = R(∆s) + (Kf – Ki) + (Ugf – Ugi)

Recognizing that Kf = Ki and dividing by the travel time ∆t gives the required power
input from the engine as

P =  
∆We

∆t   = R 
∆s
∆t   + mg  

∆y
∆t   = Rv + mgv sin θ

P = (382 N)(27.8 m/s) + (1500 kg)(9.80 m/s2)(27.8 m/s)sin 3.20°

P = 33.4 kW = 44.8 hp  

*8.55 At a pace I could keep up for a half-hour exercise period, I climb two stories up, forty
steps each 18 cm high, in 20 s.  My output work becomes my final gravitational energy,

mgy = 85 kg(9.80 m/s2)(40 × 0.18 m) = 6000 J

making my sustainable power

6000 J
20 s    = ~102 W   

8.56 k = 2.50 × 104 N/m m = 25.0 kg xA = –0.100 m Ugx = 0 = Usx = 0 = 0

(a) E = KA + UgA + UsA = 0 + mgxA + 
1
2  kx

2
A 

E = (25.0 kg)(9.80 m/s2)(–0.100 m) + ))(0.100/Ν10↔ 4 µµ50.2(
2

1 2

E = –24.5 J + 125 J = 100 J  

(b) Since only conservative forces are involved, the total energy at point C is the same
as that at point A.

KC + UgC + UsC = KA + UgA + UsA

0 + (25.0 kg)(9.80 m/s2)xC + 0 = 0 + –24.5 J + 125 J ⇒ xC = 0.410 J  



(c) KB + UgB + UsB = KA + UgA + UsA

1
2 (25.0 kg) v

2
B  + 0 + 0 = 0 + –24.5 J + 125 J ⇒ vB = 2.84 m/s  

(d) K and v are at a maximum when a = 
m

FΣ
= 0 (i.e., when the magnitude of the

upward spring force equals the magnitude of the downward gravitational force).
This occurs  at
x < 0 where

k x   = mg     or     x   = 
m

smkg

/Ν10↔ 450.2

)/80.9)(0.25( 2

= 9.80 × 10–3 m

Thus, K = Kmax at x = –9.80 mm  

(e) Kmax = KA + (UgA – Ugx = –9.80 mm) + (UsA – Usx = –9.80 mm), or

1
2 (25.0 kg) v

2
max  = (25.0 kg)(9.80 m/s2)[(–0.100 m) – (–0.0098 m)]

+ 
1
2 (2.50 × 104 N/m) [(–0.100 m)2 – (–0.0098 m)2]

yielding vmax = 2.85 m/s  

8.57 ∆E = Wf

Ef – Ei = – f · dBC

1
2  k ∆x2 – mgh = – µmgd

µ = 
mgh – 

1
2 k · ∆x2

mgd   = 0.328  

3.00 m

6.00 m

A

B C



Goal Solution
G: We should expect the coefficient of friction to be somewhere between 0 and 1 since this is the

range of typical µk values.  It is possible that µk could be greater than 1, but it can never be less
than 0.

O: The easiest way to solve this problem is by considering the energy conversion for each part of
the motion:  gravitational potential to kinetic energy from A to B, loss of kinetic energy due to
friction from B to C, and kinetic to elastic potential energy as the block compresses the spring.
Choose the gravitational energy to be zero along the flat portion of the track.

A: Putting the energy equation into symbols: UgA – W  BC = Usf

expanding into specific variables:  mgyA – f1dBC = 
1
2  kx

2
s  where f1 = µ1mg

solving for the unknown variable:  µ1mgd = mgy – 
1
2  kx2     or     µ1 = 

y
d  – 

kx2

2mgd 

substituting:  µ1 = 
3.00 m
6.00 m  – 

(2250 N/m)(0.300 m)2

2(10.0 kg)(9.80 m/s2)(6.00 m)  = 0.328

L: Our calculated value seems reasonable based on the friction data in Table 5.2.  The most
important aspect to solving these energy problems is considering how the energy is transferred
from the initial to final energy states and remembering to subtract the energy resulting from
any non-conservative forces (like friction).

8.58 The nonconservative work (due to friction) must equal the change in the kinetic energy
plus the change in the potential energy.

Therefore,

–µkmgx cos θ = ∆K + 
1
2  kx2 – mgx sin θ

and since vi = vf = 0,  ∆K = 0.

Thus,

–µk(2.00)(9.80)(cos 37.0°)(0.200) = 
(100)(0.200)2

2    – (2.00)(9.80)(sin 37.0°)(0.200)

and we find µk = 0.115  .  Note that in the above we had a gain in elastic potential energy
for the spring and a loss in gravitational potential energy.  The net loss in mechanical
energy is equal to the energy lost due to friction.



8.59 (a) Since no nonconservative work is done, ∆E = 0

Also ∆K = 0

therefore, Ui = Uf

where Ui  = (mg sin θ)x

and Uf = 
1
2  kx2

Substituting values yields (2.00)(9.80) sin 37.0° = (100) 
x
2   and solving we find

x = 0.236 m   

(b) ∑F = ma.  Only gravity and the spring force act on the block, so

–kx + mg sin θ = ma

For x = 0.236 m,

a = –5.90 m/s2      The negative sign indicates a is up the incline.

The acceleration depends on position  .

(c) U(gravity) decreases monotonically as the height decreases.

U(spring) increases monotonically as the spring is stretched.

K initially increases, but then goes back to zero.

*8.60 (a) F = – 
d
dx (–x3 + 2x2 + 3x)i = (3x2 – 4x – 3)i   

(b) F = 0 when x = 1.87 and –0.535   

(c) The stable point is at x = –0.535 point of
minimum U(x)

The unstable point is at x = 1.87 maximum in
U(x)

−1 1 2

5

−5

−1 1 2

F(x)

U(x)

5

−5



8.61 (K + U)i = (K + U)f

0 + (30.0 kg)(9.80 m/s2)(0.200 m) + 
1
2 (250 N/m)(0.200 m) 2

= 
1
2 (50.0 kg) v2 + (20.0 kg)(9.80 m/s2)(0.200 m) sin 40.0°

58.8 J + 5.00 J = (25.0 kg)v2 + 25.2 J

v = 1.24 m/s   

20.0 kg20.0 kg20.0 kg

30.0 kg30.0 kg30.0 kg

40°40°

20.0 cm20.0 cm

8.62 (a) Between the second and the third picture, ∆E = ∆K
+ ∆U

– µmgd = – 
1
2  mv

2
i    + 

1
2  kd2

1
2 (50.0 N/m) d2 + 0.250(1.00 kg)(9.80 m/s2)d

– 
1
2 (1.00 kg)(3.00 m/s2)   = 0

d = 
[–2.45 ± 21.35] N

50.0 N/m    = 0.378 m   

(b) Between picture two and picture four, ∆E = ∆K +
∆U

– f(2d) = – 
1
2  mv2 + 

1
2  mv

2
i   

v = (3.00 m/s)2 – 
2

(1.00 kg) (2.45 N)(2)(0.378 m)  

 = 2.30 m/s   

v

k

vi

d
vf = 0

v = 0

D

m



(c) For the motion from picture two to picture five, ∆E = ∆K + ∆U

–f(D + 2d) = – 
1
2 (1.00 kg)(3.00 m/s) 2

D = 
9.00 J

2(0.250)(1.00 kg)(9.80 m/s2)   – 2(0.378 m) = 1.08 m   

8.63 (a)
T

vT

vB

B

R

m
k∆x

Initial compression of spring:  
1
2  kx2 = 

1
2  mv2

1
2 (450 N/m)(∆x) 2 = 

1
2 (0.500 kg)(12.0 m/s) 2

∴ ∆x = 0.400 m   

(b) Speed of block at top of track:

∆E = Wf

 mghT + 
1
2 mv

2
T    –  mghB + 

1
2 mv

2
B    = – f(πR)

(0.500 kg)(9.80 m/s2)(2.00 m) + 
1
2 (0.500 kg) v

2
T   – 

1
2 (0.500 kg)(12.0 m/s) 2

= – (7.00 N)(π)(1.00 m)

0.250v
2
T   = 4.21 ∴ vT = 4.10 m/s   

(c) Does block fall off at or before top of track?

Block falls if ar < g

ar = 
v

2
T

R    = 
(4.10)2

1.00    = 16.8 m/s2

therefore ar > g and the block stays on the track  .



8.64 Let λ represent the mass of each one meter of the chain
and T represent the tension in the chain at the table
edge.  We imagine the edge to act like a frictionless
pulley.

(a) For the five meters on the table with
motion impending,

∑Fy = 0 + n – 5λg = 0

n = 5λg fs ≤ µs n = 0.6(5λg) = 3λg

∑Fx = 0 + T – fs = 0          T = fs          T ≤
3λg

The maximum value is barely enough to support
the hanging segment according to

∑Fy = 0 + T – 3λg = 0          T = 3λg

so it is at this point that the chain starts to slide.

(b) Let x represent the variable distance the chain has slipped since the start.

Then length (5 – x) remains on the table, with now

∑Fy = 0 + n – (5 – x)λg = 0          n = (5 – x)λg

fk = µk n = 0.4(5 – x)λg = 2λg – 0.4xλg

Consider energies at the initial moment when the chain starts to slip, and a final
moment when x = 5, when the last link goes over the brink.  Measure heights above
the final position of the leading end of the chain.  At the moment the final link slips
off, the center of the chain is at yf = 4 meters.

Originally, 5 meters of chain is at height 8 m and the middle of the dangling

segment is at height 8 – 
3
2   = 6.5 m.

Ki + Ui + ∆E = Kf + Uf

0 + (m1gy1 + m2gy2)i + ⌡⌠
i

f   fk dx cos θ =  
1
2 mv2 + mgy  

f

(5λg)8 + (3λg)6.5 + ⌡⌠
0

5
 (2λg – 0.4xλg)  dx cos 180°

= 
1
2 (8λ) v2 + (8λg)4

f T T

5λg

3λg

n

T

T

P



40.0 g + 19.5 g – 2.00 g ⌡⌠
0

5
   dx + 0.400 g ⌡⌠

0

5
   x dx = 4.00v2 + 32.0 g

27.5 g – 2.00 gx 



5
0   + 0.400 g 

x2

2  



5
0   = 4.00v2

27.5 g – 2.00 g(5.00) + 0.400 g(12.5) = 4.00v2

22.5 g = 4.00v2

v = 
(22.5 m)(9.80 m/s2)

4.00       = 7.42 m/s   

8.65 (a) On the upward swing of the mass:

Ki + Ui + ∆E = Kf + Uf

1
2  mv

2
i   + 0 + 0 = 0 + mgL(1 – cos

θ)

vi = 2gL(1 – cos θ) 

(b) vi = 2(9.80 m/s2)(1.20 m)(1 – cos 35.0°) 

vi = 2.06 m/s  

8.66 Launch speed is found from

mg  
4
5 h   = 

1
2  mv2

v = 2g  
4
5  h 

vy = v sin θ

The height y above the water (by
conservation of energy) is found from

mgy = 
1
2  mv

2
y  + mg 

h
5   since 

1
2 mv

2
x is constant in projectile motion  

y = 
1
2g  v

2
y  + 

h
5  = 

1
2g  v2 sin2 θ + 

h
5 

y = 
1
2g  2g  

4
5 h   sin2 θ + 

h
5  = 

4
5 h sin2 θ + 

h
5  

(a)

vi

L

m

(b)

θ

h

h/5
y

θ



8.67 (a) Take the original point where the ball
is released and the final point where
its upward swing stops at height H
and horizontal displacement

x = L2 – (L – H)2  = 2LH – H2 

Since the wind force is purely
horizontal, it does work

Wwind = ∨ F ⋅ ds = F ∨ dx = F

2LH – H2 

[The wind force potential energy change would be –F 2LH – H2  ]

The work-energy theorem can be written:

Ki + Ugi + Wwind = Kf + Ugf,  or

 0 + 0 + F 2LH – H2    = 0 + mg H    giving    F22LH – F2H2 = m2g2H2

  Here H = 0 represents the lower turning point of the ball's oscillation, and the
upper limit is at F2(2L) = (F2 + m2g2)H.  Solving for H yields

H = 
2LF2

F2 + m2g2  = 
2L

1 + (mg/F)2  

As F → 0, H → 0   as is reasonable.
As F → ∞, H → 2L, which is unreasonable.

(b) H = 
2(2.00 m)

1 + [(2.00 kg)(9.80 m/s2)/14.7 N]2  = 1.44 m   

(c) Call θ the equilibrium angle with the vertical.

ΣFx = 0 ⇒ T sin θ = F, and

ΣϖFy = 0 ⇒ T cos θ = mg

Dividing:  tan θ = 
F

mg  = 
14.7 N
19.6 N  = 0.750, or θ = 36.9°

Therefore, Heq = L(1 – cos θ) = (2.00 m)(1 – cos 36.9°) = 0.400 m  

(d) As F → ∞, tan θ → ∞, θ → 90.0° and Heq →ϖϖ L

A very strong wind pulls the string out horizontal, parallel to the ground.  Thus,

(Heq)max = L  

L

(a)

F

m

L

Pivot

(b)

F

Pivot

H
m



8.68 Call φ = 180° – θ the angle between the upward vertical and the radius to the release
point. Call vr the speed here. By conservation of energy

Ki + Ui + ∆E = Kr + Ur

1
2  mv

2
i   + mgR + 0 = 

1
2  mv

2
r  + mgR cos φ

gR + 2 gR = v
2
r  + 2 gR cos φ

vr = 3 gR – 2 gR cos φ  

The components of velocity at release are

vx = vr cos φ    and     vy = vr sin φ

so for the projectile motion we have

x = vxt     R sin φ = vr cos φ t

y = vyt –  
1
2  gt2        – R cos φ = vr sin φ t –  

1
2  gt2

By substitution

–R cos φ = vr sin φ 
R sin φ
vr cos φ   –  

g
2  

R2 sin2 φ
v

2
r cos2 φ

 

with sin2 φ + cos2 φ = 1,

gR sin2 φ = 2v
2
r  cos φ = 2 cos φ(3 gR – 2 gR cos φ)

sin2 φ = 6 cos φ – 4 cos2 φ = 1 – cos2 φ

3 cos2 φ – 6 cos φ + 1 = 0

cos φ = 
6 ± 36 – 12

6   

Only the – sign gives a value for cos φ that is less than one:

cos φ = 0.1835        φ = 79.43°        so   θ = 100.6°  

The path
after string
is cut

R C

m

vi =     Rg

θ



8.69 Applying Newton's second law at the bottom (b) and top (t) of
the circle gives

Tb – mg = 
mv

2
b

R     and  –Tt – mg = – 
mv

2
t

R  

Adding these gives      Tb = Tt + 2mg + 
m(v

2
b – v

2
t)

R  

Also, energy must be conserved and ∆U + ∆K = 0

So,  
m(v

2
b – v

2
t)

2   + (0 – 2mgR) = 0    and    
m(v

2
b – v

2
t)

R   = 4mg

Substituting into the above equation gives Tb = Tt + 6mg  

8.70 (a) Energy is conserved in the swing of the pendulum, and the stationary peg does no
work.  So the ball's speed does not change when the
string hits or leaves the peg, and the ball swings
equally high on both sides.

(b) Relative to the point of suspension,

Ui = 0,    Uf = –mg[d – (L – d)]

From this we find that

–mg(2d – L) + 
1
2  mv2 = 0

Also for centripetal motion,

mg = 
mv2

R    where R = L – d.

Upon solving, we get d = 
3L
5   

Tt

Tb

vt

vb

mg

mg

dL

Peg

θ



8.71 (a) The potential energy associated with the wind force is +Fx, where x is the
horizontal distance traveled, with x positive when swinging into the wind and
negative when swinging in the direction the wind is blowing.  The initial energy of
Jane is, (using the pivot point of the swing as the point of zero gravitational
energy),

Ei = (K + Ug + Uwind)i = 
1
2  mv

2
i   – mgL cos θ – FL sin θ

where m is her mass.  At the end of her swing, her energy is

Ef = (K + Ug + Uwind)f = 0 – mgL cos φ + FL sin φ

so conservation of energy (Ei = Ef) gives

1
2  mv

2
i   – mgL cos θ – FL sin θ = –mgL cos φ + FL sin φ

This leads to vi = 2gL(cos θ – cos φ) + 2 
FL
m  (sin θ + sin φ) 

But D = L sin φ + L sin θ, so that sin φ = 
D
L   – sin θ = 

50.0
40.0  – sin 50.0° = 0.484

which gives φ = 28.9°.  Using this, we have vi = 6.15 m/s  .

(b) Here (again using conservation of energy) we have,

–MgL cos φ + FL sin φ + 
1
2  Mv2 = –MgL cos θ – FL sin θ

where M is the combined mass of Jane and Tarzan.

Therefore, v = 2gL(cos φ – cos θ) – 2 
FL
M  (sin φ + sin θ)  which gives v = 9.87 m/s   

as the minimum speed needed.

8.72 Find the velocity at the point where
the child leaves the slide, height h:

(U + K)i = (U + K)f

mgH + 0 = mgh + 
1
2  mv2

v = 2g(H – h)  

Use Newton's laws to compare h
and H.

H

R
θ



(Recall the normal force will be zero):

∑ Fr = mar = 
mv2

R   

mg sin θ – n = 
mv2

R   

mg sin θ = 
m(2 g)(H – h)

R   

Put θ in terms of R:  sin θ = 
h
R  

mg  
h
R    = 

2 mg(H – h)
R   

h = 
2
3 H   

Notice if H ≥ 
3
2   R, the assumption that the child will leave the slide at a height 

2
3   H is no

longer valid.  Then the velocity will be too large for the centripetal force to keep the child

on the slide.  Thus if H ≥ 
3
2   R, the child will leave the track at h = R.

8.73 Case I:  Surface is frictionless

1
2  mv2 =  

1
2  kx2

k = 
mv2

x2   = 
(5.00 kg)(1.20 m/s)2

10–2 m2   = 7.20 ∞ 102 N/m

Case II:  Surface is rough, µk = 0.300

1
2  mv2 =  

1
2  kx2 – µkmgx

5.00 kg
2   v2 = )−)(10/Ν10↔ 12

mm20.7(
2

1 2 – (0.300)(5.00 kg)(9.80 m/s2)(10–1 m)

v = 0.923 m/s  

8.74 ΣFy = n – mg cos 37.0° = 0,   ∴ n = mg cos 37.0° = 400 N

f = µN = (0.250)(400) = 100 N

Wf = ∆E

(–100)(20.0) = ∆UA + ∆UB + ∆KA + ∆KB

∆UA = mAg(hf – hi) = (50.0)(9.80)(20.0 sin 37.0°) = 5.90 ∞ 103



∆UB = mBg(hf – hi) = (100)(9.80)(–20.0) = – 1.96 ∞ 104

∆KA = 
1
2  mA(v

2
f   – v

2
i  )

∆KB  
1
2  mB(v

2
f   – v

2
i  ) = 

mB

mA
  ∆KA = 2∆KA

Adding and solving, ∆KA = 3.92 kJ  


